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Abstract: This study explores the use of Masked Autoencoders within a self-supervised learning framework to enhance credit
scoring models, particularly in handling incomplete and noisy financial data. Traditional models in credit scoring face limitations
when dealing with missing values and high data variability; however, Masked Autoencoders address these issues by masking
portions of the input data and reconstructing them during training. This enables the model to effectively learn robust feature
representations without relying on fully labeled or complete datasets. In experiments, the Masked Autoencoder outperformed
models like Transformers and GNNs, achieving superior accuracy (ACC) and F1 scores, which highlights its strong feature
extraction capabilities and resilience against data noise. This approach reduces reliance on manual feature engineering and
enhances model stability and generalizability in diverse, high-dimensional, and heterogeneous financial data environments. The
results suggest that Masked Autoencoders provide a promising solution for improving credit scoring reliability, allowing financial
institutions to make more accurate credit decisions even in complex data scenarios.
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1. Introduction
In today's rapidly developing financial market, credit

scoring, as an important tool for assessing user credit risk, has
received widespread attention. Traditional credit scoring
models usually rely on a large amount of labeled data, and the
data acquisition process is often accompanied by high costs
and time consumption. In addition, credit scoring data is highly
complex and diverse, involving a large amount of unstructured
information, such as user behavior records and historical
financial transaction records, which poses severe challenges to
the accuracy and generalization ability of the model. In this
context, the use of self-supervised learning technology can
make full use of a large amount of unlabeled data and
effectively improve the performance of credit scoring models
[1].

Self-supervised learning, with its unique mechanism,
enables the model to build labels through its own data structure
in an unsupervised state. This training method does not require
a lot of manual intervention and can greatly reduce data
dependence. The BERT-like Masked Autoencoder model is a
typical self-supervised learning method. By randomly masking
part of the input and allowing the model to restore the original
information, the Masked Autoencoder can learn the internal
features of the data under incomplete information. This model
is particularly suitable for credit scoring data containing
complex patterns, which helps to extract potential features with
robustness and high representation ability so that the model
can better adapt to different market environments and user
characteristics [2].

Masked Autoencoder has significant advantages. First,
through the self-recovery mechanism of masking part of the
data, the model has a high fault tolerance in dealing with
missing data, noise, and bias, which is particularly critical for
incomplete or inaccurate data that is common in financial data.
Second, Masked Autoencoder can acquire a wide range of
domain knowledge in the pre-training stage, which enables it
to perform well when migrating to downstream tasks. This pre-
training-fine-tuning mode can not only significantly shorten
the training time of the model, but also continue to maintain
high performance in small sample scenarios, making the credit
scoring model more adaptable and flexible [3].

Additionally, the Masked Autoencoder excels in processing
high-dimensional and heterogeneous data. By deeply analyzing
financial behavior patterns, the Masked Autoencoder
automatically generates rich feature representations, which
possess strong discriminative power and reduce the need for
manual feature engineering [4]. This approach not only cuts
labor costs but also enhances data utilization efficiency,
enabling the credit scoring model to maintain robust
computational efficiency and predictive accuracy, even as data
complexity and volume increase [5].

Finally, as the demand for the robustness of credit scoring
models increases, Masked Autoencoder's anti-interference and
anti-attack capabilities have also been widely recognized [6].
Its unique self-supervised learning method can achieve higher
generalization capabilities under limited labeled data
conditions and is more stable in the face of data fluctuations
[7]. Combined with the strict requirements of compliance and
security in the financial industry, Masked Autoencoder can



effectively improve the stability and reliability of credit
scoring models in different scenarios, providing financial
institutions with a more accurate and explainable credit
decision-making basis.

2. Method
When designing a credit scoring model based on Masked

Autoencoder, the basic principle of self-supervised learning is
that the model randomly masks part of the input information
and restores the original data, so as to train on a dataset lacking
labels and automatically extract robust features. In this section,
we describe in detail the training process of Masked
Autoencoder, the mask generation method, the loss function
and its formula derivation. The network architecture of
Masked Autoencoder is shown in Figure 1.

Figure 1. Masked Autoencoder Network Architecture
The input data of Masked Autoencoder is denoted as
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some features are randomly masked at the input layer to guide
the model to learn the missing pattern of information. On this
basis, we generate a mask vector dM }1,0{ where each

element im represents whether feature ix is masked, which
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The result of the masking operation on the input feature
vector is represented as MXX masked  , where the

symbol  represents the element-by-element product. The
encoder encoderf of the model accepts the input maskedX and

maps it to the latent space to generate the latent variable Z :
)( maskedencoder XfZ 

Next, the feature Z of the latent space is reconstructed by
the decoder decoderf to obtain the output 'X ：
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Where 'X is the feature vector restored by the model. The
model learns the latent feature space by minimizing the
reconstruction error, so that it can restore the input information
as much as possible in the absence of some data.
The training goal of Masked Autoencoder is to minimize the
difference between the original feature A and the reconstructed
feature B. The mean squared error (MSE) is usually used as
the loss function, which is defined as follows:
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In order to ensure that the model focuses on restoring the
masked features, MSEL can be weighted to optimize the
restoration effect of the masked features. The weighted loss
function is expressed as:
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During model training, we control the masking ratio r so
that approximately dr  features are masked in each batch.
By repeatedly optimizing the loss function, the model can
adjust itself and learn how to infer the complete feature
distribution from partially missing features. Masked
Autoencoder is trained using Stochastic Gradient Descent
(SGD) or Adam optimization algorithm to update the encoder
and decoder parameters through back propagation. At each
iteration, we use the masked input vector maskedX to

generate the reconstruction result 'X , and adjust the
parameters based on the loss maskL to minimize the
reconstruction error:

maskL 
Where is the model parameter and  is the learning rate.

After training, the performance of Masked Autoencoder in the
credit scoring task can be intuitively evaluated through the
distribution of reconstruction error. Low reconstruction error
means that the model can restore the input data well when it is
masked, indicating that the model has successfully learned the
internal patterns and features of the data.

The advantage of Masked Autoencoder based on self-
supervised learning is that it does not require a large amount of
labeled data to build an effective model. This method is not
only suitable for application in credit scoring scenarios where
data is scarce, but also provides strong feature support for
further data analysis and prediction tasks. Through the training
and optimization of this model, the robustness and accuracy of
the credit scoring model in different environments and
conditions can be improved, providing technical support for
risk management and decision support in practical applications.

3. Experiment



3.1 Datasets
In the experiment, in order to verify the effectiveness of the

Masked Autoencoder model in the robustness analysis of
credit scoring, we used a real and public credit scoring dataset.
This dataset contains rich user personal information, historical
credit behavior records, financial transaction data and other
features, which can better reflect the complexity and diversity
in the actual credit scoring scenario. Specifically, the dataset
includes basic information of users (such as age, income,
occupation, etc.), as well as key variables related to credit risk
(such as credit card usage, loan records, payment history, etc.).
These features provide a multi-dimensional reference for the
model and help train a robust feature extraction model.

This dataset comes from the Kaggle platform, named
"Home Credit Default Risk", which is one of the commonly
used open-source datasets in financial research. The dataset
contains millions of records and comes with auxiliary tables of
different dimensions, such as loan information, historical
application records, payment details, etc., so that the model can
more deeply explore the relationship between features in self-
supervised learning. In addition, the scale and feature
complexity of this dataset are suitable for verifying the
performance of Masked Autoencoder in processing high-
dimensional and incomplete data, providing a strong data
foundation for subsequent experiments and practical
applications.

3.2 Experimental Results
In this experiment, we compared the Masked Autoencoder-

based model with several mainstream deep learning models to
verify its performance and robustness in the credit scoring task.
These contrasting models represent techniques commonly used
in current credit scoring and financial data analysis, covering
different structures and properties. First, Transformer Encoder
is a powerful model for processing sequence data, which can
capture long-distance dependencies between features through a
self-attention mechanism. This has significant advantages for
the analysis of time series or behavioral sequences in credit
scoring, allowing the model to fully exploit the potential
correlations between different features. Secondly, Graph
Neural Network (GNN) is good at capturing the relationship
between nodes in the data, which makes it suitable for credit
score data that needs to establish a user relationship network,
and can effectively analyze the associated behaviors or
common characteristics between users. This helps determine
the user's credit risk.

In addition, Variational Autoencoder (VAE), as a generative
model, is suitable for processing high-dimensional financial
data and has unique advantages in extracting latent feature
distributions. VAE can generate high-quality feature
representations by learning the underlying distribution of data,
which is very helpful for capturing complex features in credit
score data. As a basic deep learning model, Deep Neural
Network (DNN) strengthens feature extraction capabilities
through its deep network structure and can adapt to the
combination of different data features to achieve better
classification results. Although the structure of DNN is
relatively simple, its hierarchical feature extraction still has a

certain application value in the preliminary task of credit
scoring. Finally, Gradient Boosting Decision Trees (GBDT) is
an ensemble learning method that is widely used in financial
tasks such as credit scoring. GBDT performs well in
processing high-dimensional sparse data and is especially
suitable for processing financial data with a large number of
features.

For model evaluation indicators, we use accuracy (ACC)
and F1 score (F1 Score). The accuracy rate is the overall
accuracy of the evaluation model in classifying positive and
negative samples, and can intuitively reflect the performance
of the model in overall prediction. This is particularly
important in credit scoring tasks, as it measures the model's
fundamental ability to differentiate between customers' credit
risks. On the other hand, F1 score, as the harmonic average of
precision and recall, is particularly suitable for measuring
model performance under conditions of unbalanced data
distribution. Credit score data often contains uneven
distribution of customers with different risk levels. The F1
score can reflect the model's classification ability under
different risk levels, especially when dealing with extreme
situations of credit risk. The performance is particularly critical.
Together, these two evaluation indicators provide us with a
comprehensive measurement benchmark to comprehensively
test the model's predictive ability and robustness, thereby
better evaluating the model's application potential in actual
credit scoring tasks.

Table 1. Experimental Results
Model ACC F1
GBDT 0.82 0.78
DNN 0.84 0.80
VAE 0.86 0.83
GNN 0.87 0.84
Transformer 0.88 0.86
Masked
Autoencoder(Ours)

0.91 0.89

Experimental results in Table 1 show that in the credit
scoring task, Masked Autoencoder performs well compared to
other models, especially achieving optimal results in the two
core indicators of accuracy (ACC) and F1 score. Specifically,
Masked Autoencoder's ACC reached 0.91 and F1 score was
0.89, significantly surpassing traditional GBDT, DNN, VAE,
GNN and Transformer models. This result shows that Masked
Autoencoder can effectively mine and utilize potential features
to improve the prediction accuracy and robustness of the
model when faced with complex and incomplete credit score
data. This excellent performance is mainly due to the masking
mechanism of Masked Autoencoder, which enables the model
to have strong adaptability to missing data during the training
process, thereby maintaining high performance on incomplete
or noisy data.

Further observing the comparison model, Transformer
performed relatively well in this experiment, ranking second
best with an ACC of 0.88 and an F1 score of 0.86. As a model
based on the self-attention mechanism, Transformer can
effectively handle high-dimensional features and long-distance



dependencies in credit score data. Its excellent feature capture
ability helps it achieve high performance in highly sequential
data. But even so, since the training process of Transformer
still relies heavily on the integrity of the data, Masked
Autoencoder relies on self-supervised masking training to
demonstrate stronger robustness when dealing with scenarios
with missing data or noise. The suitability of Masked
Autoencoder for credit scoring tasks is further verified.

Compared to the Transformer model, GNN and VAE also
performed well, though not as strongly. GNN achieved an
ACC of 0.87 and an F1 score of 0.84 in credit scoring, largely
due to its capability to capture relationships between nodes,
making it suitable for data with network structures, such as
relationships between banks and users. However, the GNN’s
computational demands and structural data requirements limit
its generalization in credit-scoring tasks. Meanwhile, VAE
showed solid feature extraction ability by learning latent space
features (ACC 0.86, F1 0.83), yet its generative nature
introduces challenges in handling sparse or irregular credit data.
Therefore, Masked Autoencoder still holds a notable
advantage in handling complex features within credit score
data.

Finally, GBDT and DNN performed the weakest in this
experiment, with ACCs of 0.82 and 0.84, and F1 scores of 0.78
and 0.80, respectively. These two models are relatively simple
in structure. Although they have been widely used in
traditional credit scoring tasks, their performance is
significantly limited in complex data environments such as
high dimensions, noise and missing data. Although DNN has
certain feature learning capabilities, it clearly lags behind
Masked Autoencoder in ACC and F1 scores due to the lack of
complex feature capture mechanisms and the ability to process
incomplete data. As an integrated model, GBDT has strong
performance on small sample data, but it is not flexible and
robust enough when faced with large-scale and high-
dimensional credit score data.

To sum up, Masked Autoencoder showed the best overall
performance in this credit scoring experiment, especially in
dealing with complex, missing data, and noisy data. This
advantage not only comes from its self-supervised masking
training mechanism, which enables the model to effectively
deal with incomplete information when learning the latent
feature space, but also benefits from its flexible encoder-
decoder structure, which can deeply extract and extract
information from the data. Core characteristics related to credit
risk. Therefore, compared with other deep models, Masked
Autoencoder's robustness and expressiveness in credit scoring
undoubtedly have wider application potential.

In addition, we also examined the impact of different
hyperparameters on model performance. We first explored the
effect of different learning rates on the experimental results, as
shown in Table 2.

Table 2. The influence of different learning rates on
experimental results

In this learning rate sensitivity experiment, the table shows
the impact of different learning rates on the model accuracy
(ACC) and F1 score. It can be observed that as the learning
rate gradually decreases, the overall performance of the model
is significantly improved. When the initial learning rate is
0.005, the ACC of the model is 0.81 and the F1 is 0.79,
indicating that the model may have large fluctuations during
training at a larger learning rate, making it difficult to find a
stable optimal solution. Although a large learning rate can
speed up training convergence, in complex tasks such as credit
scoring, the resulting parameter update amplitude is large,
which may lead to unstable training process and have a
negative impact on the performance of the model.

When the learning rate is reduced to 0.003, the performance
of the model is slightly improved, with ACC increased to 0.82
and F1 still 0.79. The performance changes at this time show
that appropriately reducing the learning rate can help reduce
the fluctuation amplitude of the model parameters and enable
the model to converge more stably during training, but for the
high complexity of the credit scoring task, the learning rate of
0.003 is still too high. When the learning rate is further
reduced to 0.002, the ACC and F1 scores of the model are
increased to 0.84 and 0.82 respectively, which indicates that
the lower learning rate makes the model learn the features of
the input data more carefully during the training process,
thereby enhancing the overall performance of the model.

When the learning rate is further reduced to 0.001, the
model achieves the best performance in both indicators, with
an ACC of 0.87 and an F1 score of 0.84. This result shows that
a smaller learning rate can allow the model parameters to
gradually approach the optimal solution, making the model
more robust and accurate when processing complex credit
score data. At the same time, this lower learning rate can avoid
excessive fluctuations in the model during training, and
enhance the accuracy of feature extraction and the robustness
of the model in complex scenarios. Therefore, from the
experimental results, the learning rate of 0.001 provides the
model with the best convergence speed and balanced
performance, which is of great reference value for subsequent
training.

Finally, we investigated the impact of different optimizers
on the experimental results, which are shown in Table 3.

Table 3. The impact of different optimizers on experimental
results

Optimizer ACC F1
Adam 0.79 0.76
SGD 0.80 0.79
AdamW 0.83 0.81

Lr ACC F1
0.005 0.81 0.79
0.003 0.82 0.79
0.002 0.84 0.82
0.001 0.87 0.84



Momentum 0.87 0.84

It can be seen from the experimental results in Table 3 that
different optimizers have a significant impact on model
performance, especially in terms of model accuracy (ACC) and
F1 score. First, for the Adam optimizer, although it is widely
used in machine learning and deep learning tasks, in this
experiment, Adam's ACC is only 0.79, and F1 score is 0.76,
which shows that it is very difficult to deal with high-
dimensional complexities like credit scoring. When it comes to
data, the effect of the Adam optimizer is relatively average.
The advantage of the Adam optimizer is its adaptive learning
rate strategy, which dynamically adjusts the learning rate by
storing the exponentially decaying average of the previous few
gradients. However, for complex credit scoring tasks, this
strategy may make it difficult to achieve optimal learning of
different layer features, resulting in fluctuations in
convergence speed and results, thus affecting the overall
performance.

The SGD optimizer achieved results of ACC 0.80 and F1
0.79 in this experiment, performing slightly better than Adam.
The characteristic of the SGD optimizer is to update the
gradient based on a small batch of samples in each training,
which can reduce the risk of overfitting to a certain extent and
improve the generalization ability of the model. For credit
score data, SGD can allow the model to gradually converge
and individually adjust each batch of samples to adapt to the
complex feature relationships in the data. However, the
limitation of SGD is that it easily falls into local minima and
has a slow convergence speed. Especially in this experiment, it
requires a long time of training to achieve better results.
Therefore, although SGD performs slightly better than Adam,
its performance improvement space is still large compared to
other optimizers.

The AdamW optimizer performed significantly better than
Adam and SGD in this experiment, with an ACC of 0.83 and
an F1 score of 0.81. AdamW is further optimized on the basis
of Adam and introduces the weight decay (Weight Decay)
strategy, which helps to solve the gradient explosion problem
that Adam is prone to when processing high-dimensional data.
In the credit scoring task, the AdamW optimizer can
effectively control the magnitude of parameter updates to
avoid excessive adjustments, thereby more stably processing
complex data such as missing values ​ ​ and noise. Due to
the introduction of weight decay, the AdamW optimizer can
reduce the risk of overfitting to a certain extent, making the
model's predictions in credit scoring scenarios more accurate
and robust. Experimental results show that the introduction of
AdamW provides a more balanced update method for deep
models, which is especially suitable for processing financial
data with a large amount of noise and imbalanced labels.

The Momentum optimizer showed the best results in this
experiment, with an ACC of 0.87 and an F1 score of 0.84,
which is significantly better than other optimizers. The
Momentum optimizer adds a momentum term when updating
the gradient so that the model has a certain inertia when
updating, thereby avoiding the problem of simple SGD
repeatedly oscillating in steep directions. In the credit scoring

task, the Momentum optimizer can adjust parameters more
effectively, find a more appropriate update direction in the
complex feature space, and further accelerate the convergence
of the model. At the same time, the introduction of momentum
helps the model update parameters smoothly, and the model
can obtain more stable and efficient results even in the face of
missing values, noise, and imbalanced data. Experimental
results show that the Momentum optimizer not only
significantly improves the accuracy in credit scoring tasks, but
also enhances the generalization ability of the model, making it
perform even better in complex data environments. This shows
that in the application of credit scoring, the Momentum
optimizer is of great value in enhancing the robustness and
prediction effect of the model.

4. Conclusion
This study proves through experiments that Masked

Autoencoder has significant robustness advantages in
processing complex data scenarios in credit scoring tasks. By
comparing multiple models, including Transformer, GNN,
VAE, etc., experimental results show that Masked
Autoencoder is superior to traditional models in both ACC and
F1 scores. This performance improvement is mainly due to
Masked Autoencoder's unique self-supervised learning
mechanism, which enables the model to maintain high feature
extraction capabilities under conditions of missing data and
noise. This adaptability makes Masked Autoencoder more
practical in credit scoring tasks, especially when the data is
incomplete or interfered with by noise in actual application
scenarios, and its performance is particularly stable.

The excellent performance of the Masked Autoencoder is
due to its structural design of masking and reconstruction. By
randomly masking some features of the input data, the model
can deeply mine the potential features of the data during the
self-recovery process and generate a robust feature
representation. At the same time, compared with models such
as Transformer, Masked Autoencoder can learn efficiently
without relying on complete data, helping to reduce the
requirements for data integrity. In addition, in the experiment,
the Masked Autoencoder performed well in association
learning between complex features. Its ability to extract
information from high-dimensional and heterogeneous data is
better than other models, providing new possibilities for deep
learning of credit scoring.

To sum up, the superior performance of Masked
Autoencoder verifies its potential in credit scoring models,
which not only improves the robustness of the model but also
improves its ability to process complex data. By using a
Masked Autoencoder, the prediction stability of the credit
scoring model under different data scenarios can be effectively
improved, providing financial institutions with a more accurate
and reliable basis for decision-making. In future research, the
possibility of applying Masked Autoencoder in other financial
scenarios can be further explored and combined with other
advanced algorithms to build a more comprehensive credit risk
assessment system.
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