
Journal of Computer Technology and Software

ISSN:2998-2383

Vol. 3, No. 7, 2024

Time-Series Load Prediction for Cloud Resource Allocation
Using Recurrent Neural Networks
Yun Zi
Georgia Institute of Technology, Atlanta, USA
yzi9@gatech.edu

Abstract: This study proposes a container scheduling optimization system based on recurrent neural network (RNN) to
improve the efficiency of cloud computing platform in resource management. By using the RNN model to analyze and predict
historical load data, this system can accurately estimate future resource requirements and dynamically adjust the container
scheduling strategy to achieve efficient resource allocation and utilization. Experimental results show that compared with other
comparison models such as support vector regression (SVR), decision tree regression (DTR), multi-layer perceptron (MLP) and
long short-term memory network (LSTM), the RNN model performs best in load prediction tasks, with high prediction accuracy
and good generalization ability. This system can not only effectively reduce resource waste, but also improve server utilization,
providing a reliable solution for container management in actual production environments. Future research can introduce graph
neural network (GNN) or self-attention mechanism on the existing basis to further improve the prediction performance of the
system. In addition, expanding cross-platform container scheduling optimization methods and creating a more intelligent resource
management system will also be an important research direction in the future.

Keywords: Container scheduling, recurrent neural network, load prediction, cloud computing

1. Introduction
Cloud computing has experienced substantial and far-

reaching adoption across a diverse range of sectors, including
healthcare, finance, and high-performance computing for deep
learning. In healthcare [1-3], cloud computing enables real-
time data sharing, enhances telemedicine services, and
supports large-scale medical research through efficient data
processing and storage solutions. The financial sector benefits
from cloud platforms that enhance data security, provide
scalable resources for fraud detection and support complex
financial modeling [4-6]. In deep learning and artificial
intelligence, cloud computing offers the high computational
power necessary for model training, allowing for accelerated
processing speeds and scalable resource management, which
are critical for advancements in large language models and AI
research [7-10]. With the rapid development of cloud
computing, as enterprise needs to grow and diversify, how to
efficiently manage and schedule container resources has
become a key issue. Although traditional container scheduling
methods have been able to achieve reasonable resource
allocation to a certain extent, it is often difficult to make
accurate predictions when facing complex and dynamically
changing loads, resulting in uneven resource allocation, low
server utilization, and even resource waste. With the rapid
development of deep learning technology [11], applying deep

learning to container scheduling optimization, predicting future
resource requirements by analyzing historical load data and
resource usage patterns, and dynamically optimizing container
deployment strategies has become an important means to
improve the performance of cloud computing platforms.
Based on this, this paper proposes a container scheduling
optimization system based on deep learning, which analyzes
historical data and predicts future resource requirements
through a deep learning model to achieve efficient container
scheduling. This system uses the RNN time series prediction
model to accurately predict the peak and trough periods of
workloads, automatically schedule container deployment at the
right time, and dynamically adjust resource configuration to
cope with sudden traffic [12]. Unlike traditional static
scheduling methods, this system has the ability of real-time
learning and adaptive adjustment. It can not only respond
quickly to fluctuations in resource demand, but also reduce
latency and effectively avoid excessive or insufficient use of
resources, thereby maximizing server utilization and
minimizing resource waste. In addition, the introduction of
deep learning models enables the scheduling system to deeply
explore and analyze the implicit relationship of load data,
thereby optimizing scheduling decisions [13]. For example, by
identifying periodic changes and sudden peaks in the load, the
system can reserve resources in advance or unload some tasks

to achieve a balance of resource demand. The system can
continuously self-optimize through deep learning algorithms,
so that the scheduling strategy can be adjusted over time,
realizing the transition from passive scheduling to active
scheduling. This scheduling system can not only meet peak
demand, but also reduce redundant configuration of resources
when the load is low, thereby improving the responsiveness
and resource utilization efficiency of the entire cloud platform.
The optimization algorithm also has broad adaptability and

can be extended to a variety of cloud computing scenarios,
covering the scheduling needs of private clouds, public clouds,
and complex hybrid cloud environments. Whether it is a
private cloud deployment within an enterprise, a public cloud
platform for the public, or a hybrid cloud architecture that
combines the advantages of both, the container scheduling
optimization system based on deep learning can respond
flexibly to provide diversified cloud computing applications.
Scenarios provide efficient resource scheduling support. By
deploying deep learning models and combining them with
dynamic adjustment strategies, the system can adjust
scheduling decisions in real time when resource demand
fluctuates greatly, helping cloud computing service providers
quickly adapt to changes in different businesses, allocate
resources reasonably, and balance loads to ensure system
security. reliability and operational efficiency. In addition, the
algorithm's refined resource management capabilities also
bring significant operating cost reductions. By accurately
controlling and dynamically adjusting resources, the container
scheduling system can avoid over-allocation and idle waste of
resources, which not only effectively reduces operation and
maintenance costs, but also improves resource utilization. This
resource optimization strategy can greatly improve user
experience and bring the response speed and stability of cloud
services to a higher level. At the same time, the improvement
of service quality and system competitiveness has enabled the
cloud computing platform to occupy a more favorable position
in the fierce market competition and meet users' needs for
high-performance and high-stability services. It is foreseeable
that with the further application of this system on cloud
computing platforms, cloud computing service providers will
be able to significantly improve their market competitiveness
while providing better services, injecting new vitality into the
healthy development of the cloud computing industry.
The container scheduling optimization system based on

deep learning not only significantly improves the resource
management efficiency of the cloud computing platform, but
can also adapt to increasingly complex and changing user
needs, bringing greater adaptability and scalability to the cloud
computing system [14]. Through this system, the cloud
platform can realize flexible scheduling of resources during
peak load periods, avoid resource bottlenecks, and reduce the
configuration of redundant resources during low load periods,
thus greatly improving resource utilization. With the
continuous development and innovation of deep learning
technology, this system not only shows strong performance
advantages in the current environment but is also expected to

become an indispensable core module in cloud computing
platforms in the future. In the future, the system can further
optimize the scheduling strategy and combine it with an
adaptive learning mechanism, so that it can still make efficient
and intelligent resource allocation decisions when facing more
diverse application scenarios and higher real-time requirements.
It is foreseeable that this intelligent container management
method will provide strong support for the intelligent
development of cloud computing, promote the development of
cloud computing platforms in a more efficient and intelligent
direction, and meet the stringent resource management
requirements of various enterprises and applications [15-18].
Requirements to lay a solid foundation for promoting the
innovative development of cloud computing.

2. Method
The method in this paper mainly designs a load prediction

model for container scheduling based on Recurrent Neural
Network (RNN) to improve the resource utilization efficiency
of cloud computing platforms. RNN is a deep learning model
suitable for processing time series data. It can capture
contextual information in sequence data and is particularly
suitable for tasks such as load prediction that require
consideration of historical data [19]. In this system, we use
RNN to model historical load data and predict future resource
requirements, thereby achieving dynamic and reasonable
container scheduling. The overall network structure is shown in
Figure 1.

Figure 1. Overall network architecture diagram

First, the load data is preprocessed into a time series input
form, defined as },...,,{ 21 txxxX  , where ix represents
the resource usage at the i-th time step. In each layer of the
RNN, the hidden layer state th is determined by the input ix
and the hidden layer state 1th of the previous time step. Its
calculation formula is as follows:

)(1 bxWhWh txtht  

Among them, hW and xW are weight matrices, b is the
bias term, and  is the activation function. This structure
allows the model to pass previous input information through
the hidden layer state, so as to consider the dynamic changes of
load during prediction.

Next, RNN predicts future resource requirements Th
through the hidden state 'y of the last time step. The
prediction formula is:

yTy bhWy '

Among them, yW and yb are the weight and bias of the
output layer respectively. This output is used as an estimate of
resource demand in the future to guide container scheduling
decisions. Based on the prediction results, the system adjusts
the container deployment strategy, increases resource
allocation during peak load periods, and reduces resources
during low load periods to improve resource utilization
efficiency.

In order to further improve the prediction accuracy, we
introduced the loss function L to measure the error between
the predicted value 'y and the true value y , and used the
mean square error (MSE) as the optimization target:





n

i
ii yy

n
L

1

2)'(1

Through the back-propagation algorithm [20] and gradient
descent optimization [21], the model continuously updates
weights and biases during the training process to minimize the
loss function, thereby improving the accuracy of load
prediction.

In summary, this method uses the RNN model to achieve
load prediction, which can effectively capture the time series
characteristics in the container load data and provide accurate
resource scheduling decisions for the cloud computing
platform. In practical applications, the RNN prediction model
can dynamically adapt to changes in workloads, effectively
improve server utilization and reduce resource waste.

3. Experiment
3.1 Datasets
The real dataset used in this study comes from the public

Alibaba Cluster Trace dataset, which is provided by Alibaba
Group and is a standard dataset widely used in load prediction
and resource scheduling optimization research. The dataset
records the execution of jobs and tasks in a mixed cluster in
Alibaba's internal production environment, including the
usage of multiple resources such as CPU and memory. The
data source is reliable and of moderate scale, and can provide
rich resource usage patterns and load change information,
providing valuable reference data for the study of container
scheduling optimization.
The dataset contains a variety of time series data to describe

the resource usage of each job when it is executed on the
cluster. Specifically, the dataset contains millions of records,
each of which contains the start time, end time, CPU usage,
memory usage, etc. of the task. The resource demand
information of each task is presented in the form of a time

series, which can clearly reflect the changes in cluster load over
time. These details can provide important time series features
for training models, which helps to improve the accuracy of
load prediction and the scientific nature of container scheduling
decisions.

By using this dataset, this study can simulate the load
conditions in a real production environment and
comprehensively evaluate the performance of deep learning
models. Since the load information contained in the dataset is
diverse, it can effectively examine the performance of the
model under high and low load conditions and verify the
robustness and adaptability of the scheduling system. This
open-source real dataset can not only improve the credibility
and reproducibility of the research but also provide a more
practical test scenario for container management optimization.

3.2 Experimental setup
In the experimental setting, the dataset is first divided into a

training set and a test set in chronological order with a ratio of
80:20 to ensure that the model can learn the time series
characteristics of load changes during training and verify the
prediction effect on the test set. All data are normalized, and
features such as CPU and memory usage are scaled to between
0 and 1 to avoid the impact of feature scale differences on
model performance. In addition, the hidden layer size and time
step of the RNN model are set to capture long-term and short-
term load fluctuations and optimize the prediction accuracy of
the model.

Mean square error (MSE) is used as the loss function during
the experiment, and the model parameters are optimized by
back propagation algorithm and gradient descent [22]. In order
to evaluate the effect of the model, indicators such as mean
absolute error (MAE) and root mean square error (RMSE) are
used to measure the performance of the model in predicting
resource requirements. The experiment is conducted in a
standard hardware environment, and the loss reduction of the
model in different training cycles is recorded to ensure that the
model converges and achieves ideal prediction performance.

3.3 Experimental Results
In order to verify the reliability of the experimental results

and the superiority of the RNN model in the load forecasting
task, this study selected four common machine learning and
deep learning models for comparative experiments, namely
support vector regression (SVR), decision tree regression
(DTR), multi-layer perceptron (MLP), and long short-term
memory network (LSTM). Support vector regression (SVR)
can perform regression prediction by finding a hyperplane that
maximizes the interval, which is suitable for processing small-
scale, linear data features; while decision tree regression (DTR)
processes nonlinear relationships in data by building decision
trees, which has strong explanatory power but may be
insufficient in predicting complex time series. Multi-layer
perceptron (MLP) is a basic neural network model that can fit
the nonlinear relationship of data, but lacks the ability to
process time series data, which may be limited in capturing
load changes. Long short-term memory network (LSTM) is a
variant of recurrent neural network that has the ability to
remember long-term and short-term dependencies and is

suitable for processing tasks with long-sequence dependencies,
but has high computational complexity.

In contrast, the RNN model in this study can effectively
capture short-term features in time series without increasing
excessive computational costs due to its simple structure and
strong adaptability. Unlike LSTM, RNN focuses on modeling
short-term load fluctuations [23], making it more efficient
when resources are limited. It is particularly suitable for
scenarios such as real-time container scheduling that require
fast response. The experimental results are shown in Table 1.

Table 1: Experimental results

Model MAE RMSE
SVR 0.285 0.350
DTR 0.270 0.335
MLP 0.240 0.310
LSTM 0.210 0.275
RNN(Ours) 0.190 0.250

It can be seen from the experimental results that the RNN
model in this study achieved the best performance in the load
prediction task, with MAE and RMSE of 0.190 and 0.250
respectively, significantly better than the other four
comparison models. First, we can see that Support Vector
Regression (SVR) and Decision Tree Regression (DTR)
perform relatively poorly in this task, with higher MAE and
RMSE values respectively. This may be because SVR and
DTR models have certain limitations in processing complex
time series data, especially when the data has nonlinear
characteristics and strong time dependence. Although these
models have certain advantages in processing static features or
structured data, they lack effective contextual information
modeling capabilities when faced with changing load data in
time series, resulting in low prediction accuracy.

In contrast, the performance of multi-layer perceptron (MLP)
has improved in load prediction, with MAE and RMSE
reduced to 0.240 and 0.310 respectively. This result shows that
although the MLP model can better fit the nonlinear
relationship in the data, it still has certain limitations in
processing time series. The MLP model lacks the ability to
model time dependence of sequence data, so it can only use
data at each time step for prediction, but cannot use historical
information to capture future load trends. This structural
limitation affects its prediction effect in time series data to a
certain extent, resulting in poor performance in load
forecasting tasks than more specially designed time series
models.

The long short-term memory network (LSTM) showed
excellent results in this experiment, with MAE and RMSE of
0.210 and 0.275 respectively, significantly improved compared
to MLP. As an improved recurrent neural network, LSTM
effectively solves the vanishing gradient problem of traditional
RNN in long-term dependencies by introducing gating
mechanisms (such as input gates, forgetting gates, and output
gates). Therefore, it can effectively capture long-term
dependencies. There are significant advantages in relationships.

However, the computational complexity of LSTM is relatively
high, requires a long training time, and has high demand for
hardware resources in practical applications. Although it can
achieve better results in load prediction, the computational
overhead of LSTM may become a major limitation in real-time
container scheduling scenarios in cloud computing
environments.

The RNN model proposed in this study achieved the best
results in this experiment, with MAE and RMSE of 0.190 and
0.250 respectively. This shows that RNN has significant
advantages in load prediction tasks. Although the structure of
RNN is relatively simple, it can make full use of the
information of the previous time step to effectively predict
short-term load changes while maintaining low computational
costs. Since container scheduling scenarios require fast and
real-time resource scheduling decisions, the lightweight
features of the RNN model enable it to improve computing
efficiency while ensuring prediction accuracy. RNN is suitable
for applications in resource-limited environments and is ideal
for load prediction and container management tasks. In future
practical applications, the application of RNN models is
expected to improve the resource utilization of cloud
computing platforms, reduce costs, and provide strong support
for efficient operation and maintenance of the system.

In addition, this paper also gives a graph of the loss function
drop during the training process, as shown in Figure 2.

Figure 2. Loss function drop graph
From this loss function decline graph, we can see that the

training loss value of the model drops sharply at the beginning
of training, especially in the first 20 epochs, the loss value
drops rapidly from the initial high level to close to 5. This
shows that the model has learned a lot of features in the initial
stage and can quickly optimize the parameters, thereby
effectively reducing the error. This rapid decline is a common
feature of deep learning models, especially in the initial epoch,
the model learns the data features roughly by adjusting the
weights.
As the epoch increases, the rate of decline of the loss value

gradually slows down. After about 50 epochs, the decline curve
tends to be smooth and enters the convergence state. At this
stage, the parameter optimization of the model tends to be

stable and gradually fine-tuned to further improve the accuracy.
This shows that the model has gradually learned more detailed
feature representations, no longer relying on large adjustments,
but fine-tuning weights to reduce errors. The smooth transition
in this process shows that the model training effect is good and
avoids overfitting and underfitting.
Finally, when it is close to 200 epochs, the loss value

reaches a level close to 0, indicating that the model has
converged and the training has reached an ideal state. At this
point, the model's training loss hardly changes, indicating that
the model's parameter adjustment has reached the optimal or
near-optimal state, and further training will not significantly
improve the model's performance. This steady convergence
trend indicates that the model has a high generalization ability
and can show good prediction results on the test set. Overall,
this loss reduction trend is in line with expectations and is an
effective model training process.

4. Conclusion
To sum up, this study successfully improved the efficiency

of cloud computing platform in resource management by
building a container scheduling optimization system based on
RNN. Experimental results show that the RNN model
performs better than other traditional machine learning and
deep learning models in load prediction tasks, especially in
short-term load fluctuation prediction. By accurately
predicting resource requirements and dynamically optimizing
container scheduling strategies, the system can effectively
improve server utilization and reduce resource waste,
providing strong support for container management in actual
production environments.

In terms of application, this system demonstrates the unique
advantages of the RNN model in time series prediction and is
especially suitable for scenarios with high real-time
requirements, such as resource scheduling management on
cloud computing platforms. RNN has a simple structure and
high computational efficiency. It can reduce computational
overhead while ensuring prediction accuracy and is suitable
for resource-constrained application environments. This
feature not only enhances the adaptability of the system but
also improves the flexibility of container scheduling, bringing
practical solutions to cloud service providers of all sizes.

In the future, the work of this research can be further
expanded. With the advancement of deep learning models and
computing resources, we can introduce more advanced neural
network architectures, such as graph neural networks (GNN)
[24] or self-attention mechanisms [25-26], to further improve
the prediction accuracy of the system. In addition, cross-
platform container scheduling optimization methods can be
explored to build a more intelligent and automated resource
management system, allowing the cloud computing platform
to make faster and more accurate decisions when facing
complex dynamic loads. This will provide a broader prospect
for the continued development of cloud computing and
container management.

References
[1] Y. Cang, Y. Zhong, R. Ji, Y. Liang, Y. Lei, and J. Wang,

"Leveraging Deep Learning Techniques for Enhanced
Analysis of Medical Textual Data", 2024 IEEE 2nd
International Conference on Sensors, Electronics and
Computer Engineering (ICSECE), pp. 1259-1263, Aug. 2024.

[2] Li, Y., Zhao, W., Dang, B., Yan, X., Gao, M., Wang, W., &
Xiao, M. (2024, June). Research on adverse drug reaction
prediction model combining knowledge graph embedding and
deep learning. In 2024 4th International Conference on
Machine Learning and Intelligent Systems Engineering
(MLISE) (pp. 322-329). IEEE.

[3] X. Fei, S. Chai, W. He, L. Dai, R. Xu, and L. Cai, "A
Systematic Study on the Privacy Protection Mechanism of
Natural Language Processing in Medical Health Records",
2024 IEEE 2nd International Conference on Sensors,
Electronics and Computer Engineering (ICSECE), pp. 1819-
1824, Aug. 2024.

[4] Sun, D., Sui, M., Liang, Y., Hu, J., & Du, J. (2024). Medical
Image Segmentation with Bilateral Spatial Attention and
Transfer Learning. Journal of Computer Science and
Software Applications, 4(6), 19-27.

[5] Xu, K., Wu, Y., Xia, H., Sang, N., & Wang, B. (2022).
Graph Neural Networks in Financial Markets: Modeling
Volatility and Assessing Value-at-Risk. Journal of Computer
Technology and Software, 1(2).

[6] Xu, Z., Pan, J., Han, S., Ouyang, H., Chen, Y., & Jiang, M.
(2024). Predicting Liquidity Coverage Ratio with Gated
Recurrent Units: A Deep Learning Model for Risk
Management. arXiv preprint arXiv:2410.19211.

[7] J. Chen, R. Bao, H. Zheng, Z. Qi, J. Wei, and J. Hu,
"Optimizing Retrieval-Augmented Generation with
Elasticsearch for Enhanced Question-Answering Systems",
arXiv preprint arXiv:2410.14167, 2024.

[8] S. Liu, G. Liu, B. Zhu, Y. Luo, L. Wu, and R. Wang,
"Balancing Innovation and Privacy: Data Security Strategies
in Natural Language Processing Applications", arXiv
preprint arXiv:2410.08553, 2024.

[9] J. Du, Y. Jiang, and Y. Liang, "Transformers in Opinion
Mining: Addressing Semantic Complexity and Model
Challenges in NLP", Transactions on Computational and
Scientific Methods, vol. 4, no. 10, 2024.

[10] C. Wang, Y. Dong, Z. Zhang, R. Wang, S. Wang, and J.
Chen, "Automated Genre-Aware Article Scoring and
Feedback Using Large Language Models", arXiv preprint
arXiv:2410.14165, 2024.

[11] S. Duan, R. Zhang, M. Chen, Z. Wang, and S. Wang,
"Efficient and Aesthetic UI Design with a Deep Learning-
Based Interface Generation Tree Algorithm", arXiv preprint
arXiv:2410.17586, 2024.

[12] Jeon J, Park S, Jeong B, et al. Efficient Container Scheduling
with Hybrid Deep Learning Model for Improved Service
Reliability in Cloud Computing[J]. IEEE Access, 2024.

[13] Lin J, Guan Y. Load Prediction in Double-Channel Residual
Self-Attention Temporal Convolutional Network with

Weight Adaptive Updating in Cloud Computing[J]. Sensors,
2024, 24(10): 3181.

[14] Poojitha S A, Ravindranath K. Optimal Usage of Resources
through Quality Aware Scheduling in Containers based Cloud
Computing Environment[J]. Scalable Computing: Practice
and Experience, 2024, 25(2): 1235-1245.

[15] Sun, M., Sun, W., Sun, Y., Liu, S., Jiang, M., & Xu, Z. (2024).
Applying Hybrid Graph Neural Networks to Strengthen
Credit Risk Analysis. arXiv preprint arXiv:2410.04283.

[16] G. Huang, A. Shen, Y. Hu, J. Du, J. Hu, and Y. Liang,
"Optimizing YOLOv5s Object Detection through Knowledge
Distillation Algorithm", arXiv preprint arXiv:2410.12259,
2024.

[17] M. Jiang, J. Lin, H. Ouyang, J. Pan, S. Han, and B. Liu,
"Wasserstein Distance-Weighted Adversarial Network for
Cross-Domain Credit Risk Assessment", arXiv preprint
arXiv:2409.18544, 2024.

[18] Chen H, Shen C, Qiu X, et al. Container Scheduling
Algorithms for Distributed Cloud Environments[J]. Processes,
2024, 12(9): 1804.

[19] Liang, Y., Liu, X., Xia, H., Cang, Y., Zheng, Z., & Yang, Y.
(2024). Convolutional neural networks for predictive
modeling of lung disease. arXiv preprint arXiv:2408.12605.

[20] Chen, B., Qin, F., Shao, Y., Cao, J., Peng, Y., & Ge, R.
(2023). Fine-grained imbalanced leukocyte classification with

global-local attention transformer. Journal of King Saud
University-Computer and Information Sciences, 35(8), 101661.

[21] Dong, Y., Yao, J., Wang, J., Liang, Y., Liao, S., & Xiao, M.
(2024, August). Dynamic fraud detection: Integrating
reinforcement learning into graph neural networks. In 2024
6th International Conference on Data-driven Optimization of
Complex Systems (DOCS) (pp. 818-823). IEEE.

[22] Cao, J., Xu, R., Lin, X., Qin, F., Peng, Y., & Shao, Y. (2023).
Adaptive receptive field U-shaped temporal convolutional
network for vulgar action segmentation. Neural Computing
and Applications, 35(13), 9593-9606.

[23] Muniswamy S, Vignesh R. Joint optimization of load
balancing and resource allocation in cloud environment using
optimal container management strategy. Concurrency and
Computation: Practice and Experience, 2024, 36(12): e8035.

[24] J. Wei, Y. Liu, X. Huang, X. Zhang, W. Liu, and X. Yan,
"Self-Supervised Graph Neural Networks for Enhanced
Feature Extraction in Heterogeneous Information Networks",
arXiv preprint arXiv:2410.17617, 2024.

[25] He, W., Bao, R., Cang, Y., Wei, J., Zhang, Y., & Hu, J.
(2024). Axial attention transformer networks: A new frontier
in breast cancer detection. arXiv preprint arXiv:2409.12347.

[26] Liu, W., Wang, R., Luo, Y., Wei, J., Zhao, Z., & Huang, J.
(2024). A Recommendation Model Utilizing Separation
Embedding and Self-Attention for Feature Mining. arXiv
preprint arXiv:2410.15026.

	3.1 Datasets
	3.2 Experimental setup
	3.3 Experimental Results

