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Abstract: This study presents a speech emotion recognition system that integrates a dynamic convolutional neural network 

with a bi-directional long short-term memory (Bi-LSTM) network. The dynamic convolutional kernel enables the neural 

network to capture global dynamic emotional patterns, enhancing model performance without significantly increasing 

computational demands. Simultaneously, the Bi-LSTM component allows for more efficient classification of emotional 

features by leveraging temporal information. The system was evaluated using three datasets: the CISIA Chinese speech 

emotion dataset, the EMO-DB German emotion corpus, and the IEMOCAP English corpus. The experimental results yielded 

average emotion recognition accuracies of 59.08%, 89.29%, and 71.25%, respectively. These results represent improvements 

of 1.17%, 1.36%, and 2.97% over the accuracy achieved by existing speech emotion recognition systems using mainstream 

models, demonstrating the effectiveness of the proposed approach. 
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1. Introduction  
Speech is a multifaceted signal that conveys a wealth of 

information, including speaker semantics, emotions, and uses 

language as an information carrier [1]. Speech emotion 

recognition (SER) technology aims to extract the features 

from speech signals that characterize the speaker's emotional 

state and establish a mapping between these features and 

human emotions using methods such as machine learning [2]. 

The ultimate goal of SER is to enable machines to accurately 

recognize a speaker's emotional state, thereby facilitating 

intelligent and harmonious human-computer interactions. 

While speech emotion recognition has existed for decades, 

recent advancements in deep learning have spurred 

significant developments in SER technology, which holds 

great potential for applications in human-computer 

interaction, in-car navigation systems, teaching aids, medical 

therapy, robotics, and even video games [3]-[6]. As such, 

research in SER is highly valuable and holds significant 

application prospects. 

Speech, as a continuous signal of varying lengths, transmits 

both the speaker's message and emotional expressions. 

Emotions can manifest in various signals, such as happiness, 

anger, sadness, calmness, boredom, disgust, and fear [7]. The 

emotional features embedded within speech signals can be 

extracted by classification models, and these features can be 

categorized into three primary groups: rhythmic features, 

phonological-related features, and spectral features [8]-[9]. 

Rhythmic features, such as intonation and rhythm, are 

perceptible by humans and are the most prominent features 

for conveying emotional content in SER [10]-[14]. 

Phonological features are related to the quality of sound, 

measuring attributes like clarity and recognizability. Spectral 

features, on the other hand, reflect the relationship between 

vocal tract shape variations and the speaker’s vocalization 

[15]. 

 

Traditional SER systems have commonly employed 

algorithms such as Hidden Markov Models (HMM) [16], 

Gaussian Mixture Models (GMM) [17], Support Vector 

Machines (SVM) [18], and Artificial Neural Networks 

(ANN) [19]. Additional approaches include decision trees 

(DT) [20] and k-nearest neighbors (KNN) [21]. HMM is 

well-suited for time-series sequence recognition but is 

sensitive to phonemic variations; GMM effectively fits data 

but is highly reliant on the training dataset; SVM works well 

for small sample sets but struggles with multi-class 

classification issues; ANN excels at approximating complex 

nonlinear relationships but tends to encounter issues like 

local minima and slow convergence. 

In recent years, deep learning algorithms have surpassed 

traditional machine learning approaches, leading to a shift in 

research focus toward these methods. The most commonly 

used deep learning algorithms for SER are convolutional 

neural networks (CNN) and recurrent neural networks 

(RNN). CNNs are a specialized type of neural network 

designed to process grid-like data structures, including 

images and two-dimensional speech features [22]. By 

applying multiple convolutional filters, CNNs can effectively 

capture both temporal and spatial dependencies from the 

input data, reducing the computational complexity while 

maintaining feature integrity [23]. However, modern CNNs 

typically demand significant computational resources due to 

the extensive convolutional operations, resulting in 

considerable redundant calculations. 

RNNs are capable of processing entire time-series data; 

however, they retain a strong memory of recent input signals, 

while earlier signals diminish in importance over time, thus 

limiting RNNs to short-term memory. By incorporating long-

short-term memory (LSTM) structures, RNNs can overcome 

this limitation and capture long-term dependencies. LSTMs, 

a subclass of gated RNNs, are highly effective for addressing 

the long-term dependency issues in RNNs and are widely 

used in SER [24]. However, LSTMs only extract past 

information unidirectionally, which limits their ability to 

fully capture the rich emotional context of complex human 

speech, as they overlook the influence of later text on earlier 

information. 

To address these challenges, this paper proposes a speech 

emotion recognition model based on dynamic convolutional 

neural networks (DyCNN) [25]-[28] and bidirectional long-

short-term memory (Bi-LSTM). Dynamic convolution 

enhances algorithmic performance by reducing network 

redundancy and improving the flexibility of convolutional 

kernels, enabling more effective extraction of global 

emotional information. Additionally, an attention mechanism 

is employed to assign varying weights to different feature 

regions in the speech, allowing for better extraction of 

prominent emotional features in a sentence. The integration 

of Bi-LSTM addresses the limitations of traditional RNNs 

regarding long-term dependency and compensates for 



 

 

  

LSTM’s shortcomings in contextual information extraction, 

making more efficient use of temporal information. 

Simulation results demonstrate that the proposed model 

significantly improves the accuracy of speech emotion 

recognition systems. 

 

2. DyCNN model combining Bi-LSTM 

2.1. Model Framework 
In this paper, we propose a network architecture that 

integrates an LSTM with a DyCNN, as depicted in Figure 1. 

The model begins by preprocessing the raw speech signal to 

generate a log-mel spectrogram. The global dynamic 

spectrogram features are then extracted through the DyCNN, 

followed by the Bi-LSTM, which captures temporal 

sentiment information in the context of the surrounding data. 

Finally, the Softmax layer is employed to perform sentiment 

classification. The functionality of each module is elaborated 

upon below. 

Figure 1. The network architecture 

 

2.2. Feature extraction 
The log-mel spectrogram is a technique that captures mood-

related changes in speech signals, making it a suitable input 

for the network. In this paper, the raw speech signal is first 

acquired, followed by a series of preprocessing steps 

including pre-emphasis, framing, windowing, and short-

time Fourier transformation. The resulting acoustic 

spectrogram is then passed through a mel filter bank to 

produce the mel spectrogram, after which the logarithm is 

applied to obtain the log-mel spectrogram. Finally, the 

extracted spectrogram features are fed into the subsequent 

network layers. 

 

2.3. Dynamic Convolutional Neural Network 
Traditional convolutional neural networks (CNNs) utilize 

static convolutional kernels, which share the same 

parameters across different input samples. However, in the 

context of speech emotion recognition, it is evident that 

dynamic convolution is more advantageous than static 

convolution, as different speakers and content benefit from 

adaptive processing. Therefore, this paper employs a 

dynamic convolutional neural network capable of adaptively 

adjusting its attention based on the input to construct a 

speech emotion recognition system. 

In this work, dynamic convolution is introduced to enhance 

the convolutional component of the baseline network 

architecture. Rather than using a single convolutional kernel 

at each layer, dynamic convolution aggregates multiple 

parallel convolutional kernels based on attention 

mechanisms that are dependent on the input. These 

convolutional kernels are weighted and combined using a 

matrix of attention weight parameters from the previous 

layer, resulting in dynamic convolutional kernels that can 

adapt their attention to the input. These kernels then 

convolve with the input spectrogram to extract more 

emotionally relevant features. The structure of a dynamic 

convolutional layer is illustrated in Figure 2 below. 

 
Figure 2. A dynamic convolutional layer 

The attention mechanism employs an average pooling layer 

and two fully connected layers, maintaining low 

computational complexity and high efficiency. Softmax is 

applied to constrain the attention weights πk within the range 

of 0 to 1, allowing the model to learn deep features. For the 

feature map xi produced during the convolution process, 

several operations are performed to generate K= attention 

weight parameters πk, which sum to 1. These K convolution 

kernel parameters are then linearly combined, resulting in a 

convolutional kernel that adapts to changes in the input 

during inference.The dynamic convolution kernel model is 

calculated as follows. 

 
 

2.4. Bidirectional long- and short-term 

memory network 
The LSTM model builds upon the RNN architecture by 

incorporating input gates, forget gates, unit states, and output 

gates. During network training, the gate structure enables the 

addition or removal of information, allowing the model to 

decide which relevant information should be retained or 

discarded through the gating mechanism on the unit state. At 

time step t, the update of each gate state can be expressed as 

follows. 

 

 
 

Here, ft represents the forget gate, it is the input gate, ot is the 

output gate, and Ct is the cell state. W* denotes the weight 

matrix, while xt and ht refer to the input vector and the hidden 

state vector at time step t, respectively. The term b* is the 

bias, and σ is the activation function. 

In this paper, we replace the LSTM component of the 

baseline network architecture with Bi-LSTM. Bi-LSTM 

combines both forward and backward LSTMs. Similar to 

LSTM, Bi-LSTM is frequently used to capture contextual 

information in natural language processing tasks. However, 

when using LSTM to model speech emotion signals, it is 

limited by its inability to encode information from back to 

front, a problem effectively addressed by Bi-LSTM. Figure 

3 illustrates the structure of Bi-LSTM unfolded across time. 



 

 

  

 

Figure 3.  The structure of Bi-LSTM expanded along time 

 

As illustrated in the figure, the Bi-LSTM consists of two 

unidirectional LSTMs: the forward LSTM and the backward 

LSTM. The forward LSTM calculates the forward 

contextual information, while the backward LSTM 

computes the backward contextual information. This 

bidirectional structure enables the model to capture the full 

context, thereby enhancing the recognition accuracy. 

 

3. Experiments 

3.1. Speech emotion dataset 
Speech emotion recognition aims to identify the emotional 

state of a speaker during vocal communication. In everyday 

life, natural speech carries a wide range of emotions, and the 

actual environment is highly complex. As a result, capturing 

natural speech in real-world settings to create a speech 

emotion dataset is both challenging and intricate. Such a 

dataset must satisfy four key criteria: authenticity, continuity, 

interactivity, and diversity, while minimizing external 

interference as much as possible. Consequently, speech 

emotion recognition research typically relies on speech 

emotion corpora recorded in controlled, quiet environments 

like recording studios. 

A speech emotion corpus forms the foundation of speech 

emotion recognition systems, and the performance of these 

systems heavily depends on having a large, diverse, and 

high-quality corpus. Discrete emotion datasets, which 

contain relatively distinct emotional states, are particularly 

useful for recognizing simple emotional speech signals. 

Below is an overview of several widely-used speech emotion 

corpora for the classification and recognition of discrete 

emotions. 

1. The EmoDB corpus is a German discrete emotion corpus 

created in the Berlin laboratory. It consists of recordings 

from five male and five female actors, producing 535 

sentences with seven emotional categories: happiness, anger, 

sadness, calmness, boredom, disgust, and fear. 

2. The CASIA corpus is a Chinese discrete emotion corpus 

recorded by the Institute of Automation at the Chinese 

Academy of Sciences. It includes recordings from four 

professional speakers (two male and two female), with 9,600 

utterances in total. These recordings, performed with six 

emotional states—anger, fear, happiness, neutrality, sadness, 

and surprise—contain 300 identical texts and 100 unique 

texts. 

3. The IEMOCAP corpus, collected by the SAIL Lab at the 

University of Southern California, is one of the largest 

dimensional speech emotion datasets used for emotion 

recognition. It comprises approximately 12 hours of 

conversational speech from 10 actors, recorded in five 

separate sessions, with each conversation involving two 

speakers. The corpus is annotated by at least two annotators, 

with labels for emotions such as anger, happiness, sadness, 

and neutrality, as well as three emotional dimensions: 

arousal, valence, and dominance. 

To evaluate the effectiveness of the model proposed in this 

paper for speech emotion recognition, experiments are 

conducted using the three corpora mentioned above. The 

weighted average accuracy (WA) is employed as the 

evaluation metric, and the results are compared with existing 

mainstream models. The WA is calculated using the 

following equation, where n denotes the number of correctly 

identified test samples, and N represents the total number of 

test samples. 

 

 
Next, the MFCC feature parameter extraction is performed, 

yielding a data dimension of 39. The extracted speech 

spectrogram is then normalized, and the resulting data is 

used as the input for the model. 

 
Figure 4. Original speech signal and speech spectrogram of 

the anger sample 

 



 

 

  

In this paper, the TensorFlow toolkit is employed to 

construct the network model and implement the training 

algorithm. The model parameters are optimized using the 

RMSProp algorithm, with an initial learning rate of 0.01. 

Cross-entropy serves as the loss function, with a training 

batch size of 200 and 1000 iterations. 

 

4. Conclusion 
This paper enhances the classification network model for 

speech emotion recognition by introducing a novel network 

model that employs dynamic convolutional neural networks 

(DyCNN) in place of traditional convolutional neural 

networks (CNN), combined with bidirectional long short-

term memory networks (Bi-LSTM). The proposed model 

leverages dynamic convolution to address the data 

redundancy problem inherent in traditional CNNs, allowing 

for more flexible extraction of key emotional features while 

maintaining computational efficiency. The integration of Bi-

LSTM enables the model to more comprehensively and 

effectively utilize the weight coefficients and temporal 

information of each emotion feature for emotion recognition, 

resulting in a significant improvement in the system’s 

recognition accuracy.However, the proposed network has 

been tested on only three datasets, and there remains room 

for improvement in recognition accuracy when compared to 

other well-established speech emotion recognition methods. 

Future research will focus on selecting additional high-

quality speech emotion datasets for further experimentation 

and on optimizing the network architecture to enhance 

recognition accuracy while maintaining computational 

power and processing speed. 
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