
Journal of Computer Technology and Software  

ISSN:2998-2383 

Vol. 3, No. 6, 2024 

  

A Hybrid CNN-LSTM Model for Enhancing Bond Default Risk 

Prediction 
    

1Trine University, Phoenix, USA 

2Columbia University, New York, USA 

3Illinois Institute of Technology , Chicago, USA 

4University of California, Irvine, Irvine, USA 

5New York University, New York, USA 

 

Correspondence should be addressed to Mohan Jiang; mj2589@nyu.edu 

 

Abstract: This paper explores the importance of credit risk management in the global financial market environment, 

especially for the prediction of bond default risk. With the advent of the big data era, the amount of market information has 

surged, covering multi-dimensional data from traditional financial statements to social media comments. However, traditional 

credit rating methods rely mainly on structured data and ignore the value of unstructured data, resulting in limited prediction 

accuracy. The development of deep learning technology provides a new way to process such data. By introducing a combined 

model of convolutional neural network (CNN) and long short-term memory network (LSTM), we propose a novel algorithm 

to predict bond default risk. The model uses CNN to process unstructured text data to extract key features and uses LSTM to 

process time series data to capture the trend of data changing over time. Experimental results show that the model performs 

well in terms of accuracy, surpassing other common models. The research in this paper provides new ideas for the application 

of deep learning in the financial field. 
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1. Introduction  
In the global financial market environment, credit risk 

management has become one of the major challenges faced 

by various financial institutions. As a type of fixed-income 

security widely traded in the financial market, the accurate 

prediction of the default risk of bonds is not only the key to 

investors' asset allocation and risk management but also an 

important factor in maintaining the stability of the financial 

market [1-2]. With the advent of the big data era, the amount 
of information available in the market has exploded, covering 

a range from traditional financial statements to real-time 

market dynamics, and even extending to multiple dimensions 

such as comments and emotional expressions on social 

media. However, traditional credit rating methods, especially 

those that rely on financial ratio analysis, are overwhelmed 

when dealing with such diverse data, because they are mainly 

limited to structured data and ignore the potential value in 

unstructured data, which undoubtedly limits the accuracy and 
comprehensiveness of their predictions. 

At the same time, the development of deep learning 

technology provides a new perspective and tools for financial 

data processing. With its powerful data processing 

capabilities, deep learning algorithms can discover implicit 

laws and patterns in complex and large data sets, especially 

when dealing with time series analysis and image recognition 

tasks [3]. For example, through convolutional neural 

networks (CNN), we can efficiently process image data and 
extract useful visual features [4]; while long short-term 

memory networks (LSTM) are good at processing sequence 

data and capturing the trend of data changes over time [5]. 

These technological advances have brought unprecedented 

opportunities for data analysis in the financial field, 

especially in the sub-field of bond default risk prediction [6]. 

Deep learning models can better adapt to the variability and 

complexity of data and provide more sophisticated risk 
assessment results than traditional methods. 

The accuracy of bond default risk prediction models directly 

affects the quality of investment decisions and is of great 

significance for maintaining financial market stability. 

Although traditional statistical models can reflect the 

possibility of default to a certain extent, they usually only 
consider structured data and ignore the influence of 

unstructured information such as market sentiment and 

industry trends, resulting in unsatisfactory prediction results. 

In contrast, models based on deep learning can effectively 

integrate multiple types of data sources and capture the 

complex patterns hidden behind the data through automatic 

feature learning mechanisms. This not only helps to improve 

prediction accuracy but also provides financial institutions 

with more comprehensive risk management strategy support. 

In addition, the application of such models can also help 

regulators identify systemic risks in a timely manner and take 
preventive measures to avoid financial crises [7]. 

This paper proposes a hybrid architecture that combines Long 

Short-Term Memory (LSTM) and Convolutional Neural 

Network (CNN) to predict bond default risk. LSTM is good 

at capturing long-term dependencies in time series due to its 

ability to process sequence data; while CNN is good at 
extracting local features from two-dimensional data such as 

images or text [8]. In order to fully utilize the advantages of 

these two networks, this study designed a two-stage 

framework: first, CNN is used to process unstructured text 

data to extract key semantic features; second, these features 

are input into LSTM together with structured financial data 

for time series modeling. In this way, the model can 

comprehensively consider historical financial performance 

and the latest market feedback, thereby realizing dynamic 
monitoring of bond default risk. 
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2. Background 

2.1. Related Work 
Deep learning models, particularly Convolutional Neural 

Networks (CNN) and Long Short-Term Memory Networks 

(LSTM), have become key tools for handling complex 

datasets, including temporal and unstructured data. For 

financial applications, particularly in predicting bond default 

risk, such models are advantageous due to their ability to 

process diverse data sources like financial indicators, market 

sentiment, and time-series data. Various studies have 
contributed to improving the predictive power of such 

models through innovative combinations of deep learning 

techniques. 

One relevant work proposed a Hybrid LSTM-GARCH 

framework for financial market volatility prediction, which 

demonstrated the benefits of combining LSTM’s sequence 

modeling with GARCH’s volatility estimation techniques to 

handle time-series data effectively. This framework laid the 

groundwork for modeling financial markets, aligning with 

the use of LSTM in the bond default risk model introduced 

in this paper, where temporal financial data is critical for 

prediction accuracy [9]. 

Optimization techniques in deep learning have also been 
explored to enhance model training. One study introduced a 

method to optimize gradient descent in neural network 

training, offering improved convergence rates and accuracy. 

Such approaches are crucial for training complex models 

like the hybrid CNN-LSTM framework, ensuring that large 

financial datasets can be processed efficiently and 

effectively [10]. 

In the context of financial time-series data, spatiotemporal 

feature representation has proven effective for mining 

multidimensional patterns. Research into spatiotemporal 

features has shown how such techniques can uncover hidden 

relationships in time-series data, which is highly relevant for 

models designed to predict financial trends or risks. This 
aligns with the LSTM's role in processing sequence data 

within the hybrid model [11]. 

Moreover, the use of multimodal data fusion techniques has 

emerged as a powerful method for integrating multiple types 

of data to improve prediction outcomes. Recent research has 

demonstrated that combining different data modalities, such 

as text and structured data, can significantly enhance model 

performance in tasks like object recognition. This 

multimodal approach resonates with the CNN-LSTM hybrid 

model, where structured financial data is combined with 

unstructured textual data to provide a more comprehensive 

assessment of bond default risk [12]. In addition, studies 
have shown that using lightweight neural network 

architectures can reduce computational complexity without 

sacrificing model performance. This approach is particularly 

useful when dealing with large-scale financial datasets, 

where processing efficiency is a priority. Lightweight 

architectures, like those proposed in recent research, can 

help in real-time financial risk monitoring and fast 

computations [13]. 

Recent advancements in contrastive learning have shown 

potential for improving feature extraction in large language 

models, which is applicable to the unstructured text data 

processing capabilities of CNNs. Contrastive learning can be 
adapted to enhance the extraction of relevant financial 

insights from unstructured data sources like market 

comments and analyst reports, thereby improving the 

performance of hybrid models for predicting financial 

outcomes [14]. While techniques for modeling time-series 

data and generating accurate predictive models are equally 

applicable to financial risk prediction, demonstrating the 

versatility of deep learning techniques [15-16]. In conclusion, 
this paper builds upon these foundational works by 

proposing a hybrid CNN-LSTM model specifically designed 

for bond default risk prediction. By integrating structured 

and unstructured data sources, the model addresses key 

challenges in predicting bond defaults, achieving higher 

accuracy and more comprehensive financial risk 

assessments. 

3. Method 

3.3. Model Structure 
The First, we need to define the input data set. For the bond 

default risk prediction task, the input data usually consists of 

two parts: structured data and unstructured data. Structured 

data may come from corporate financial statements, market 
conditions, etc., while unstructured data may come from 

news reports, comments on social media, etc. 

For structured data, suppose we have a time series dataset 
},...,,{ 21 TxxxX  , where xt is a vector of financial data at time 

t, and each vector xt contains multiple features, such as net 

profit, total liabilities, etc. 

As for unstructured data, suppose we have a series of text 

data },...,,{ 21 TyyyY  where yt is the text data at time t, which 

may be news reports or comments on social media. For 

unstructured data, we first need to convert it into a form 

suitable for machine learning algorithms to process. Here we 

use word embedding technology to convert each text 

fragment yt into a vector form. Then, these vectors are input 

into one or more convolutional layers to capture local 
features. The convolution operation can be expressed as: 

)*( bxwfz ii 
 

Where W is the convolution kernel (filter), xi is part of the 

input vector, * represents the convolution operation, and b is 

the bias term. After a series of convolution and pooling 

operations, we will get a fixed-length vector z, which 

contains the key features of the text data. 

The structured data },...,,{ 21 TxxxX   will be directly input 

into the LSTM model. The LSTM model can effectively 

capture the long-term dependencies in time series data. For 

each time point t, the LSTM unit will update its internal state 
based on the input xt at the current moment and the states ht-

1 and ct-1 at the previous moment. The LSTM update 

equation is as follows: 
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Where   represents the Sigmoid function. The feature 

vector z after unstructured data processing is fused with the 

LSTM hidden state ht at each time step. This can be done by 

a simple splicing operation: 
];[ ChH tt   

In this way, we obtain the time series feature vector Ht that 

combines structured and unstructured information. 

 



 

 

  

 
Figure1. Overall architecture diagram 

Finally, we project Ht to the default probability estimate 

through a fully connected layer. Assuming that we use a 

binary classification task to predict whether a default occurs, 

the output layer can be a node with a Sigmoid activation 

function, and its output value p represents the probability of 
default. 

The loss function can choose Binary Cross-Entropy Loss to 

measure the difference between the model prediction value 

and the true label: 

)]1log()1()log([ pypyL   
 

4. Experiment 

4.1. Dataset 

The data sets used in this article are all from Bloomberg API, 

covering both structured data and unstructured data. 

Structured data mainly comes from the company's financial 

statements, including the following variables: Total Assets, 
which is the total value of all assets owned by the company 

at a certain point in time, including fixed assets and current 

assets [17]; Total Liabilities, which is the total amount of all 

debts undertaken by the company at a certain point in time, 

including short-term debts and long-term debts; Current 

Assets, which is the assets that the company can realize 

within one year or one operating cycle, such as cash, 

accounts receivable, inventory, etc.; Current Liabilities, 

which is the debt that the company needs to repay within one 

year or one operating cycle, such as accounts payable, short-

term loans, etc.; Net Income, which is the net income of the 
company after deducting total expenses from the total 

income in a certain period; Revenue, which is the total 

income obtained by the company through the sale of goods 

or services in a certain period. Unstructured data involves 

financial articles, which usually include news reports 

(covering corporate operations, management changes, major 

contract signings, legal proceedings, etc.), analyst reports 

(industry analysis reports issued by investment banks or 

consulting firms, including market trends, competitor 

conditions, corporate strategies, etc.) and market comments 

(investors, analysts or ordinary users' views and comments 

on corporate performance). These data provide 
comprehensive information and help build a comprehensive 

bond default risk prediction model. 

 

Table 1:  Dataset Example 

Data Types Data name 

Structured Data Total Assets 

Structured Data Total Liabilities 

Structured Data Current Assets 

Structured Data Current Liabilities 

Structured Data Net Income 

Unstructured Data Revenue 

Unstructured Data Operational Status 

Unstructured Data Analyst Reports 

Unstructured Data Market Comments 

 

4.2. Data cleaning 
For the dataset used in this paper, detailed data cleaning was 

carried out to ensure the accuracy and reliability of model 

training. First, the structured financial data was carefully 

checked to remove missing values and outliers, such as 

filling missing financial indicators with industry averages or 

medians, and extreme values were corrected or deleted to 

avoid adverse effects on the model. At the same time, the 

data was standardized to ensure that different financial 

indicators were compared at the same level, so as to avoid 

the situation where some variables dominated the model 

prediction results due to excessive values. In addition, the 

time series data was smoothed, and moving averages and 
other methods were used to eliminate the noise interference 

caused by short-term fluctuations, so that the model can 

better capture long-term trends. For unstructured data, the 

text was first preprocessed by natural language processing 

technology, including removing HTML tags, filtering stop 

words, removing punctuation marks, etc., to reduce the 

interference of irrelevant information. Subsequently, the text 

was segmented and stemmed, long sentences were broken 

down into meaningful vocabulary units, and different forms 

of the same vocabulary were unified into base forms to 

improve the accuracy of feature extraction. On this basis, the 
word frequency-inverse document frequency (TF-IDF) 

method was used to vectorize the text and convert the 

unstructured text into numerical features for further 

processing by the model. Through these steps, the quality 

and availability of unstructured data are ensured, so that it 

can be effectively integrated with structured data to serve the 

construction of the bond default risk prediction model. 

 

4.3. Experiments 
To We selected 5 different common models to analyze our 

data results, including RNN, LSTM, Resnet18, transformer, 

and our model. We first analyzed the accuracy. The results 

are shown in Table 2. 

Table 2: Accuracy Experiment Results 

Model ACC 

RNN 0.581 

Resnet18 0.751 

LSTM 0.779 

Transformer 0.821 

Ours 0.835 

According to the experimental results provided, we observed 

significant differences in the accuracy of different models on 

this task, with the RNN model only achieving an accuracy 
of 0.581, which may be due to its limitations in processing 

long sequence data. In contrast, ResNet18, as one of the 

classic deep learning models, effectively alleviated the 

gradient vanishing problem in deep networks by introducing 

residual blocks, thereby achieving an accuracy of 0.751, 

showing its strong ability in feature extraction. The LSTM 

model, which is specially designed to capture long-term 

dependencies in sequence data, also proves its strong ability 

in handle such tasks with an accuracy of 0.779. With the rise 

of the attention mechanism, the Transformer model has 

increased its accuracy to 0.821 with its powerful parallel 



 

 

  

processing capabilities and efficient capture of long-distance 

dependencies, becoming a model architecture that has 

performed outstandingly in many fields in recent years. 

However, it is exciting that the model we proposed, a hybrid 

model that combines the advantages of CNN and LSTM, 

stands out with the highest accuracy of 0.835. This result 
shows that our model not only inherits the high efficiency of 

CNN in feature learning, but also integrates the unique 

advantages of LSTM in processing sequence data, making 

the overall model show excellent performance in dealing 

with the current task. It is worth noting that although Our 

model performs well, in order to ensure its robustness and 

generalization ability, it still needs to be further tested and 

cross-validated on a variety of data sets to consolidate its 

effectiveness. In practical applications, factors such as 

model complexity, training time, and computing resource 

requirements need to be considered to ensure that the model 

can maintain efficient and stable performance in different 
deployment environments. At the same time, future research 

directions can focus on optimizing the existing model 

structure, exploring new training strategies, or combining 

more advanced technologies, such as semi-supervised 

learning, transfer learning, and other methods, to further 

improve the performance and practicality of the model.  

In order to further demonstrate the experimental results, we 

use a bar chart to show our experimental results, as shown in 

Figure 2. 

 
Figure 2. Accuracy results comparison chart 

 

Furthermore, we use Recall and F1 values to show our 

experimental results, which are shown in Tables 3 and 4. 

Table 3: Recall values Experimental Results 

Model Recall 

RNN 0.565 

Resnet18 0.749 

LSTM 0.788 

Transformer 0.817 

Ours 0.821 

Table 4: F1 values Experimental Results 

Model F1 

RNN 0.553 

Resnet18 0.750 

LSTM 0.781 

Transformer 0.819 

Ours 0.831 

From the recall rate in Table 3, we can see that the 

performance of each model on the recognition or 

classification task is different. Although traditional sequence 

models such as RNN and LSTM can capture certain 

temporal dependencies, their recall rates (0.565 and 0.788, 

respectively) are lower than ResNet18 (0.749), which 
indicates that ResNet18 using convolutional neural network 

(CNN) can more effectively reduce false negatives in this 

particular task. However, the most significant performance 

comes from the Transformer model and our proposed new 

model, which achieves recall rates of 0.817 and 0.821.  

Table 4 shows the results of the F1 score, which is the 

harmonic mean of recall and precision, providing a 

comprehensive perspective on the performance of the model. 

Consistent with the trend of recall, our model also achieved 

the highest F1 score (0.831), followed by the Transformer 

model (0.819). This further confirms that our model 

performs better than other models when considering the 
balance between precision and recall, especially in reducing 

false positives while maintaining high recall. Compared with 

traditional methods such as RNN and LSTM, these advanced 

models (including ResNet18) also have significant 

improvements in F1 scores, reflecting the importance of 

deep learning architectures for improving the performance 

of machine learning tasks. Similarly, in order to further 

demonstrate our experimental results, we also use two bar 

graphs to show our experimental results on Recall and F1 

values, as shown in Figures 3 and 4. 

 

 
Figure 3. Recall results comparison chart 

 



 

 

  

Figure 4. F1 results comparison chart 

 

5. Conclusion 

In this paper, we developed an innovative deep learning 

algorithm to predict the default risk of bonds. The algorithm 

combines the advantages of convolutional neural networks 

(CNN) and long short-term memory networks (LSTM). 

CNN is used to process unstructured data, such as analyst 

reports, market comments, etc., to extract useful visual 

features; while LSTM is used to process structured time 

series data, such as various indicators in financial statements. 

In this way, our model is able to process both structured and 

unstructured data, thereby improving the accuracy of bond 

default risk prediction. Experiments show that compared 

with commonly used models such as RNN, ResNet18, 

LSTM and Transformer, the model proposed in this study 

has an accuracy of 0.835, showing its superior performance 

in dealing with such problems. Despite the good results, 

more testing and verification are still needed in future work 

to further improve the robustness and generalization ability 

of the model. In addition, future research can also explore 

how to combine more external data sources to further 

improve the effect of the prediction model. 
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