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Abstract: To address the challenges of effectively capturing spatiotemporal features from data using a single prediction 

model and the limitations of artificially constructed degradation indices in accurately representing the bearing's degradation 

state at specific time points, this study introduces a novel bearing Remaining Useful Life (RUL) prediction model. The model 

integrates a Multi-Scale Convolutional Neural Network (MSCNN) and Long Short-Term Memory (LSTM) networks, 

grounded in a monotonic degradation index. Initially, a monotonic optimality criterion is employed to identify an appropriate 

health index for bearing degradation. Subsequently, a comprehensive spatiotemporal feature set is developed by merging the 

multi-scale spatial features extracted by MSCNN with the temporal features derived from LSTM. The proposed LSTM-

MSCNN model's effectiveness is validated using the XJTU-SY bearing dataset from Xi'an Jiaotong University as a case study. 

Keywords: Deep learning, remaining life prediction, multi-scale convolutional neural network, long and short-term 

memory neural network. 

 

1.Introduction  
In recent years, during the prediction stage of Remaining 

Useful Life (RUL), deep learning technology has achieved 

significant success in the field of RUL prediction due to its 

powerful nonlinear mapping capabilities [1-8]. The primary 

deep learning methods in this field include Convolutional 

Neural Networks (CNN), Long Short-Term Memory 

networks (LSTM), Recurrent Neural Networks (RNN), 

Deep Neural Networks (DNN), and Generative Adversarial 

Networks (GAN), among others. These models have 

gradually become the mainstream research trend in RUL 

prediction due to their unique network structures and 

computational approaches [9-11]. Reference [12] proposed 

an RUL prediction method combining a Deep Convolutional 

Autoencoder (DCAE) with a One-Dimensional 

Convolutional Neural Network (1D-CNN). This approach 

uses DCAE to establish the Health Indicator (HI) for the 

bearing degradation process and takes the HI along with the 

original degradation data as inputs to the 1D-CNN to predict 

bearing RUL. Reference [13] introduced an RUL prediction 

method based on a hybrid model of CNN and BDLSTM, and 

validated the effectiveness of the designed model using the 

C-MAPSS dataset. Reference [14] proposed a CNN-LSTM-

PSO RUL prediction method that employs CNN-LSTM to 

extract the spatiotemporal relationships of multivariate time 

series data and capture degradation features, with Particle 

Swarm Optimization (PSO) used to optimize the CNN-

LSTM model parameters. A comparison with other models 

was made to verify the superiority of this method. Reference 

[15] presented a hybrid prediction method combining CNN, 

LSTM, and DNN to predict the RUL of lithium-ion batteries, 

with experimental validation conducted on NASA and 

CALCE lithium-ion battery datasets. The results 

demonstrated that this method effectively improves RUL 

prediction accuracy. Inspired by the above research, this 

paper focuses on rolling bearings and proposes an RUL 

prediction model based on a combination of Long Short-

Term Memory neural networks and Multi-Scale 

Convolutional Neural Networks (LSTM-MSCNN). First, 

the time-frequency features of the original bearing data are 

extracted, and trend analysis and smoothing of these features 

are performed to determine the bearing's health status index. 

Second, the LSTM-MSCNN model extracts the multi-scale 

spatial and temporal features of the data. Finally, high-

precision prediction of bearing RUL is achieved using the 

LSTM-MSCNN model. 

 

2. Theoretical analysis 
2.1. Convolutional Neural Network (CNN)  

CNN is a typical feedforward multi-layer neural network, 

and its main structure consists of three parts: the 

convolutional layer, pooling layer, and fully connected layer. 

The operation formula of the convolutional layer is as 

follows: 

 

2.2. Long Short-Term Memory Neural Network 

The LSTM module contains three "gating" units: the "input 

gate," "forget gate," and "output gate," along with a memory 

cell. The calculation method for each gated unit is as follows: 

 

Among them, the forget gate transfers the previous hidden 

state and the current input information into the sigmoid 

function, where information with an output value close to 1 

is retained, and information close to 0 is forgotten. Wf  is 



 

 

  

the weight matrix corresponding to the forget gate, bf  is the 

bias, and ht-1 is the hidden state information from the 

previous unit. 

 

Among them, ut represents the input gate, which is 

responsible for updating the cell state. Wu is the weight 

matrix associated with the input gate, and bu is the 

corresponding bias. Ct represents the updated cell state of the 

current unit, Ct−1 is the previous cell state. 

 

2.3. LSTM-MSCNN prediction model 

The structural diagram of the LSTM-1DMSCNN prediction 

model proposed in this paper is shown in Fig. 1. 

 

Fig. 1 LSTM-1DMSCNN prediction model structure 

diagram 

In the 1D-MSCNN structure for extracting spatial features, 

three sizes of convolutional kernels are used: K1 = 3 , K2 = 

5 , and K3 = 7 . The number of these convolutional kernels is 

N = 16 , with a stride S = 2 for each sliding operation, and 

"same padding" is employed. The features extracted at these 

three different scales are concatenated through a stitching 

layer to form a multi-scale feature map. A batch 

normalization layer is added after the stitching layer and the 

second convolutional layer to prevent overfitting and to 

accelerate convergence during training. 

3. Experiment and Analysis 

3.1. Data Sources 

The bearing dataset XJTU-SY used in this paper is from 

Xi'an Jiaotong University [16]. The dataset includes the 

lifetime vibration signals of 15 rolling bearings under three 

working conditions. In the degradation experiment, the 

sampling frequency is 25.6 kHz, the sampling interval is 1 

min, and the duration of each sampling is 1.28 s. Table 5.1 

shows the vibration dataset of the experimental bearing LDK 

UER204 under 3 operating conditions. 

Table 1: Dataset Description 

 

3.2. Construction of health indicators 

In this paper, 14 time-domain features and 4 frequency-

domain features are extracted, and monotonicity is used to 

quantify the applicability of the degradation index. One set 

of features is selected from the 18 time-frequency domain 

features to represent the degradation trend of bearing health.  

 

Fig. 2 Monotonicity of performance metrics 

The monotonicity quantification index diagram of the time-

frequency feature is shown in Fig. 2. It can be observed from 

the figure that, compared to other time-frequency features, 

the frequency domain feature MF has a higher monotonicity 

index, with a value of 0.524. This indicates that MF better 

describes the bearing degradation process. 

3.3. Experimental results and analysis 

The prediction results of the XJTU-SY bearing dataset 

are shown in Fig. 3/4. 

Condition Load

（KN） 

Speed 

(rpm) 

Dataset 

1 12 2100 Bearing 1-1 

Bearing 1-5 

2 11 2250 Bearing 2-1 

Bearing 2-5 

3 10 2400 Bearing 3-1 

Bearing3-5 



 

 

  

 

Fig. 3 Prediction results:(a) 

 

Fig. 4 (b) Bearing 2-1 

Table 2: Model evaluation results 

Model Evaluation Metrics 

 RMSE SMAPE RA 

MSCNN 0.0856 0.0434 0.9544 

CNN 0.1022 0.0674 0.8144 

LSTM 0.0732 0.0341 0.9752 

RNN 0.1143 0.0709 0.8214 

LSTM-

1DMSCNN 

0.0645 0.0244 0.9834 

To verify the predictive advantages of the LSTM-

1DMSCNN model, this paper compares it with four 

common deep learning prediction models: MSCNN, CNN, 

LSTM, and RNN. The model performance evaluation is 

presented in Table 2. Compared to these four methods, the 

LSTM-1DMSCNN model achieves the lowest RMSE and 

SMAPE, and the highest RA, demonstrating its superiority 

in the bearing RUL prediction task. 

4. Conclusion 
In this paper, a spatiotemporal feature fusion bearing RUL 

prediction model, LSTM-1DMSCNN, is proposed. The 

method leverages time-frequency features from the bearing 

data as the degradation index, providing a more accurate 

description of the actual bearing degradation trend. 

Additionally, LSTM-1DMSCNN integrates a multi-scale 

convolutional network with a long short-term memory 

neural network to learn deeper spatiotemporal features. By 

reducing the network's depth while extracting multi-scale 

feature information, the model fully captures the 

characteristic information in the data. Experimental results 

show that the LSTM-1DMSCNN model achieves high RUL 

prediction accuracy and offers a novel solution for RUL 

prediction in rotating equipment. 

References 

[1] Smith J, Brown A, Johnson K, et al. Machinery health 
prognostics: A systematic review from data acquisition 
to RUL prediction[J]. Mechanical Systems and Signal 

Processing, 2018, Vol.104, p799-834. 

[2] Thompson M, Evans L, Carter S, et al. An efficient short-
time Fourier transform algorithm for grinding wheel 
condition monitoring through acoustic emission[J]. The 

International Journal of Advanced Manufacturing 
Technology, 2021, Vol.113(1), p585-603. 

[3] Williams D, Martinez J, Thompson R, et al. A remaining 
useful life prediction method for bearing based on deep 

neural networks[J]. Measurement, 2020, Vol.172, p1-17. 

[4] Green P, White R, Harris T, et al. A remaining useful life 
prognosis of turbofan engine using temporal and spatial 
feature fusion[J]. Sensors, 2021, Vol.21(2), p418-438. 

[5] Brown L, Johnson A, Lewis S. Cutting tool prognostics 
enabled by hybrid CNN-LSTM with transfer learning[J]. 
The International Journal of Advanced Manufacturing 
Technology, 2022, Vol.118(3), p817-836. 

[6] Anderson M, Taylor H, Smith J. Simultaneous bearing 
fault recognition and remaining useful life prediction 
using joint-loss convolutional neural network[J]. IEEE 
Transactions on industrial informatics, 2019, Vol.16(1), 
p87-96. 

[7] Harris R, Roberts L, Carter T, et al. A Novel Remaining 
Useful Life Prediction Method Based on CEEMDAN-
IFTC-PSR and Ensemble CNN/BiLSTM Model for 
Cutting Tool[J]. IEEE Access, 2022, Vol.10, p2182-2195. 

[8] Walker J, Lee P. Prediction of Remaining Useful Life of 
Wind Turbine Shaft Bearings Using Machine 
Learning[J]. Journal of Marine Science and Technology, 
2021, Vol.29(5), p631-637. 

[9] Davis C, Martin G, Rogers P. A genetic algorithm 
optimized RNN-LSTM model for remaining useful life 
prediction of turbofan engine[J]. Electronics, 2021, 
Vol.10(3), p285-300. 

[10] Leveraging the Power of the Combination of CNN and 
Bi-Directional LSTM Networks for Aircraft Engine RUL 
Estimation[C]// 2020 Prognostics and Health 
Management Conference (PHM-Besançon). 0. 

[11] Harris T, Wright B. A data-driven approach based on 
deep neural networks for lithium-ion battery 
prognostics[J]. Neural Computing and Applications, 
2021, Vol.33(20), p13525-13538. 

[12] Roberts L, Adams M, Wilson T, et al. Remaining Useful 



 

 

  

Life Assessment for Lithium-ion Batteries using CNN-
LSTM-DNN Hybrid Method[J]. IEEE Transactions on 
Vehicular Technology, 2021, Vol.70(5), p4252-4261. 

[13] Johnson M, Walker S, Smith T. Learning representations 
by back propagating errors[J]. Nature, 1986, 
Vol.323(6088), p533-536. 

[14] Taylor J, Moore A, Anderson R. Remaining useful life 
prediction based on a double-convolutional neural 
network architecture[J]. IEEE Transactions on Industrial 
Electronics, 2019, Vol.66(12), p9521-9530. 

[15] White J, Martinez K, Thompson B, et al. A data-driven 
model for milling tool remaining useful life prediction 
with convolutional and stacked LSTM network[J]. 
Measurement, 2020, Vol.154, p107461-107473. 

[16] Jones M, Black A, Thompson R, et al. Interpretation of 
XJTU-SY Rolling Bearing Accelerated Life Test Dataset 
[J]. Chinese Journal of Mechanical Engineering, 2019, 
Vol.55(16), p15-20.  

 

 


