
Journal of Computer Technology and Software  

ISSN:2998-2383 

Vol. 3, No. 5, 2024 

  

Adaptive Spatio-Temporal Aggregation for Temporal Dynamic 

Graph-Based Fraud Risk Detection 
Wenjun Gu1, Mengfang Sun2, Bingyao Liu3, Ke Xu4, Mingxiu Sui5 

1Johns Hopkins University, Maryland, USA 

2Stevens Institute of Technological, Hoboken, USA 

3University of California, Irvine, Irvine, USA 

4Columbia University, New York, USA 

5University of Iowa, Iowa City, USA 

 

Correspondence should be addressed to Mingxiu Sui; suimingx@gmail.com 

 

            

  

             

             

           

           

             

           

        

         

           

         

 

 

Keywords: Financial Fraud Detection, Graph Neural Networks (GNN), Spatio-temporal Aggregation 

 

1. Introduction  

Financial fraud refers to the act of illegally obtaining benefits 

from financial institutions or others through deception, false 

statements, manipulation of information, and other means. 

The research was conducted on the disguise problems of 

fraudsters and the aggregation process of graph neural 

networks, successfully resolving the existing issues by 

setting up a neighbor noise filter and a central node enhancer, 

ultimately achieving accurate identification of fraudulent 

behavior. However, the research on financial fraud is more 

focused on static graphs where nodes and edges do not 

change. The traditional graph representation method is 

inspired by the learning of word vector representation in 

Word2Vec, designing random walk strategies in the graph to 

obtain a sequence of nodes, and then inputting the node 

sequence into the SkipGram model to learn the low-

dimensional vector representation of nodes. The emergence 

of GNN is mainly to learn the neighborhood information in 

the graph by designing graph convolutional operators, but 

these methods are all learning of node representation in static 

graphs and lack consideration of the dynamics of the graph. 

Dynamic graphs appear in many places in the issue of 

financial fraud, such as money laundering, financial fraud, 

etc. Transactions in the financial field are often real-time and 

dynamically changing, and the algorithms in static graphs do 

not learn the temporal relevance in transactions very well. 

Graph neural networks are a general model capable of 

performing various learning tasks on graphs. Currently, 

graph neural networks have achieved great success in the 

learning of static graphs [1]. However, in a financial 

transaction network where users are nodes and transactions 

between users are edges, users and transactions change over 

time, and the structure of the graph also changes. Therefore, 

the identification and processing of static graphs can no 

longer meet the new needs of current fraud detection. 

Although graph neural networks are actively exploring 

applications in the direction of dynamic graphs, there are still 

some issues. Currently, GNNs based on dynamic graphs 

have not combined advanced methods of GNNs based on 

static graphs, which still have limitations in the process of 

dynamic graph evolution over time and aggregation methods. 

Overcoming these limitations is crucial for dynamic graph 

applications in the real world.

      
      

        
         

         
      

            
     

          
      

        

Abstract: This paper introduces an advanced fraud detection algorithm, AT-GCN, tailored for temporal dynamic graphs 
frequently encountered in financial domains such as money laundering and financial fraud. Traditional graph neural 
networks (GNNs) have been predominantly successful in static graph analysis, lacking the capability to capture the temporal 
dynamics of transactions. To address this, the proposed AT-GCN algorithm integrates three key innovations: adaptive 
parameter updates using LSTM to reflect the temporal evolution of graph structures, a resampling method across time steps 
to balance label distribution and leverage temporal correlations, and a novel similarity-based weighted aggregation approach 
that enhances the differentiation of node importance within the graph. The LSTM component allows the model to 
dynamically adjust to changes in graph topology, capturing temporal dynamics effectively. The oversampling strategy 
mitigates label imbalance by connecting nodes across various time steps using Euclidean distance, enriching the model's 
fraud detection accuracy. The aggregation method, underpinned by a machine learning perceptive model, assigns weights 
based on node similarity, thereby tackling the disguise problem posed by fraudulent entities. Empirical results demonstrate 
AT-GCN's superiority over existing methods, showcasing its potential in real-world dynamic graph applications.



 

 

 

 

   

 

  

       

 

  

     

    

   

(1) The method uses LSTM to evolve the parameters 

of GCN, enabling GCN to adaptively perceive changes in 

graph structure and capture dynamic information in the 

evolving network parameters, thus allowing for more 

flexible graph sequences to be processed.  

(2) A resampling method across time steps is 

proposed, using Euclidean distance as the distance 

function, establishing connections between nodes across 

different time steps by comparing the distances between 

nodes. This method can address the issue of label 

imbalance within time steps. 

(3) In terms of aggregation, we proposes a new 

aggregation method that weights based on similarity, 

which can consider the similarity between the central node 

and neighbor nodes of GCN and assign different weights 

to alleviate the disguise problem of fraudsters. 

2. Background 

2.1. Related Work 
The field of financial fraud detection using graph neural 

networks (GNNs) has experienced notable advancements, 

particularly in addressing the dynamic nature of 

transaction networks. Traditional GNNs, while successful 

in static graph analysis, often struggle with the evolving 

structure of temporal dynamic graphs. The proposed AT-

GCN model directly tackles these limitations by 

integrating LSTM for adaptive parameter updates, a 

resampling method to balance label distribution across 

time steps, and a similarity-based weighted aggregation 

approach, drawing from various deep learning 

advancements. Cheng et al. [2] contributed significantly 

with their GNN-CL model, emphasizing the capture of 

   

        

      

    

     

    

feature extraction processes in fraud detection models. 

Further, Cheng et al. [4] investigated ELMo word 

embeddings and multimodal transformers, primarily in 

natural language processing (NLP) and image analysis, but 

their techniques inform how AT-GCN aggregates 

information from different temporal snapshots in dynamic 

graphs. Similarly, Yang et al. [5] advanced emotional 

analysis with large language models, showcasing deep 

learning's potential to grasp complex patterns in 

unstructured data, akin to how AT-GCN addresses 

temporal and spatial complexities in financial transactions. 

Wang et al. [6], in their work on LSTM networks for 

predicting stock market trends, addressed limitations of 

recurrent neural networks (RNNs), directly influencing the 

adaptive parameter updates in AT-GCN. Additionally, 

Wang et al. [7] explored anomaly detection and risk 

assessment in financial markets using deep neural 

networks, emphasizing robust detection mechanisms 

necessary in financial contexts, aligning with AT-GCN’s 

goals. Lastly, Zheng et al. [8] introduced adaptive friction 

in deep learning optimizers, which enhances the training 

process stability for models like AT-GCN, dealing with the 

intricacies of dynamic graphs. Together, these 

contributions underscore the AT-GCN model's position as 

a cutting-edge tool for detecting and mitigating fraudulent 

behavior in dynamic financial networks. 

2.2. Parameter Definition 
A graph can be represented as 𝐺 = {𝑉, 𝐸} , where 𝑉 =
{𝑣1, … , 𝑣𝑛}  represents the set of nodes, and 𝐸 =
{𝑒1, … , 𝑒𝑛} represents the set of edges. Each node has a 

feature set that characterizes the features of the node, 

denoted as FvFv.  

For a dynamic graph, each node v has a temporal feature 

𝑡𝑣 ,. A dynamic graph𝒢 = {𝐺𝑡}𝑡=1
𝑇 can be represented as a 

sequence of graph snapshots, where each snapshot is a 

Figure 1. AT-GCN model architecture with time step set to 3 as an example
This paper proposes a fraud detection algorithm based on both global and local patterns within static graphs, which 
temporal dynamic graphs: Spatio-temporal and similarity sets the stage for extending these principles to dynamic 
aggregation based GCN (AT-GCN), addressing the graphs as done in AT-GCN. In the broader deep learning 
temporal relevance in dynamic graphs and the aggregation context, Zhong et al. [3] explored generative adversarial 
method of graph neural networks. The main contributions networks (GANs) and traditional methods for image 
of this paper include: recognition, with their findings relevant to enhancing



 

 

  

static graph  𝐺𝑡 = {𝑉𝑡 , 𝐸𝑡},  𝑉𝑡 = {𝑣 ∈ 𝑉 ∣ 𝑡𝑣 = 𝑡}, 𝐸𝑡 =
{𝑒 ∈ 𝐸 ∣ 𝑡𝑣 = 𝑡}. Different snapshots may have different 

sets of nodes. To better understand dynamic graphs. 

Graph neural networks learn node embeddings through 

iterative aggregation of messages from the network 

neighborhood, with the embedding matrix 𝐻(𝑙) = {ℎ𝑣
(𝑙)

∣

𝑣 ∈ 𝑉} representing all the node embeddings at layer I. 

The essence of GNN layers is message passing and 

message aggregation. The process of GNN can be written 

as: 

 message 
𝑢→𝑣
(𝑙) = 𝑀𝑆𝐺(𝑙)(ℎ𝑢

(𝑙−1)
, ℎ𝑣

(𝑙−1)
∣ 𝑢 ∈ 𝒩(𝑣)) 

ℎ𝑣
(𝑙)

= 𝐴𝐺𝐺(𝑙)({ message 
𝑢→𝑣
(𝑙) }, ℎ𝑣

(𝑙−1)
∣ 𝑢 ∈ 𝒩(𝑣)) 

Where ℎ𝑣
(𝑙)

 represents the node embedding of node v after 

the I-th layer of GNN, ℎ𝑣
(0)

= 𝑥𝑣 , 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑢→𝑣
(𝑙)

 represents 

the information embedding of node v, and 𝒩(𝑣) 

represents the set of neighbors of node v. Different GNNs 

can have different definitions for message passing 

functions 𝑀𝑆𝐺(𝑙)(⋅) and aggregation functions 𝐴𝐺𝐺(𝑙)(⋅

),. Typically, in GNN, average aggregation functions or 

max-pooling aggregation can be used. The GNN defined 

by equations is called static GNN because it is designed to 

capture certain features of static graphs without capturing 

the dynamic information of the graph. 

Graph convolutional networks make some improvements 

based on graph neural networks. For traditional graph 

neural networks, only the node feature matrix and the 

adjacency matrix are needed as inputs to perform 

aggregation operations. However, graph convolutional 

networks also require a degree matrix, which represents 

how many nodes are associated with the central node. At 

the same time, the adjacency matrix of the graph 

convolutional network not only considers the features of 

its neighbor nodes but also considers its own weighting. 

The implementation method of GCN is as shown in 

Equation: 

ℎ𝑣
(𝑙+1)

= 𝜎 (𝐷−
1
2�̃�𝐷−

1
2ℎ𝑣

(𝑙)
𝑊(𝑙)) 

where �̃� = 𝐴 + 𝐼  represents the sum of the adjacency 

matrix A and the identity matrix I, allowing GCN to 

consider its own weighting while considering the 

neighbors. D represents the degree matrix, 𝜎 represents 

the activation function, and 𝑊(𝑙) ) is the learnable 

parameter matrix. 

3. Method 

3.1.Model Structure 
The model mainly consists of three parts: First, an LSTM 

dynamic update module; second, a time window 

oversampling; and third, a similarity-based aggregation 

module.  

Figure 1. provides a schematic diagram of the model 

framework. Existing methods require consideration of 

global information to obtain the embedding of a node, but 

they do not handle the temporal changes of the node 

information well. The dynamic update module uses LSTM 

to capture the evolution process of the GCN's learnable 

weight matrix, fully considering the temporal 

characteristics of the dynamic graph. GCN can consider 

the spatial features of the dynamic graph at a certain 

moment, so the combination of GCN and LSTM can fully 

consider the spatiotemporal characteristics of the dynamic 

graph. Due to label imbalance, oversampling of fraudulent 

nodes can balance the labels. Using a similarity-based 

aggregation method can make the aggregation phase pay 

more attention to the features of neighbors similar to the 

central node. 

Although GCN can consider the spatial structure of the 

graph, too much consideration of the global structure may 

actually lead to a decrease in performance. Therefore, 

adopting a similarity-based aggregation method allows 

GCN to pay more attention to neighbors similar to the 

central node during the aggregation process, which can 

enhance the detection effect. 

3.2. GCN Adaptive Parameter Update 

Method 
In the process of money laundering detection, since the 

graph has temporal relationships and spatial structural 

relationships, it is considered to use GCN for the spatial 

structure learning of dynamic graphs. Taking into account 

the temporal relationships of dynamic graphs, when using 

GCN for the learning of dynamic graphs, the weights of 

GCN at each moment also have certain temporal relevance 

[9]. LSTM is a neural network with the ability to remember 

long-term and short-term information. LSTM introduces 

gating mechanisms to control the flow and loss of features, 

and designs a memory cell with selective functionality, 

which can choose to remember important information and 

filter out useless information. 

 

   

3.3. Resampling Methods Across Time Steps 
In the context of dynamic graph fraud detection, each 

snapshot of the dynamic graph at each time step is often 

imbalanced in terms of data, and there is typically temporal 

correlation within the dynamic graph. That is, the fraud 

patterns from the previous time period may also appear in 

the next time period and can have a positive impact on the 

predictions for the subsequent time period. Therefore, a 

resampling method across time steps is proposed. The 

schematic diagram of the resampling is shown in Figure 3: 

Figure 2. Illustration of the adaptive parameter update



 

 

  

 

   

Due to the imbalance in the labels within each dynamic 

graph snapshot at each time step, this can have a negative 

impact on the experimental results. Therefore, it is 

important to balance the labels reasonably. However, 

dynamic graphs are often temporally correlated, so 

incorporating fraud nodes from the previous time period 

into the dynamic graph snapshot of the subsequent time 

step can have a positive effect. 

The first step of resampling involves selecting fraud nodes 

from each time step within the time window, and the 

resampling formula is shown below: 

𝐶𝑡 Fsample = ∑  Sample 𝑡

𝑡+𝑇𝑤

𝑡
 

𝑁 =  N.add(Fsample ) 

By changing different time windows, you can control the 

number of time steps and the amount of resampling needed. 

Since fraud nodes from the previous time window are 

added to the graph of the subsequent time step, it is 

necessary to consider how to connect these fraud nodes 

with the nodes of the subsequent time period. Therefore, a 

measurement method is needed. The widely used distance 

function is the Euclidean distance function, which is: 

𝐷 = ∥∥𝑥𝑣 − 𝑥𝑢∥∥ 

After calculating the distances, the resampled nodes need 

to be added to the current time step and connected with the 

nodes in the current time step. By calculating the 

difference between the Euclidean distance of each node in 

the current time step and the Euclidean distance of the 

resampled nodes, and establishing connections with the 

resampled nodes that are close in distance, nodes from 

different time steps can also participate in the training and 

have a positive impact on the training of the current time 

step. 

𝑇𝑜𝑝 = 𝑆𝑒𝑙𝑒𝑐𝑡({𝑆𝑜𝑟𝑡(𝐷𝑣 − 𝐷𝑢)|𝑢 ∈ 𝐹𝑠𝑎𝑚𝑝𝑙𝑒}) 

𝐸 = 𝐸. 𝑎𝑑𝑑(𝑣, 𝑢)𝑤ℎ𝑒𝑟𝑒𝑢 ∈ 𝑇𝑜𝑝, 𝑣 ∈ 𝑉 

where the Select function represents the selection of the 

resampled node uu with the smallest distance difference 

from node v. 

4. Experiment 

4.1. Dataset 

This paper uses the Elliptic[10] dataset to verify the 

effectiveness of the model, which is currently the largest 

labeled Bitcoin transaction dataset in the world. The 

Elliptic dataset constructs and labels a graph from the 

original Bitcoin transactions, where nodes represent 

transactions and edges represent the flow of bitcoins from 

one transaction to the next. If the entity initiating the 

transaction (i.e., the node) belongs to the legal category, 

then the given transaction is classified as a legal category. 

The Elliptic dataset consists of 203,769 transaction nodes 

and 234,355 directed transaction payment edges. The 

dataset also includes 49 different steps, with an average 

time interval of about 2 weeks between time steps, and 

there are no edges connecting different time steps. Each 

node in the dataset has 166 features, and each node 

contains a label with a total of three categories: "Legal," 

"Illegal," and "Unknown." Of the 166 features, the first 94 

features represent local information of the transaction, 

including the time step, transaction fees, etc., and the last 

72 features are aggregated features obtained by 

aggregating information one hop forward or backward 

from the central node. This includes information such as 

the number of adjacent transactions of the node. Among 

these nodes, 21% are labeled as legal, only 2% are labeled 

as illegal, and the rest are labeled as unknown. The dataset 

is processed using the Linked Data methodology, which 

integrates various data formats, a critical aspect in 

scholarly research[11]. This structured approach enhances 

data cross-referencing, thereby improving interoperability 

between different datasets. This capability is especially 

valuable in fields like machine learning and artificial 

intelligence, where the quality of data is paramount for 

training models effectively and achieving accurate results. 

4.2. Baselines 

The experiments selected GCN[12] and GAT[13] as 

conventional baseline algorithms, as well as EvolveGCN, 

which is an advanced algorithm currently available, for 

comparison to demonstrate the effectiveness of the 

algorithm proposed in this paper in the problem of fraud 

detection based on dynamic graphs. 

 

 

To verify the effectiveness of the proposed method, 

ablation experiments were conducted using the first 94 

local features and all features for different methods. 

GCN+W is without resampling and similarity-based 

aggregation methods, only using LSTM for adaptive 

parameter updates. GCN+A is a simplified version of AT-

GCN that only uses similarity-weighted aggregation 

methods. GCN+O only uses resampling methods across 

time steps. The experimental results show that even using 

a single module in the spatiotemporal graph convolutional 

fraud detection strategy is better than GCN. 

When only using 94 local features, after using the GCN 

adaptive parameter update method proposed in this paper, 

Precision increased by 14.2%, Recall increased by 22.6%, 

and F1 increased by 17.9%. When only using the 

resampling method across time steps, the effect of GCN 

also improved, with Precision increasing by 10%, Recall 

Figure 3. Oversampling methods across time steps

4.3. Experiment Results Analysis



 

 

  

increasing by 20.6%, and F1 increasing by 15%. When 

only using the similarity-weighted aggregation method, 

Precision increased by 11.4%, Recall increased by 13.9%, 

and F1 increased by 12.7%. The experimental comparison 

is shown in Figure 4. 

When using all features, due to the addition of more 

information, the effect of all models is improved. In this 

case, using a single method in the spatiotemporal graph 

convolutional money laundering strategy still greatly 

improves the effect compared to GCN. 

 

   

5. Conclusion 

This study presents the Adaptive Temporal Graph 

Convolutional Network (AT-GCN), a pioneering fraud 

detection model designed for the dynamic landscapes of 

financial transactions. Our approach addresses critical 

shortcomings in existing graph neural networks by 

incorporating three novel components: LSTM-based 

adaptive parameter updates, a strategic oversampling 

across temporal steps, and a similarity-based weighted 

aggregation technique. These elements collectively 

enhance the model’s capacity to adapt to and accurately 

identify evolving fraudulent behaviors within financial 

networks. Empirical evaluations of the AT-GCN have 

demonstrated its superiority over traditional methods, 

particularly in its robust detection capabilities and 

adaptability to complex transaction patterns. The ablation 

studies further corroborate the individual contributions of 

each component to the overall effectiveness of the system. 

Future research will explore scaling the AT-GCN for 

broader applications and further refining the model to 

accommodate the rapid evolution of fraud tactics. The 

potential extension of this model to other sectors with 

dynamic graph requirements underscores its versatility and 

the promising direction for subsequent advancements. In 

summary, the AT-GCN sets a new benchmark for fraud 

detection in financial systems, offering a sophisticated tool 

that is both adaptable and rigorously validated through 

extensive testing. 
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Figure 4. Performance comparison using 94 local features
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