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Abstract: Intelligent vehicles, driven by advancements in computer technology, sensors, and artificial intelligence, are poised 

to revolutionize the transportation industry. These vehicles require robust systems for environmental perception and collision 

avoidance to ensure safety and efficiency. This study proposes an improved Faster-RCNN model, incorporating ResNet50 as 

the feature extraction network, aimed at enhancing obstacle detection accuracy in autonomous driving scenarios. Evaluated on 

the VOC2007 dataset, the model demonstrates a 12.15% improvement in average detection accuracy over traditional methods. 

The results indicate the model's superior performance in detecting various objects such as bicycles, buses, and pedestrians, 

underscoring its potential for broad application in intelligent vehicle systems. 
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Intelligent vehicles represent a sophisticated system that 

integrates several critical functions, including environmental 

perception, path planning, multi-level vehicle management, 

and more. These functions are enabled by advancements in 

computer technology, cutting-edge sensors, information 

fusion, wireless communication, artificial intelligence, and 

automation, forming a highly advanced technological 

infrastructure. Current research in intelligent vehicles is 

predominantly focused on enhancing automotive safety and 

ride comfort, with an emphasis on refining the human-

vehicle interface. In recent years, autonomous intelligent 

vehicles have emerged as a global research hotspot in the 

automotive manufacturing industry, driving industrial 

innovation and growth. As a result, many developed nations 

have prioritized the development of these technologies. 

With the rapid advancement of modern high technologies, 

including digitization, informatization, and intelligence, 

every aspect of human society’s production and daily life has 

been profoundly transformed. The day is fast approaching 

when we will see intelligent autonomous vehicles operating 

on roads, transitioning this cutting-edge technology from 

mere concept to reality. Various high-tech vehicles already 

demonstrated substantial progress in terms of performance, 

comfort, and safety. In intelligent autonomous vehicles, 

sensor devices are intricately linked to the surrounding 

environment, and tasked with collecting and organizing vast 

amounts of data. This data is then processed by highly 

intelligent computers, enabling swift control and operation 

of the vehicle systems. Consequently, the full potential of 

functions such as autonomous driving and intelligent control 

can be realized. 

As socio-economic development accelerates, the 

transportation industry is flourishing, leading to a surge in 

the number of vehicles on the road. This rapid increase has 

exacerbated traffic congestion and led to frequent accidents, 

resulting in significant casualties and economic losses. To 

address these challenges, it is imperative to design a 

responsive, highly reliable, and cost-effective collision 

avoidance and warning system for vehicles. Ultrasonic 

collision avoidance is one of the most prevalent methods for 

distance measurement, particularly effective in short-range, 

low-speed collision prevention scenarios such as parking. It 

is also widely applied in vehicle reverse collision warning 

systems. Ultrasonic waves, as a unique form of sound waves, 

exhibit fundamental physical properties such as refraction, 

reflection, interference, diffraction, and scattering. 

Ultrasonic collision avoidance systems leverage these 

reflective properties to detect obstacles behind a vehicle 

during reverse maneuvers. The ultrasonic distance sensors 

alert the driver to the proximity and position of obstacles 

using indicator lights and a buzzer, thereby enhancing safety. 

 

   

In 2020, Chintakindi Balaram Murthy introduced an 

enhanced YOLOv3+ network designed to accurately detect 

small pedestrians in complex environments in real-time. 

This network incorporates K-means clustering before 

training to select the optimal K bounding boxes, ensuring 

more precise object localization. Additionally, the improved 

YOLOv3+ network integrates a reverse residual module, 

which significantly boosts feature extraction capabilities. 

The loss function is also refined to minimize errors in 

bounding box predictions. As a result, the network 

demonstrates superior robustness, achieving an Average 

Precision (AP) of 79.86%, outperforming existing networks 

in detection accuracy. However, a minor reduction in 

detection speed is observed, particularly when identifying 

smaller pedestrians. 

1. Introduction

2.  Optimization of Obstacle Detection Methods
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Complementing this, the paper also presents a road obstacle 

detection method based on an improved Faster-RCNN 

model, which is trained and evaluated using the VOC2007 

dataset. When compared to the EfficientNet network, the 

proposed method offers enhanced accuracy in detecting road 

obstacles, making it a promising solution for autonomous 

driving applications. 

  
Recent advancements in deep learning and neural networks 

have significantly contributed to the field of obstacle 

detection in autonomous driving. The development of 

sophisticated models, such as Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs), 

has enabled substantial progress in this domain.Jiang et al. 

[1] introduced a novel perspective on Recurrent Neural 

Networks (RNNs) by proposing the Carry-lookahead RNN 

model. This model offers a more efficient way to process 

sequential data, which is crucial for real-time obstacle 

detection in unmanned vehicles. The model’s ability to 

handle sequential dependencies effectively makes it a 

valuable contribution to enhancing the temporal 

understanding necessary for autonomous driving scenarios. 

Cao et al. [2] explored the Adaptive Receptive Field U-

shaped Temporal Convolutional Network (TCN), which 

focuses on segmenting actions over time. The TCN’s 

architecture, which adjusts its receptive field dynamically, is 

particularly relevant for processing temporal sequences in 

obstacle detection systems, where understanding the timing 

and sequence of events is critical for accurate prediction and 

reaction.Chen et al. [3] applied a Global-Local Attention 

Transformer to the classification of imbalanced data, 

specifically in leukocyte classification. Although this work 

is primarily in the medical domain, the methodology behind 

handling imbalanced datasets and employing attention 

mechanisms can be adapted to enhance the precision of 

obstacle detection in autonomous vehicles, where certain 

types of obstacles may be underrepresented in the training 

data. 

Tao’s work [4], [5] on blackbox attacks and adversarial 

defense through sequential query-based techniques and 

meta-learning respectively, provides crucial insights into the 

robustness of neural networks. These techniques can be 

adapted to improve the security and reliability of obstacle 

detection models in unmanned driving by defending against 

potential adversarial attacks that could compromise the 

safety of the vehicle.Xiao et al. [6] and Yan et al. [7] both 

contributed to the application of CNNs in medical image 

classification and survival prediction across cancer types. 

The CNN models developed in these studies, although 

applied to different domains, offer robust methodologies for 

image classification that are directly applicable to the visual 

tasks involved in obstacle detection in autonomous vehicles. 

Finally, Yao et al. [8] introduced NDC-Scene, a method for 

monocular 3D semantic scene completion. This work is 

highly relevant to obstacle detection in unmanned driving, as 

it deals with understanding and completing scenes in 3D 

space using monocular vision, a critical component of 

autonomous vehicle perception systems. 

These studies collectively demonstrate the significant 

progress made in neural network architectures and their 

applications across various domains. By leveraging these 

advancements, the proposed improved Faster R-CNN model 

for obstacle detection in autonomous driving builds upon a 

solid foundation of deep learning research, aiming to 

enhance precision and robustness in real-world scenarios. 

Initially, this paper involves resizing an image from its 

original dimensions P×Q to M×N. The resized M×N image 

is then processed through the Backbone network for feature 

extraction, resulting in a feature map. The selected Backbone 

network is based on ResNet50, which comprises two 

primary types of blocks: Conv Blocks and Identity Blocks. 

Conv Blocks, used to adjust the network’s dimensions, 

handle different input and output sizes, thereby preventing 

uninterrupted concatenation. On the other hand, Identity 

Blocks, with matching input and output dimensions, allow 

for concatenation and are utilized to deepen the network's 

structure[9][10]. 

After the feature map is generated, it is passed to the Region 

Proposal Networks (RPN) layer. Here, the softmax 

activation function is employed to classify the generated 

anchors, while bounding box regression refines these 

anchors to produce accurate proposals. The Region of 

Interest (ROI) Pooling layer then operates with two inputs: 

the proposal layer and the feature map layer. This layer 

extracts relevant information, which is subsequently fed into 

a fully connected layer to classify the target category, as 

depicted in Figure 1. 

 
Figure 1. Overall Block Diagram 

 

 

 

      

        

      

      

     

  

    

 

     

      

   

    

      

    

   

       

2.1. Overall Scheme for Obstacle Detection

2.2. Model Structure
2.2.1. Backbone
In this paper, the Backbone section utilizes the ResNet50 
network, where "50" refers to the total number of layers 
distributed across five stages: Stage 0, Stage 1, Stage 2, 
Stage 3, and Stage 4. Stage 0 begins with an input image 
characterized by channel (C), height (H), and width (W) 
dimensions, specifically (3, 224, 224). The data first 
undergoes operations in the initial layer, including 
convolution (CONV), batch normalization (BN), and 
activation through the ReLU function. This is followed by 
max-pooling in the second layer. Xu et al. [11] conducted 
significant research on the application of multimodal deep 
learning in image recognition systems. Their study 
highlights the effectiveness of integrating multiple data 
modalities to enhance the accuracy and reliability of image- 
based recognition tasks. In the context of autonomous 
driving, such multimodal approaches are particularly 
valuable, as they allow for the synthesis of information from



 

 

  

various sources (e.g., cameras, LiDAR, radar) to create a 

more comprehensive understanding of the driving 

environment. This comprehensive understanding is crucial 

for accurately detecting and classifying obstacles in real time, 

a task that becomes increasingly challenging in dynamic and 

unpredictable road conditions. 

In the first layer of Stage 0, the convolutional kernel has a 

size of 7×7, with 64 filters, and a stride of 2. The second 

layer applies max-pooling with a 3×3 kernel and a stride of 

2. As a result of these operations, the output shape at the end 

of Stage 0 is (64, 56, 56), which corresponds to 64 channels, 

a height of 56, and a width of 56. The reduction in height and 

width to 56 from the original 224 is due to the halving of the 

image dimensions twice—once by the convolutional layer 

and once by the max-pooling layer—each with a stride of 2, 

effectively reducing the input scale by a factor of four. 

Stages 1, 2, 3, and 4 of the ResNet50 network each consist 

of two key types of bottlenecks: BTNK1, where the input 

and output channel numbers differ, and BTNK2, where the 

input and output channel numbers are the same. In BTNK2, 

the input image has dimensions (C, W, W), with C 

representing the number of channels and W the width and 

height of the image. Given an input x with dimensions (C, 

W, W), the left-side convolutional block of BTNK2, along 

with its corresponding activation function, can be expressed 

as f(x). The output of BTNK2 is then computed as f(x) + x), 

with a single ReLU activation applied, maintaining the 

original shape of the input, (C, W, W). 

In contrast, BTNK1, with its variable parameters C, W, C1, 

and S4, includes an additional convolutional layer denoted 

as g(x). Due to the difference in input and output channel 

numbers in BTNK1, the convolutional layer transforms the 

input x into g(x), resulting in different input and output 

dimensions. However, the output channels of g(x) match 

those of f(x), allowing the final output of BTNK1 to be 

expressed as f(x) + g(x). 

Stage 1 begins with one BTNK1 layer, followed by two 

sequential BTNK2 layers, producing an output with 

dimensions (256, 56, 56). This output is then passed to Stage 

2, which comprises one BTNK1 layer followed by three 

sequential BTNK2 layers, yielding a shape of (512, 28, 28). 

The output from Stage 2 is sent to Stage 3, where one 

BTNK1 layer is followed by five sequential BTNK2 layers, 

resulting in a shape of (1024, 14, 14). Finally, in Stage 4, the 

combination of one BTNK1 layer and two sequential 

BTNK2 layers produces the output with dimensions (2048, 

7, 7). This output represents the final feature map, which is 

then used in subsequent network layers for further 

processing, such as classification or detection tasks. 

 

 

     

     

    

     

      

 

 

The RPN consists of two main branches. The first branch 

uses the softmax activation function to classify anchors, 

distinguishing between correct and incorrect classifications. 

The second branch handles the bounding box regression 

offsets generated by the anchors, adjusting these offsets to 

produce more accurate proposals. The Proposal layer then 

aggregates the correctly classified anchors, applies the 

corresponding offsets, and generates proposals. Proposals 

that are either too small or fall outside the image boundaries 

are subsequently filtered out. 

Anchors, which are a set of rectangles generated by the RPN, 

are arranged in a 9x4 matrix. The coordinates of each 

rectangle's four corners are represented as (x1, y1, x2, y2), 

and the rectangles feature aspect ratios of 1:1, 1:2, and 2:1. 

To adjust the position of the detection boxes, the Conv layers 

iterate over the feature maps, matching all points with these 

nine initial boxes. The final detection box positions are 

refined through two rounds of bounding box regression, 

ensuring accurate localization of the targets. 

 

 

        

     

      

      

     

     

     

       

     

      

       

 

 

      

    

        

 

 

 

    

       

       

     

   

    

      

   

   

 

Simultaneously, the network employs bounding box 

regression to refine the position of each detection box. This 

involves calculating the position offsets, denoted as 

bbox_pred, for each proposal. These offsets adjust the initial 

bounding boxes generated by the RPN, enabling the 

regression process to produce more accurate object detection 

boxes. Through this dual process of classification and 

regression, the model enhances both the categorical accuracy 

and the spatial precision of the detected objects. 

2.2.3. ROI Pooling
The ROI Pooling layer plays a critical role in aggregating 
and processing the proposal feature maps generated from the 
proposals, subsequently forwarding them to the next layers 
in the network. This layer receives two inputs: the original 
feature maps and the proposal boxes generated by the RPN, 
which can vary in size. Unlike traditional CNN networks like 
AlexNet and VGG, which require a fixed input image size 
after training and produce a fixed-size output vector or 
matrix, the ROI Pooling layer must handle varying input 
image sizes while preserving the original shape information. 
This is essential to avoid cropping or warping the image, 
which could lead to the loss of important structural details. 
This process allows the network to handle inputs of varying 
sizes while maintaining the integrity of the image's structural 
information, making it particularly useful in object detection 
tasks where the size and shape of objects can vary 
significantly.

2.2.4. Classification
In the Classification section, the proposal feature maps 
obtained from the ROI Pooling layer are processed to 
determine the specific category of each proposal. This is 
achieved by passing the feature maps through fully 
connected layers, followed by the application of the softmax 
function. The softmax function calculates the probability 
distribution across the various possible categories (e.g., 
person, car, bicycle), resulting in the cls_prob probability 
vector, which indicates the likelihood of each proposal 
belonging to a particular class.

2.2.2. Region Proposal Networks (RPN)
In OpenCV, while sliding windows and image pyramid 
methods in AdaBoost can improve the generation of 
discriminative detection boxes, they involve redundant 
computations that consume significant resources and time. 
To address this inefficiency, this paper employs Region 
Proposal Networks (RPN) to generate detection boxes more 
effectively.



 

 

  

 

 

     

    

     

 

       

     

     

 

Given that obstacles encountered during vehicle operation 

can vary widely in shape, complexity, and unpredictability, 

this study emphasizes the importance of distinguishing 

between different detection categories. To address this, 12 

common detection categories have been defined: bicycle, 

boat, bottle, bus, car, cat, chair, dog, horse, motorbike, 

person, and train. These categories are documented in a text 

file named cls_classes.txt. 

The input image size for the model is set to [600, 600], 

providing a standardized input shape. Additionally, the 

anchor sizes, which are critical for generating bounding 

boxes of varying scales, are set to [8, 16, 32]. These anchor 

sizes are designed to accommodate the detection of objects 

of different sizes, thereby enhancing the model’s ability to 

accurately identify and classify a wide range of obstacles. 

Model training is conducted in two phases: freezing and 

unfreezing. In the freezing phase, the backbone network 

remains fixed to preserve feature extraction, with settings of 

an initial epoch at 0, a freezing epoch at 50, a batch size of 

4, and a learning rate of 1e-4. During the unfreezing phase, 

the backbone network is unlocked to allow updates in feature 

extraction, with an unfreezing epoch set at 100, a reduced 

batch size of 2, and a lower learning rate of 1e-5. 

Table 1. Test Results on VOC2007 trainval 
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the detection accuracy observed in these figures, the 

predictions from this study surpass the alternatives. 

 

 
Figure 2. EfficientDet Prediction Results 

 
Figure 3. Prediction Results in This Study 

 

The study further conducts an AP analysis for 12 common 

road obstacles, as shown in Figure 4. Additionally, an 

LAMR analysis for these obstacles is presented in Figure 5. 

Table 1 summarizes the mAP values for various models on 

the VOC2007 dataset. 

 

 
Figure 4. AP for 12 Common Road Obstacle Classes in 

Faster-RCNN and EfficientDet Networks 

 
Figure 5. LAMR Values for 12 Common Road Obstacle 

Classes in Faster-RCNN and EfficientDet Networks 

 

Figure 4 demonstrates that the Faster-RCNN model 

developed in this study significantly outperforms 

EfficientDet in terms of detection accuracy, particularly for 

pedestrians, bottles, buses, cars, motorcycles, and bicycles. 

Additionally, Figure 5 shows that the log values of the 

2.3. Model Training
In this study, the VOC2007 dataset is employed for both 
model training and testing. The process begins by organizing 
the training labels, which are stored in the Annotation folder. 
This folder contains all the label information for the training 
set. The images used for training are placed in the 
JPEGImages folder. The dataset is split into training and 
validation sets with a ratio of 9:1, ensuring a robust model 
evaluation.

2.4. Prediction and Results
In this study, AP (Average Precision), mAP (mean Average 
Precision), and LAMR (log Average Miss Rate) are 
employed as the key evaluation metrics. The Faster-RCNN 
and EfficientDet networks, which are designed and trained 
in this study, are assessed using these metrics. The 
appropriate weight files are selected to evaluate the models' 
performance in predicting obstacle detection scenarios in 
road images, as illustrated in Figures 2 and 3. According to



 

 

  

average miss rate (LAMR) for the Faster-RCNN are 

consistently lower than those for EfficientDet. Table 1 

compares the mAP values across three different networks. 

The network proposed in this study achieves a 12.15% 

increase in average precision compared to Faster-RCNN 

with VGG16 as the feature extraction network and 12 anchor 

boxes. Similarly, it shows a 10.52% improvement compared 

to EfficientDet, which uses EfficientNet for feature 

extraction with 9 anchor boxes. 

 

3. Conclusion 
The study underscores the significance of enhancing 

obstacle detection in unmanned driving by leveraging an 

improved Faster-RCNN model with ResNet50 as the feature 

extraction backbone. By increasing the convolutional layers' 

depth, the model effectively optimizes feature information, 

leading to a notable 12.15% improvement in detection 

accuracy over traditional approaches. The experimental 

validation on the VOC2007 dataset demonstrates the model's 

superior capability in identifying a range of objects critical 

to autonomous driving, including bicycles, buses, and 

pedestrians. These results affirm the model's potential for 

widespread adoption in intelligent vehicle systems, 

contributing to safer and more reliable autonomous driving 

experiences. This research not only advances the technical 

understanding of obstacle detection but also lays a solid 

foundation for future innovations in the field of intelligent 

transportation systems. 
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