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Abstract: This paper explores the application of deep learning techniques to enhance anomaly detection in the interbank 

bond market, a critical component of the financial system prone to systemic risks. Traditional anomaly detection methods, 

such as manual checks and rule-based systems, are labor-intensive and often fail to capture complex abnormal behaviors. 

We propose a novel approach using temporal attribute network embedding and Long Short-Term Memory (LSTM) networks 

to analyze and detect irregular trading patterns among financial institutions. Our results show a significant improvement in 

detection accuracy, with an F1 score exceeding 0.7. This study suggests further enhancements through richer trading data 

integration and the implementation of attention mechanisms to refine detection precision, thereby contributing to the stability 

and health of financial markets. 
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1. Introduction  
With rapid economic development and ongoing financial 

system reforms, the bond market has become an integral part 

of the financial system and a critical component of the global 

financial landscape. Presently, the interbank bond market 

holds a dominant position within the bond market. Due to 

the profit-driven nature of capital, the financial market is 

susceptible to irregularities such as insider trading and 

market manipulation. Furthermore, the intricate 

interconnections and increasingly complex business chains 

among financial institutions mean that issues in a single 

institution or transaction can propagate through cross-

institutional and cross-market activities, potentially affecting 

the entire market and introducing systemic risks. Hence, it is 

crucial for financial market regulatory bodies to further 

explore and apply regulatory technologies to enhance the 

identification, early warning, and management of financial 

risks across markets, industries, and regions, thereby 

safeguarding the stable and healthy operation of the financial 

market. 

  In the early 1980s, researchers established behavioral 

finance as a new field. Behavioral finance posits that there is 

a connection between investor psychology and trading 

behavior. Given that the main participants in the interbank 

bond market are financial institutional investors, there are 

observable differences between their normal and abnormal 

trading behaviors. Consequently, deep learning models can 

be employed to detect abnormal trading behaviors in the 

interbank bond market. Current methods for detecting such 

anomalies are predominantly manual or based on predefined 

trading rules. Manual detection is labor-intensive, while 

rule-based detection struggles to identify anomalies beyond 

the established rules. This paper aims to use deep learning 

techniques to analyze the trading behavior discrepancies 

among different institutions to identify abnormal behavior 

patterns. Integrating current mainstream research 

approaches, this paper utilizes the LSTM model to detect 

abnormal trading behaviors of financial institutions in the 

interbank bond market. 

 

2. Related Work 

2.1 Symbol Definitions 
G = (V, E, W): The trading network of the interbank bond 

market. Among them: V is the set of all vertices in the 

trading network, that is, all institutions in the trading network; 

E is the set of all directed edges in the trading network; W is 

the set of attributes of all directed edges in the trading 

network. Px : The bond product number for transactions 

between two institutions. Ax: The transaction volume for 

transactions between two institutions. Tx : The time of the 

transaction between two institutions. Vx : The number of 

institutions, representing an institution. Ox: If x = 0, the 

current institution is the buyer; if  x = 1, the current 

institution is the seller. 

2.2 Anomaly Detection 

In Anomaly detection in financial markets has garnered 

significant attention, with deep learning emerging as a potent 

tool to enhance detection accuracy. The application of Long 

Short-Term Memory (LSTM) networks, convolutional 

neural networks (CNNs), and attention mechanisms has been 

explored across various domains, demonstrating the 

versatility and robustness of these models in handling 

complex data patterns. 

Several studies have highlighted the effectiveness of deep 

learning models in financial risk prediction and anomaly 



 

 

  

detection. Xu et al. [1] investigated the optimization of 

LSTM model performance for financial risk prediction, 

demonstrating significant improvements over traditional 

methods. This work underscores the relevance of LSTM 

networks in detecting irregular trading patterns in financial 

markets. Similarly, Wang et al. [2] focused on predicting 

stock market trends using LSTM networks, addressing the 

limitations of recurrent neural networks (RNNs) and 

enhancing financial forecasting accuracy. 

The integration of attention mechanisms into deep 

learning models has shown promising results in various 

applications, including anomaly detection. Xiao et al. [3] 

explored the enhancement of deep learning models with 

attention mechanisms for mining medical textual data, which 

can be analogously applied to financial data to improve the 

detection of anomalous trading behaviors. This study 

provides a foundation for incorporating attention 

mechanisms into our proposed model to refine detection 

precision. 

Deep learning techniques have also been employed to 

predict financial risk behaviors using big data. Xu et al. [4] 

combined deep learning and big data analytics to enhance 

financial risk behavior prediction, showcasing the potential 

of these technologies in managing financial risks. 

Furthermore, Sun et al. [5] utilized LSTM and extreme value 

theory to manage high-frequency trading volumes, 

demonstrating the applicability of LSTM networks in high-

stakes financial environments. 

In addition to financial applications, deep learning models 

have been effectively used in other fields, offering valuable 

insights into their potential for anomaly detection in the 

interbank bond market. For instance, Li et al. [6] proposed 

an enhanced encoder-decoder network architecture to reduce 

information loss in image semantic segmentation. This 

methodology can be adapted to financial data to minimize 

information loss during anomaly detection processes. 

Additionally, Liu et al. [7] focused on feature extraction 

using convolutional neural networks, a technique that can be 

leveraged to improve the feature representation of financial 

data. 

  Lastly, advancements in natural language processing 

(NLP) and emotional analysis further enrich the deep 

learning landscape. Yang et al. [8] and Sun et al. [9] explored 

the use of large language models and multimodal deep 

learning for emotional analysis and NLP optimization, 

respectively. These studies highlight the adaptability of deep 

learning models across different data types and their 

potential to enhance anomaly detection in financial markets 

through improved data representation and processing 

techniques. Anomaly detection within financial markets has 

gained substantial interest, particularly with the advent of 

deep learning as a powerful means to improve detection 

precision[10-13]. The deployment of Long Short-Term 

Memory (LSTM) networks, convolutional neural networks 

(CNNs), and attention mechanisms has been extensively 

investigated in diverse fields[14-16], showcasing the 

adaptability and strength of these models in managing 

intricate data patterns[17-20]. 

2.3 Network Embedding 

In the interbank bond market, transactions between 

institutions can be represented as a vast trading network, as 

illustrated in Figure 1. In this network, institutions are the 

nodes, and the transactions between them are the directed 

edges. Information such as the traded product, transaction 

amount, and transaction time can be considered attributes of 

these edges. An institution's single transaction can be 

depicted through its node, the edge, and the edge’s attributes, 

while the trading behavior is derived from multiple 

sequential transactions. By treating the attributes of edges as 

nodes, one can derive the characteristic representations of 

nodes in the network, thus obtaining the trading behavior 

characteristics of the institutions. 

These node characteristics can be captured using 

prevalent network embedding techniques, which effectively 

preserve the structural attributes of the network nodes. 

Technically, network embedding methods can be 

categorized into matrix factorization-based, random walk-

based, and deep neural network-based approaches. Matrix 

factorization-based techniques primarily utilize an 

adjacency matrix to convey the network's topological 

information, where each row and column correspond to a 

node, and the matrix itself represents the relationships 

between nodes. Popular methods in this category include the 

singular value decomposition (SVD) approach by Ou et al. 

and the non-negative matrix factorization (NMF) approach 

by Wang et al. The SVD method excels in low-rank 

approximation, while the NMF method is advantageous due 

to its additive model. Random walk-based network 

embedding methods, inspired by word vector concepts in 

natural language processing, aim to identify superior local 

structural representations compared to matrix factorization 

methods. Notable methods include the DeepWalk algorithm 

by Perozzi et al. and the Node2Vec algorithm by Grover et 

al. Deep neural network-based network embedding methods 

strive to find a nonlinear learning model to achieve an 

efficient low-dimensional vector space representation of the 

original network. Common methods include the Structural 

Deep Network Embedding (SDNE) by Wang et al., the 

Stacked Denoising Autoencoders (SDAE) by Cao, and the 

Signed Network Embedding (SiNE) by Wang et al. 

In the interbank bond trading network, two institutions 

might engage in multiple transactions, leading to multiple 

edges between the same nodes. Considering the temporal 

nature of transactions, the daily trading activities of an 

institution can be seen as a time-series sequence. This 

sequence can be interpreted as a walk sequence obtained via 

random walk-based network embedding methods. 

This paper primarily focuses on two aspects: Proposing a 

temporal attribute network embedding method that accounts 

for the dynamic evolution characteristics of the interbank 

bond market trading network; Utilizing the LSTM network 

model to analyze and model the trading behavior sequences 

in the interbank bond market, thereby detecting abnormal 

trading behaviors. 

 

 



 

 

  

 
Figure 1 Schematic Diagram of the Interbank Bond Trading 

Network 

3.Methodology 

3.1.Framework for Abnormal Trading Behavior 

Detection 

  Previous studies have demonstrated the feasibility of 

using deep learning for anomaly detection. In the context of 

the interbank bond market, it is essential to apply network 

embedding methods to derive characteristic representations 

of the nodes within the trading network, which in turn 

provides insights into the trading behavior of institutions. 

Furthermore, considering that trading behaviors in the 

interbank bond market can be viewed as time-sequential 

trading series, recurrent neural networks (RNNs) are well-

suited for processing such time-series data. Nevertheless, 

RNNs encounter long-term dependency challenges, which 

this study addresses by employing the long short-term 

memory (LSTM) network model to detect abnormal trading 

behaviors effectively. 

  Integrating network embedding with the LSTM network 

model, this paper proposes a framework for detecting 

abnormal trading behaviors in the interbank bond market, 

illustrated in Figure 2. The left side of Figure 2 depicts three 

spaces, namely the original feature space, the behavior 

embedding space, and the LSTM training space, arranged 

from top to bottom.  

 
Figure 2: Framework for Abnormal Trading Behavior 

Detection 

  Original Feature Space. This space holds the original 

trading behavior sequences. The existing transaction data is 

preprocessed to extract the necessary features for the model, 

and then these features are organized into the original trading 

behavior sequences following a specific format and 

chronological order. This step is shown as step 1 (feature 

preprocessing) in Figure 2. Each original trading behavior 

sequence comprises all transactions conducted by an 

institution within a day, with each transaction consisting of 

four elements: trading institution, trading product, trading 

volume, and trading direction. Different institutions' trading 

sequences are denoted by different alphabetic codes. Each 

column with an alphabetic code represents a single 

transaction, and columns separated by horizontal lines 

represent a series of transactions, which is the trading 

sequence of a particular institution on a given day. 

  Behavior Embedding Space. This space contains the 

embedded representations of institutional trading behaviors. 

These representations are derived by transforming the 

original trading behavior sequences, integrating the dynamic 

evolution characteristics of the trading network in the 

interbank bond market. The transformed representations 

maintain both the temporal characteristics and attributes of 

the trading network. The temporal characteristics reflect the 

chronological order of financial institutions' transactions, 

while the attributes represent the elements of these 

transactions. This transformation and embedding of the 

original trading behavior sequences correspond to step 2 

(behavior embedding) in Figure 2. 

  LSTM Training Layer. This layer is dedicated to training 

deep learning models for detecting abnormal trading 

behaviors in the interbank bond market, which is a crucial 

component of the anomaly detection framework. The input 

for the model is sourced from the behavior embedding space. 

Given that the daily transaction count varies for each 

institution, the lengths of the trading behavior sequences 

differ accordingly. However, the LSTM model requires 

input sequences of consistent length. Thus, a forward 

sequence padding method is employed, using the maximum 

number of daily transactions among all banks as the standard 

sequence length. If an institution's trading behavior sequence 

is shorter than this maximum, zeros are padded at the start to 

achieve the required length. These padding "zeros" are 

depicted as white columns in Figure 2. 

Initially, the embedded representations of the financial 

institutions' trading behaviors are fed into the deep learning 

model. The model then outputs predictions (0 for normal 

trading behavior, 1 for abnormal trading behavior), and the 

error between the predicted results and the actual results is 

calculated. Through backpropagation of this error, the 

model's weight parameters are iteratively adjusted, 

culminating in the final deep learning model. This process of 

feature padding and training corresponds to step 3 (feature 

padding and training) in Figure 2. 

  Subsequently, the trained model is used to perform 

anomaly detection on institutional trading behaviors, 

determining whether the trading behavior of an institution is 

abnormal or normal. This process aligns with step 4 

(behavior prediction) in Figure 2. 



 

 

  

3.2 Trading Behavior of Institutions in the Interbank 

Bond Market 

As illustrated in Figure 1, the interbank bond market 

trading network demonstrates a series of transactions 

conducted by five institutions within a day. Each directed 

edge signifies a transaction between two institutions, with 

the arrow's origin representing the buying institution and the 

terminal representing the selling institution. Each directed 

edge currently lists three attributes: 𝑃x, 𝐴x, and 𝑡x. Hence, a 

transaction between institution 𝑉𝑖 and its counterparty 

institution 𝑉𝑗  is defined as [counterparty institution, 

trading product, transaction volume, transaction direction], 

represented as [𝑉j,𝑃x,𝐴x,𝑂x]. Similarly, trading behavior 

sequences for other institutions can be compiled. 

3.3 Trading Behavior Embedding Representation 

Prior to analyzing the original trading behaviors of 

institutions using deep learning, it is crucial to transform 

these representations into a format more suitable for deep 

learning analysis. For example, akin to training word vectors 

in natural language processing for subsequent analysis, the 

institution codes and bond product codes in trading 

behaviors need to be vectorized before analysis. One aspect 

involves sequencing trading behaviors by institution codes 

or bond product codes, while network nodes should 

encapsulate structural features. Since the original institution 

codes or bond product codes lack these structural features, 

better trading behavior representations are required. 

Currently, numerous researchers have applied network 

embedding methods to capture the structural information of 

network nodes. Given the time-sequential dynamics of 

trading behaviors in the interbank bond market, the 

Node2Vec algorithm is modified to establish a temporal 

attribute network embedding method appropriate for the 

interbank bond market. This method facilitates the 

acquisition of embedded representations of trading 

behaviors in the interbank bond market. 

The details of the temporal attribute network embedding 

method are as follows: 

  Based on the original trading network of the interbank 

bond market 𝐺=(𝑉,𝐸,𝑊) normalize the transaction volume 

to a range of 0 to 1 to derive all institutional original trading 

behavior sequences 𝑤𝑎𝑙𝑘𝑠. Subsequently, remove the 

transaction volume and transaction direction attributes from 

these sequences, and concatenate the counterparty institution 

codes and trading product attributes to form new "trading 

behavior" sequences 𝑤𝑎𝑙𝑘𝑠_𝑡𝑟𝑎𝑖𝑛. Then, optimize using 

random walk techniques to obtain all "counterparty 

institution codes + trading product codes" embedding 

representations 𝑓. Finally, replace the counterparty 

institution codes and trading product codes in the original 

trading behavior sequences with the corresponding 

"counterparty institution codes + trading product codes" 

embedding representations, resulting in the final embedded 

representations of all institutions' trading behaviors results. 

### Extracted Algorithm 

```python 

# Learn Transaction Behavior Features 

# (Transaction Network: G = (V, E, W), Deal Time: T, 

Deal Product: P, Deal Amount: A, Dimensions: d, Context 

size: k) 

G' = (V, E, T, P, A) 

Initialize walks, walks_train to Empty 

A = normalize(A) 

for all u in V do: 

    walk = TANEWalk(G', u) 

    Append [walk] to walks 

walks_train_pre = walks 

for all behavior in walks_train_pre do: 

    Initialize walk to Empty 

    for all deal in behavior do: 

        walk = [str(deal[0]) + str(deal[1])] 

        Append [walk] to walks_train 

f = StochasticGradientDescent(k, d, walks_train) 

results = get_last_embedding(walks, f) 

return results 

# TANEWalk (G' = (V, E, T, P, A), Start node u) 

Initialize walk to Empty 

t = set(get all edges' T.day where u is on the edge) 

# Variable edge belongs to set E 

for all time in t do: 

    Initialize walk_day to Empty 

    temp_set = list(get all edges (where u is on the edge 

and T.day = time)) 

    temp_set = sort(temp_set) [by edges' T] 

    for all edge in temp_set do: 

        Initialize walk_t to Empty 

        Append [edge's v] to walk_t # Variable v is the 

other node on edge outside variable u 

        Append [edge's p] to walk_t # Variable p 

belongs to set P 

        Append [edge's a] to walk_t # Variable a 

belongs to set A 

        if u is buyer: 

            Append [0] to walk_t 

        else: 

            Append [1] to walk_t 

        Append [walk_t] to walk_day 

    Append [walk_day] to walk 

return walk 

# get_last_embedding(walks, f) 

Initialize walks_embedding to Empty 

for all behavior in walks do: 

    Initialize walk to Empty 

    for all deal in behavior do: 

        Initialize walk_t to Empty 

        walk_t = [get the embedding(str(deal[0]) + 

str(deal[1])) from f] 

        walk_t = walk_t + [deal[2], deal[3]] 

        Append [walk_t] to walk 

    Append [walk] to walks_embedding 

return walks_embedding 

``` 

3.4 Anomaly Detection of Trading Behavior Based on 

LSTM Network 

  Trading behaviors in the interbank bond market can be 

viewed as time-sequential trading series. The LSTM 

network is well-suited for processing data with temporal 

characteristics, making it an ideal choice for detecting 



 

 

  

abnormal trading behaviors in the interbank bond market. 

Initially introduced by Hochreiter et al. [21], the LSTM 

network has been widely applied and refined by numerous 

researchers. Like standard recurrent neural networks, the 

LSTM network features a chain-like structure, with each 

repeating unit comprising four layers of neural networks.  

(1) Input Layer. The original feature sequences are fed 

into the model. These sequences form a three-dimensional 

array, with the outermost layer representing the trading 

behavior sequences of all institutions. These sequences can 

be further divided into the trading behavior sequences of 

specific institutions on specific days, as shown in the array 

in Figure 3. A day's trading behavior sequence includes 

multiple transactions, each represented by a column. Each 

transaction comprises four elements: trading institution, 

trading product, trading volume, and trading direction. This 

nested relationship is expressed as a three-dimensional array, 

which serves as the model's input. 

(2) Embedding Layer. This layer transforms the input 

trading behavior sequences into embedded representations 

with temporal attributes. These embedded representations 

are then used as input for the LSTM layer. 

(3) LSTM Layer. This study employs the LSTM network 

for training due to its capability to process sequential data 

effectively, which is ideal for the time-series data of trading 

behaviors. The study trains the data using LSTM networks 

of varying sizes, selecting network sizes of 16, 32, 64, and 

128. 

(4) Output Layer. The Sigmoid activation function [22] is 

used for the output layer, as it is well-suited for binary 

classification problems like the detection of abnormal 

trading behaviors, which results in either abnormal or 

normal classifications. 

(5) Evaluation Metrics. Detecting abnormal trading 

behaviors in the interbank bond market is inherently a binary 

classification issue. In practice, abnormal trading behaviors 

occur far less frequently than normal ones, creating an 

imbalanced binary classification problem. Thus, the F1 score 

is used to evaluate the accuracy of the detection model for 

abnormal trading behaviors in the interbank bond market. 

(6) Loss Function. Given the binary classification nature 

of the problem, Binary Crossentropy [23] is used as the loss 

function for the model. 

4. Experimental Results and Analysis 

4.1 Data Description 

The data for this experiment consists of simulated 

transaction data from China's interbank bond market. The 

experiment focuses on five transaction elements: transaction 

time, buyer, seller, bond code, and transaction volume. The 

transaction time is recorded to the minute when the 

transaction occurs. The buyer and seller refer to the 

institutions involved in the transaction, represented by 

numeric codes. The bond code identifies the bond product 

type, also represented by numeric codes. The transaction 

volume denotes the transaction amount, measured in yuan. 

4.2 Evaluation Metrics 

Detecting abnormal trading behaviors in the interbank 

bond market is fundamentally a binary classification issue. 

Given that abnormal trading behaviors are significantly 

fewer than normal trading behaviors, this detection problem 

is inherently an imbalanced binary classification issue. 

Hence, the F1 score is chosen as the evaluation metric for 

this study. In this context, abnormal trading behaviors are 

labeled as positives, while normal trading behaviors are 

labeled as negatives. Accordingly, the definitions are as 

follows: 

TN (True Negative): The number of cases where the 

predicted result is negative, and it is actually negative. 

FP (False Positive): The number of cases where the 

predicted result is negative, but it is actually positive. 

FN (False Negative): The number of cases where the 

predicted result is positive, but it is actually negative. 

TP (True Positive): The number of cases where the 

predicted result is positive, and it is actually positive. 

Based on these definitions, the precision is further defined 

as follows: 

precision

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                   (1) 

 

Recall is defined as: 

recall

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                   (2) 

  The F1 score is defined as follows: 

𝐹1 =
2 ⋅ precision ⋅ recall

precision + recall
                      (3) 

The F1 score ranges from 0 to 1, with higher values 

indicating a better performance of the model in 

distinguishing between normal and abnormal transactions. 

4.3 Experimental Parameter Settings 

The experimental parameters include settings for both the 

network embedding and the LSTM network parts. The 

specific parameter settings are detailed in Table 1. 

Table 1 Experimental Parameter Settings 

Network Parameter Value 

Temporal 

Attribute 

Network 

Embedding 

Dimension 

ddd 

16, 32, 63, 96 

Context kkk 5 

LSTM 

Network 

Network Size 16, 32, 64, 

128 

Batch Size 50 

Learning Rate 0.01 

Optimizer Root mean 

square 

propagation 



 

 

  

(RMSprop), etc. 

Output Layer Sigmoid 

4.4 Experimental Results and Analysis 
In this experiment, we compared the accuracy of the 

LSTM anomaly detection model across different LSTM 

network sizes and network embedding dimensions. The 

selected LSTM network sizes were 16, 32, 64, and 128, 

while the network embedding dimensions ranged from 16, 

32, 53, to 96. To control variables, other related parameters 

were uniformly set to those in Table 1, with RMSprop 

chosen as the optimizer. 

Table 2 provides the experimental results for various 

LSTM network sizes and network embedding dimensions. 

The first row of numbers in the table indicates the 

embedding dimensions of "institution code + bond code" for 

each transaction in the interbank bond market, with an 

embedding dimension of 0 signifying the direct use of the 

original trading behavior sequence as input to the LSTM 

network. Thus, each column in Table 2 represents different 

input data for the model, while the decimal numbers in the 

lower right part of Table 2 denote the F1 score for the 

accuracy of the LSTM anomaly detection model using 

different input data. It is evident that with an embedding 

dimension of 0, the accuracy of the LSTM anomaly 

detection model is highest when the LSTM network size is 

128. Although preprocessing data with network embedding 

results in slightly lower accuracy than using unprocessed 

data, this does not imply that preprocessing steps are 

redundant. Firstly, from Table 2, the F1 score differences are 

minor, and when the LSTM network size is 128, the LSTM 

anomaly detection model's accuracy with an embedding 

dimension of 64 is only 0.01 less than that with an 

embedding dimension of 0. Secondly, due to the complexity 

of the LSTM anomaly detection model, finding only local 

optima is possible when the embedding dimension is not 0. 

Hence, future work can continue to adjust the parameters of 

the LSTM anomaly detection model to achieve better 

accuracy in anomaly detection. 

Table 2 F1 Scores of LSTM Anomaly Detection Model for 

Different Network Sizes and Embedding Dimensions 

Net

wor

k 

Size 

Emb

edding 

Dimen

sion 0 

Emb

edding 

Dimen

sion 16 

Emb

edding 

Dimen

sion 32 

Emb

edding 

Dimen

sion 64 

Emb

edding 

Dimen

sion 96 

16 0.6995 0.7031 0.6828 0.7223 0.654 

32 0.731 0.677 0.6758 0.6984 0.613 

64 0.7128 0.6845 0.6889 0.7196 0.645 

128 0.731 0.6846 0.6755 0.721 0.6483 

 

5. Conclusion 

  Anomaly detection in the interbank bond market is crucial 

for maintaining the market's healthy and stable operation. 

Given the current absence of effective deep learning-based 

anomaly detection systems in the interbank bond market, the 

significant labor resource burden of traditional manual 

detection methods, and the challenges in detecting unknown 

abnormal trading behaviors with rule-based methods, this 

paper proposes a more effective anomaly detection method 

based on deep learning to enhance the accuracy and 

efficiency of anomaly detection. This study first employs a 

temporal attribute network embedding method to obtain the 

embedded representations of trading behaviors in the 

interbank bond market and then uses the LSTM network 

model to detect abnormal trading behaviors. The 

experimental results demonstrate that an F1 score greater 

than 0.7 indicates that this method significantly improves the 

accuracy of anomaly detection models. Future research can 

incorporate more trading elements into the representation of 

institutional trading behaviors to achieve better 

representations. Additionally, incorporating attention 

mechanisms into the LSTM network model can further 

improve the detection accuracy of the deep learning model 

by focusing on the various sizes and types of financial 

institutions in the interbank bond market. 
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