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Abstract：This paper delves into leveraging neural networks for equity market forecasting by amalgamating gated recurrent 

units (GRUs) with an attention paradigm to refine the predictive model, thereby enhancing the precision of share value and 

market trajectory prognostications. Conventional forecasting frameworks frequently falter in encapsulating the dependencies 

of prolonged sequences, particularly when contending with nonlinear temporal data, culminating in diminished forecast 

veracity. Consequently, the architecture devised herein initially harnesses a GRU layer to preprocess the ingested temporal 

sequence information, discerning the dynamic alterations and latent patterns within the series. Subsequently, the attention 

mechanism is superimposed on the GRU's latent state output. By computing the significance rating at every temporal juncture 
of the hidden state, the salience of diverse epochs is dynamically recalibrated, ensuring the model focuses on the attributes most 

pivotal to the anticipated outcome. This fusion not only amplifies the model's acumen for enduring interdependencies but also 

alleviates superfluous computational overhead, accelerates the learning phase, and fortifies versatility, all while sustaining 

commendable predictive efficacy. 
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1.  Introduction 

In a quest to surmount the constraints inherent in 
conventional predictive paradigms, whether grounded in 
statistical methodologies or early machine learning 
approaches, which struggle to encapsulate long-term 
interdependencies—particularly within nonlinear temporal 
data sets—thereby curtailing the precision and dependability 
of forecasts, our study proposes an avant-garde deep learning 
framework. This novel construct ingeniously amalgamates 
Gated Recurrent Units (GRUs) and Attention mechanisms, 
with a singular objective: to markedly augment the accuracy 
and operational efficiency of stock market predictions. The 
GRU, a constituent of our framework, is a neural network 
topology meticulously crafted for sequential data processing. 
A variant of the RNN, it endeavors to circumvent the 
ubiquitous issue of gradient vanishing that plagues RNNs as 
their complexity escalates. Through the introduction of update 
and reset gates, the GRU exhibits finesse in governing the 
information flow, ensuring the preservation of long-term 
associations while preventing the accumulation of extraneous 
data. Within the stock market forecasting milieu, the GRU 
excels in pinpointing and tracing seminal trends  

 

 

and patterns embedded in temporal series, thereby laying the 
groundwork for sophisticated analytical endeavors. 

Despite the GRU’s prowess in handling time series data, it 
encounters bottlenecks regarding computational speed and 
resource expenditure when confronted with exceptionally 
lengthy sequences. Herein, the Attention mechanism emerges 
as a solution to this problem. By computing the saliency scores 
for each temporal juncture within the sequence, the Attention 
mechanism facilitates the model’s capacity to concentrate its 
analytical efforts on the crucial data segments pivotal to the 
predictive outcome. This strategy of dynamic weight 
apportionment substantially boosts the model’s learning 
efficacy and predictive prowess, mitigates unnecessary 
computational load, and expedites the model’s training 
process. 

Our proposed framework commences by conditioning the 
pristine chronological sequence data through preliminary 
treatment utilizing the Gated Recurrent Unit (GRU) layer to 
distill the dynamic fluctuations and emerging patterns of the 
series. Subsequently, the Attention mechanism assumes a 



pivotal role in the output of the GRU’s hidden states. By 
calculating saliency scores for the hidden state at each 
temporal interval, the weight attributed to different time points 
undergoes dynamic adjustment. This ensures the model’s 
focus remains steadfast on the features paramount to the 
predictive objective. This amalgamation not only bolsters the 
model’s ability to understand long-term relationships but also 
fortifies its adaptability, rendering it more resilient and 
trustworthy amidst the multifaceted and unpredictable 
landscape of market data. 

In the context of markets saturated with substantial noise 
and unstructured information, our model exhibits superior 
proficiency in isolating pertinent features, resulting in 
predictions of heightened accuracy. Moreover, the clarity 
bestowed by the Attention mechanism's visual explicability 
provides a discerning perspective into the model's judgment 
process, augmenting the model's intelligibility—an essential 
quality for practical applications within the financial domain. 
This pioneering investigation not only catalyzes a leap in 
predictive accuracy but also amplifies the model’s clarity and 
interpretative capabilities, thereby furnishing investors and 
financial analysts with a more dependable decision-making 
tool. As deep learning technologies advance and their 
applicability widen, it is envisioned that the synergistic 
interplay between GRUs and Attention mechanisms will 
assume a preeminent role in the domain of financial market 
forecasting, spearheading the evolution toward an era of 
intelligent investment decision-making. 

2.  State of the Art of Deep Learning in 
Stock Prediction  

 In recent years, the application of deep learning techniques 
to various domains has significantly expanded, resulting in 
substantial improvements in predictive accuracy and 
computational efficiency. Zhan et al. [1] investigated 
innovations in time-related expression recognition using Long 
Short-Term Memory (LSTM) networks. Their findings 
underscore the potential of recurrent neural networks in 
handling sequential data, thereby supporting the use of GRUs 
in our framework for modeling long-term dependencies in 
stock market trends. Additionally, Yan et al. [2] explored the 
use of Graph Neural Networks (GNNs) for customized 
decision algorithms. Their work provides insights into the 
efficacy of GNNs in capturing complex relationships within 
data, which can be extrapolated to financial data analysis for 
stock market predictions. Similarly, Gao et al. [3] proposed an 
enhanced encoder-decoder network architecture aimed at 
reducing information loss in semantic segmentation. This 
approach highlights the importance of preserving crucial 
information during the learning process, a concept that is 
equally relevant to maintaining the integrity of temporal 
features in stock market data through the use of Gated 
Recurrent Units (GRUs) and attention mechanisms. 

Further expanding on the application of deep learning, 
Wang et al. [4] developed an advanced multimodal deep 
learning architecture for image-text matching. This research 
demonstrates the effectiveness of integrating multiple data 
modalities, which aligns with our approach of combining 
GRUs with attention mechanisms to enhance feature 
extraction and model optimization in stock market prediction. 
Yang et al. [5] introduced a novel method for data recognition 
that integrates adversarial networks with traditional 
algorithms. The methodology of integrating deep learning 

with traditional techniques can be applied to refining 
predictive models in financial forecasting. Cheng et al. [6] 
proposed the GNN-CL model for advanced financial fraud 
detection. This work is particularly relevant to our research as 
it demonstrates the application of deep learning models in 
financial contexts, emphasizing the versatility and robustness 
of GNNs and their potential synergy with GRUs and attention 
mechanisms for improved stock market predictions. Yang et 
al. [7] advanced emotional analysis using large language 
models, reflecting the broader trend of leveraging 
sophisticated neural networks to interpret complex, 
unstructured data. Their work reinforces the applicability of 
deep learning in diverse analytical tasks, supporting our 
methodology for stock market analysis. Moreover, Sun et al. 
[8] and Liu et al. [9] both explored multimodal deep learning 
and feature extraction using convolutional neural networks 
(CNNs). Their contributions highlight the significance of 
combining various deep learning techniques to optimize 
model performance, a principle that underpins our integration 
of GRUs with attention mechanisms to enhance the accuracy 
and efficiency of stock market predictions. 

RNN also serves as a functional component to retain the 
latest input episode, rendering it eminently suited for the 
prediction of chronologically ordered data sets, including 
securities valuation forecasts [10]. Previous trials have 
attested to the success of RNNs in this arena. Nonetheless, 
RNNs are susceptible to the issue of gradient vanishing or 
explosion after prolonged training, compromising their 
predictive accuracy. [11]. 

To combat these infirmities, scholars have proposed a 
pantheon of enhanced algorithms, encompassing the LSTM 
[12] and Gated Recurrent Unit (GRU) [13]. These innovations 
efficaciously mitigate the scourge of vanishing and 
burgeoning gradients via the induction of a gating protocol. 
Complementary to these, there exist other inventive 
refinements, such as temporally structured convolutional 
networks, phased LSTMs, and hierarchically stratified multi-
scale RNNs [14]. These enhancements precipitously augment 
the operational efficacy of RNNs in the prediction of temporal 
series data. 

3. GRU Neural Network 

The Gated Recurrent Unit constitutes a cyclical neural 
network paradigm, akin to LSTM architectures, devised to 
tackle the fading slope dilemma prevalent in extended 
memory retention and backward propagation.  Indeed, GRU 
and LSTM exhibit parity in operational efficacy.  Employing 
GRU yields tantamount outcomes relative to LSTM, yet it 
boasts superior efficiency due to its streamlined training 
process juxtaposed with LSTM.  Amidst constrained 
computational expenditures, opting for GRU presents a 
pronounced benefit.  Depicted in Figure 1 is the foundational 
blueprint of a GRU cyclical neural network. 

 

Figure 1 Basic architecture of GRU Neural network 



Analogous to the LSTM that employs a valve assembly to 
oversee the datum within the cell, the GRU likewise utilizes a 
fuction functionality to govern the cellular condition at the 
prevailing temporal juncture.   Nevertheless, in contrast to 
LSTM, the GRU encompasses solely dual valve operations: 
the renewal valve and the nullification valve, denoted as 𝑧 set 
and 𝑟 set in Illustration 1, tasked with arbitrating the degree to 
which the antecedent cellular condition permeates into the 
contemporaneous cellular condition and the degree to which 
the prior cellular condition is discounted, respectively.   
Precisely, a loftier valuation of the renewal valve signifies a 
more potent influence of the preceding cellular condition upon 
the current cellular condition, whereas a lesser valuation of the 
nullification valve connotes a feeble sway of the antecedent 
cellular condition upon the present cellular condition.   The 
equation delineating this relationship is delineated as follows: 

𝑧𝑡 = −𝜎(𝑊𝑧 ⋅ 𝑥𝑡 + 𝑈𝑧 ⋅ ℎ𝑡−1 + 𝑏𝑧) (1) 
In this context, 𝑥𝑡 symbolizes the datum imparted at the 

present temporal marker, whilst ℎ𝑡−1  embodies the 
particulars conserved from the antecedent temporal notation.  
These twin variables shall undergo a linear metamorphosis, 

subsequently being amalgamated with the bias vector 𝑏𝑧.  The 
resultant entity is then restrained within the confines of 0 and 
1 via the agency of a Sigmoid enactivator function. 

𝑟𝑡 = −𝜎(𝑊𝑟 ⋅ 𝑥𝑡 + 𝑈𝑟 ⋅ ℎ𝑡−1 + 𝑏𝑟) (2) 
As alluded to in the forementioned renewal valve, both 

ℎ𝑡−1  and 𝑥𝑡  set are subjected to a linear transmutation, 
thereafter consolidated with the bias vector 𝑏𝑧. Subsequently, 
the Sigmoid enactivator function is utilized to regulate the 
valuation, confining it within the ambit of 0 and 1. 

ℎ̃𝑡 = tanh(𝑟𝑡 ⊙ 𝑈 ⋅ ℎ𝑡−1 + 𝑊 ⋅ 𝑥𝑡 + 𝑏ℎ̃) (3) 
Echoing the precedent procedure, the datum 𝑥𝑡 from the 

present temporal marker, in tandem with the antecedent state 

ℎ𝑡−1, is primarily channelled through a linear conversion to 
engender a dyad of vectors. Subsequently, the nullification 

valve 𝑟𝑡 is wielded to ascertain the particulars we will retain 

from the previous condition. 𝑟𝑡 is a scalar ranging from 0 to 1, 
gauging the aperture's openness. A novel vector is procured 
via the Hadamard multiplication of the nullification valve 𝑟 

set with 𝑈 ⋅ ℎ𝑡−1 . Ultimately, the twin vectors are 
amalgamated and introduced into the tanh function to derive 
the mnemonic substance of the contemporaneous cell. 

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ̃𝑡 (4) 
The persistence extent of antecedent intelligence in the 

ultimate recollection of the present temporal juncture is 
controlled by calculating the Hadamard product of the update 

gate 𝑧𝑡  and the memory content ℎ𝑡−1  of the previous 
timestamp cells. The emission of the current timestamp is 
obtained by aggregating the conserved particulars to the final 

memory of the current cell candidate memory content ℎ𝑡 . 

4. Gru-based Optimization Model 

Within the endeavor of forecasting equity oscillations, 
owing to the extensive duration of the share series, the Gated 
Recurrent Unit (GRU) neural network may encounter a 
scenario where the gradient renovation diminishes excessively 
swiftly when confronting protracted temporal sequences.  
Under certain conditions, the foremost parameters of the 
equity time series might not be refreshed efficaciously, 
impacting the feature acquisition of the GRU model 
concerning the equity series.  With the incessant ingestion of 

the equity sequence, should the model fail to promptly discern 
the pivotal characteristic information, erosion of feature 
details will ensue, impairing subsequent predictive precision. 

The Attention paradigm can be leveraged to allocate 
varying emphases to the GRU neural network during 
prediction, contingent upon the discrepant significance of 
features.  This enables the predictive apparatus to concentrate 
on the salient feature information pertinent to the equity's price 
undulations within the obscured stratum, jettison 
inconsequential particulars, rejuvenate the foremost 
parameters promptly, and empower the model to exhaustively 
excavate the amalgamated equity traits.  It captures the 
enduring interconnectivity within the equity series.  Feature 
information of differing kinds is allotted distinct weights in 
accordance with their import.  The greater the relevance of the 
feature information, the more substantial the weight bestowed 
upon it, thereby enhancing the model's predictive accuracy. 

4.1. Attention 

The Attention Mechanism, emulating the human cognitive 
emphasis pattern, serves as a numerical construct.      It acts as 
an informational sieve in the treatment of intricate data, 
bolstering the faculty to concentrate on pivotal insights by 
curtailing the disruption caused by extraneous particulars.      
The central arithmetical rationale of this schema encompasses 
leveraging a designated algorithm to transmute the triplet of 
primary constituents : Enquiry (Q), Identifier (K), and Datum 
(V) , into the ultimate outcome, thus effectuating the 
refinement and accentuation of knowledge.      Within this 
scholarly domain, Additive Attentionand Dot-Product 
Attention emerge as two rudimentary and extensively 
recognized manifestations, as depicted in Figure 2. 

 

Figure 2 Attention structure 

Encoder: The encoder configuration herein is constituted 
from numerous discrete assemblies, each encapsulating dual 
strata internally.  The datum ingress proceeds into the initial 
assembly, which is a polycephalous focus framework, 
thenceforth advancing through the ensuing assembly—a 
forward dissemination neural network—facilitating the 
progression of attained findings. 



Decoder: Conversely, the decoder is also synthesized from 
manifold discrete assemblies.  Diverging from the transcriber, 
the interpreter diverges by incorporating trio assemblies 
instead of duo.  It harnesses tripartite assemblies to execute 
the polycephalous focus mechanism on the intel gathered from 
the transcriber.  The distinguishing assembly is a Veiled 
polycephalous focus mechanism, purposed to conserve and 
learn the sequential hierarchy meticulously.  It becomes 
apparent that this architectural design eschews employing a 
neural network for both transcribing and interpreting entirely.  
Instead, it solely relies on the concatenation and amalgamation 
of several focus assemblies, yielding remarkably favorable 
outcomes. 

4.2.  Stock Prediction Trend Model 

At the inception stratum of the paradigm, concatenation 

amalgamates the securities valuation trait series 𝑃𝑡  and the 

news textual trait series 𝑁𝑡  to procure a novel vector 𝐹𝑡.  This 

amalgamated trait vector 𝐹𝑡  serves as the datum ingress for 
the prognostication model.  Pertaining to securities trend 
divination, the melded securities valuation traits and news 
textual traits also constitute chronologically ordered data, 

specifically 𝐹𝑡 .  The input fused chronological series trait 

vectors 𝐹𝑡 undergo additional scrutiny and manipulation via 
the GRU to apprehend the temporal series traits and protracted 
interdependencies. 

When leveraging the GRU network model to analyze and 

imbibe the fused chronological series trait vectors 𝐹𝑡 , the 
procedure unfolds as follows: 

𝐹𝑡 = [𝑃𝑡 , 𝑁𝑡] (5) 
𝐺𝑡 = 𝜎(𝑊[𝐹𝑡 , ℎ𝑡−1] + 𝑏) (6) 
𝑅𝑡 = 𝜎(𝑊[𝐹𝑡 , ℎ𝑡−1] + 𝑏) (7) 

ℎ̃𝑡 = tanh(𝑊[𝐹𝑡 , ℎ𝑡−1] + 𝑏) (8) 

ℎ𝑡 = (1 − 𝐺𝑡) ∗ ℎ𝑡−1 + 𝐺𝑡 ∗ ℎ̃)                  (9)                         
Within the equation, 𝐹𝑡  signifies the series of securities 

valuation feature vectors, whilst 𝑁𝑡  conveys the sequence of 
news textual feature vectors.  The bracket notation [], 
emblematic of the amalgamation amongst feature vectors, 

yields 𝐹𝑡, embodying the integrated feature vectors.  𝐺𝑡 and 

𝑅𝑡  correspond to the renewal and nullification valves within 

the GRU network at temporal notation set, respectively.  ℎ𝑡  
delineates the network's emanation at temporal notation t.   σ 
represents the enactivator function within the GRU network, 
and the schematic depiction of the model's progression is 
illustrated in Figure 3. 

 

Figure 3 Model flow 

Initially, the Gated Recurrent Unit (GRU) stratum was 
employed to pre-process the ingressed securities valuation 
series data to discern the kinetic attributes of the sequence.  
Subsequently, the focus paradigm is imposed upon the egress 
sequence of the GRU.  Through the computation of the 

significance of the egress from each GRU component, the 
weighting is calibrated, enabling the model to concentrate 
more intently on those characteristics exerting a pronounced 
influence on the prognostication.  The amalgamation of GRU 
and the focus mechanism facilitates a superior grasp of 
protracted interdependencies, mitigates the diminution of 
information, and enhances the veracity of the forecast.  The 
incorporation of the focus mechanism circumvents the 
uniform handling of all temporal phase data, curtails 
superfluous computations, and accelerates the velocity of 
instruction.  This is notably critical for fiscal determinations. 

5. Experimental analysis 

5.1. Dataset Introduction 

The data are obtained from the NYSE and NASDAQ of the 
United States. The dataset contains information on companies 
in a wide range of industries, including but not limited to 
technology, finance, health care, energy, and consumer goods. 
Data were selected for the last decade, which contain daily 
opening value, highest value, lowest value, closing value, and 
trading volume. Of these five variables, only the closing value 
is forecasted in this project. The procured information exhibits 
attributes of omission or disorder; consequently, absent data 
points are removed, and the remainder is organized 
chronologically. To process the dataset obtained from the 
NYSE and NASDAQ, the link data methodology was 
employed[15]. This approach ensured a systematic and robust 
handling of data anomalies and preparation for subsequent 
forecasting analysis. 

5.2. Parameter setting 

The quantity of neuronal units within the GRU tier 
delineates the capability of the network paradigm to abstract 
the temporal characteristics of the datum.  Augmenting the 
count of neuronal units in the concealed stratum of GRU can 
enhance the prognostic veracity of the model;  however, it 
concurrently intricates the network's configuration, impacting 
the efficacy of the model in the acquisition and learning of 
feature extraction.  The pace of learning delineates the stride 
magnitude of each cycle during the conditioning phase, which 
is a paramount parameter for model cultivation.  Should the 
pace of learning be overly expansive, convergence of the 
model will not crystallize.  Conversely, if the velocity of 
instruction is excessively minute, the model's stabilization will 
be markedly tardiness or impeded for learning altogether.  
Henceforth, subsequent to empirical trials, the enumeration of 
neurotic components within the GRU stratum is established at 
150, the occluded substrata tally is 3, the pace of learning is 
calibrated to 0.001, and the batch magnitude is 128.  The 
sliding aperture's dimension is 7. 

5.3. Evaluation index 

Assessing the veracity of a paradigm solely predicated on 
the accommodation accuracy of the test assembly is somewhat 
biased and devoid of practicality.  Within the realm of 
quantitative trading inquiries, asset overseers will accord 
greater attention to the pragmatic back-assessment efficacy of 
the model.  Despite a lofty model precision, the model does 
not inevitably accrue profits within the fiscal exchange.  
Authentic trading within the financial bazaar is considerably 
more convoluted, and it constitutes an ongoing stratagem in 
itself.  Factors such as the liquidity of equities, the impact 
disbursement of stock procurement, and other elements can 
influence the returns of  actual stock trading.  Consequently, 



merely scrutinizing the accommodation accuracy of the test 
assembly fails to elucidate the caliber of the model.  Moreover, 
a model of diminished accuracy, despite its predictive veracity 
being less than optimal, if its gains from accurate predictions 
vastly overshadow the losses from erroneous predictions, such 
a model can still be deemed triumphant.  Therefore, this 
discourse erects a rudimentary quantitative back-assessment 
tactic for the prognostic outcomes of the test assembly, 
conducts back-assessment on the quantitative back-
assessment system that has been fabricated herein, and 
evaluates the model’s virtues and flaws holistically based on 
back-assessment metrics. 

Commonly utilized back-assessment evaluative measures 
encompass annualized yield, maximal drawdown, Sharpe 
proportion, and volatility. 

Annualized Yields denote the anticipated yield ratio of an 
investment with a twelve-month tenure, which is computed 
utilizing the annualized methodology of compounded interest 
accrual. 

Annualized Retuen = (1 + ℝ)
1

𝑡 − 1               (10) 

Max Drawdown—this is the worst that could happen to an 
investment strategy. Across the look-back, in the process for 
every deferred date on which the market engaged the 
scheme, the aggregate investment value for the scheme falls 
to a minimum; this is the ultimate retrocession. The ultimate 
retrocession is the cardinal measure for assessment of the 
effectiveness of the acme hazard management of a strategy. 
The procedure for its computation is as follows: 

Drawdown𝑡 = {

0    ,if𝑁𝐸𝑇𝑡 = 𝑚𝑖𝑛𝑗≥𝑡(𝑁𝐸𝑇𝑗)

𝑁𝐸𝑇𝑡 − 𝑚𝑖𝑛𝑗≥𝑡(𝑁𝐸𝑇𝑗)

𝑁𝐸𝑇𝑡
,else    

(11) 

Max Drawdown = 𝑚𝑎𝑥(Drawdown𝑡) (12) 

NET is the net value of a period. 

Sharpe Ratio, which indicates how many units of return will 
be generated as compensation for taking one unit of total risk. 
It is calculated as follows: 

Daily Sharpe Ratio =
�̅�𝑒

𝜎𝑒

(13) 

�̅�𝑒 =
1

𝑛
∑  

𝑛

𝑖=1

[𝑟𝑝(𝑖) − 𝑟𝑓(𝑖)] (14) 

Sharpe Ratio = √244 ⋅ Daily Sharpe Ratio (15) 

Where �̅�𝑒 is the median surplus reversion ratio of the tactic 
during the retrospective scrutiny span, τ is the enumeration of 
mercantile epochs within said scrutiny span, 𝑟𝑝(𝑖) and 𝑟𝑓(𝑖) 
denote the daily reversion proportion of the amalgamation 
governed by the tactic on the i-th mercantile epoch and the 
daily reversion proportion of the perilless amalgamation 
correspondingly.  The perilless amalgamation reversion 
proportion herein typically harnesses the yield rate of 
sovereign indebtedness.  𝜎𝑒  signifies the fluctuation of the 
surplus reversion of the tactic. 

Volatility, the measure of dispersion typified as the standard 
deviation of a tactic's reversion, is the most ubiquitously 
utilized denomination of peril calibration.  The greater the 
fluctuation, the loftier the peril borne by the tactic.  Herein, we 
presuppose the existence of 244 mercantile epochs within an 
annum.  Its calculation unfolds as follows: 

 

𝜎 = √
244

𝑛 − 1
Σ𝑖=1

𝑛 [𝑟𝑝(𝑖) − 𝑟
−

𝑝]2 (16) 

Wherein n represents the quantity of trading days in the 
backtesting period, 𝑟𝑝(𝑖) represents the daily return rate of the 

portfolio held by the strategy on the ith trading day, and 𝑟
−

𝑝 is 

the average daily return rate of the strategy during the 
backtesting period. 

5.4. Experimental results 

To benchmark against conventional paradigms, the 
Gradient Boosting Decision Tree (GBDT) model [16], 
frequently employed within the domain of machine cognition, 
has been elected herein. Additionally, a solitary Gated 
Recurrent Unit (GRU) [17] framework was fabricated, 
adhering to equivalent hyperparameter configuration. When 
juxtaposed with the GRU architecture amalgamated with a 
spotlight apparatus devised in our study, evaluative metrics 
encompassed the annualized returns, maximum retrace, 
Sharpe ratio, and volatility are used for evaluation. 
Experimental outcomes are depicted in Figure 4. 

 

Figure 4 Comparison of experimental results 

In Figure 4, AR stands for annualized return, DM for 
maximum rewind, SR for Sharpe ratio, and VL for volatility. 
Perusing the tabular emblem, it becomes evident that the 
Gated Recurrent Unit (GRU) model, amalgamated with an 
attentional apparatus, has garnered the foremost outcomes 
across diverse evaluative metrics, manifesting its ascendancy 
in the forecasting of equity market dynamics. To gain a more 
vivid appreciation of the preeminence of the paradigm 
constructed herein regarding characteristic distillation and 
model refinement, a span of twelve months' data is designated 
as the assessment ensemble. Employing attention for trait 
abstraction, the GRU model undergoes training. Through 
leveraging the amalgam of historical equity pricing data and 
textual narrative of news, the model is capable of delineating 
the traits of stock temporal sequence reliance whilst 
circumventing dilemmas akin to gradient eruption precipitated 
by unduly elongated equity time series. Furthermore, 
acknowledging that disparate classes of traits exert variant 
impacts upon the equity valuation trajectory, the attentional 
mechanism is reintroduced to orient the algorithmic paradigm 
towards pivotal trait information, culminating in the 
accomplishment of the equity trend prediction endeavor. The 
outcomes of scrutiny are delineated in Figure 5. 



 

Figure 5 GRU-Attention prediction curve 

As depicted in Figure 5, the forecasted securities valuation 
aligns fundamentally with the authentic oscillations of share 
value, particularly at pivotal junctures, such as the ascension 
in the incipient phase and the declination in the terminal phase; 
here, the projected trajectory is in close proximity to the 
veridical course. Nonetheless, amidst minor undulations, the 
anticipated securities valuation might exhibit a divergence, for 
instance, within the median segment, the forecasted securities 
valuation appears not to wholly encapsulate the nuances of 
bona fide alterations in share value. Collectively, the paradigm 
is capable of monitoring the genuine variations in securities 
valuation proficiently across the majority of instances, albeit 
there could be discrepancies in ephemeral vacillations. This 
signifies that the GRU-Attention framework manifests 
commendable outcomes in prognosticating enduring 
tendencies, yet may necessitate refinement when contending 
with fleeting marketplace perturbations. 

6. Conclusion 

Within the intricately woven tapestry of contemporary 
financial markets, the ability to predict with precision 
becomes the elusive keystone unlocking the portal to wealth 
for stakeholders and market analysts. Yet, traditional 
predictive models, regardless of their statistical foundations or 
reliance on basic machine learning paradigms, often falter in 
capturing long-term interdependencies and non-linear patterns 
embedded within time sequences. Such inadequacies severely 
hinder the accuracy and reliability of forecasts, particularly 
amidst the tumultuous fluctuations characterizing stock 
exchanges. To address this issue, our research proposes an 
avant-garde deep learning framework, seamlessly fusing the 
Gated Recurrent Unit (GRU) with an attention mechanism, 
aspiring to overcome the limitations of existing models and 
forge a path towards enhanced accuracy and efficiency in 
stock market predictions. 

Devised specifically for sequential data manipulation, the 
GRU effectively addresses the vanishing gradient problem 
encountered by Recurrent Neural Networks (RNNs) as 
network depth increases, thanks to its distinctive update and 
reset gate mechanisms. In the context of equity predictions, 
the GRU exhibits a keen aptitude for discerning and tracking 
pivotal trends and patterns in time series, thereby anchoring 
the deep learning capabilities of the model. However, despite 
the GRU’s demonstrated potential in temporal sequence 
processing, its computational efficiency and resource usage 
when confronted with exceedingly long series warrant 
consideration. To alleviate this bottleneck, the introduction of 
the attention mechanism is warranted—a strategy capable of 
judiciously appraising the significance of each temporal 

juncture within the sequence, guiding the model to 
concentrate finite computational resources on data segments 
harboring maximal predictive utility, thereby augmenting 
learning efficiency and predictive accuracy. 

Our proposed deep cognition framework initially employs 
the GRU layer to pre-process raw chronological series data, 
distilling the dynamic fluctuation traits and latent patterns of 
the series. Subsequently, the attention mechanism assumes 
prominence among the hidden states emanating from GRU 
outputs. By quantifying the comparative relevance of each 
temporal juncture, weights are dynamically calibrated to 
guarantee the model’s precise focus on attributes exerting 
paramount influence over the prediction objective. This 
amalgamation fortifies the model’s capability to apprehend 
enduring interdependencies and intricate patterns while 
enhancing its resilience and dependability when contending 
with high-noise and unstructured marketplace data. Of 
paramount significance, the clarity afforded by the attention 
mechanism offers insight into the model’s decision-making 
process, bolstering the transparency and comprehensibility of 
the framework—a priceless boon for practical applications 
within the financial realm. 

In summary, our investigation not only elevates the 
precision of stock market predictions but also reinforces the 
transparency and comprehensibility of the model, providing a 
firmer foundation for stakeholders and financial analysts to 
make judgments. As deep cognition technology evolves and 
permeates extensively within the financial domain, the 
synergistic alliance of GRU and the attention mechanism will 
precipitate the cognitive metamorphosis of investment 
decision-making and herald a novel epoch in financial market 
predictions. 
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