

Advancing Source Code Summaries via Abstract Syntax
Trees and Neural Machine Translation

Rowan Sinclair

Department of Computer Science, University of California, Irvine, USA

rowan.sinclair93@uci.edu

Abstract: Source code summarization generates brief natural language descriptions of code, aiding developer documentation.

Traditional neural models often overlook the hierarchical structure of code, leading to inaccuracies. This study introduces the ast-attendgru

model, utilizing Abstract Syntax Trees (AST) to capture structural features. Evaluated on Java methods using the BLEU metric, our model

outperforms traditional methods and an NLP baseline, especially in cases with minimal documentation. Incorporating AST significantly

improves the coherence and accuracy of code summaries.

Keywords: Deep Learning; Source Code Comment Generation; Abstract Syntax Tree.

1. Introduction

Source code summarization is the task of writing brief

natural language descriptions of code [1, 2, 3, 4]. These

descriptions have long been the backbone of developer

documentation such as JavaDocs [5]. Summaries like

“uploads log files to the backup server” or “formats decimal

values as scientific notation” can give programmers a clear

picture of what code does, saving them time from

comprehending the details of that code.

Trace its technological development, at first, the dominant

strategy was based on sentence templates and heuristics

derived from empirical studies [6-10]. Starting around 2016,

data-driven strategies based on neural networks came to the

forefront, leveraging gains from both the AI/NLP and mining

software repositories research communities [11-14]. As far as

we know, the existing deep learning based comment

generation approaches mainly utilize the seq2seq model in

which the program code is encoded into hidden space first and

then decode it to produce the target comment. However, these

kind of approaches have the following drawbacks: (1) they

mainly take the source code as plain text and ignore the

hierarchical structure of the source code; (2) most of the

approaches only consider simple features, such as,tokens,

which overlooking the hidden information that can help grab

the relationships between source code and comments; (3) they

typically train the decoder to produce the code annotation by

calculating and maximizing the odds based on the subsequent

natural language words, however in fact, they mainly produce

the code annotation from scratch. Therefore, these drawbacks

result in inferior comment generation accuracy and

inconsistent of the generated comment.

To solve the limitations described above, this work

proposes to use abstract syntax trees for source code

summarization. The AST of source code provides additional

structure features that are lost when you flatten source code

to a sequence. These additional structure features allow the

model to learn code representations even if the programmer

provided features (e.g.identifiers) are obfuscated. Our

solution is inspired by recent advances in neural machine

translation, as well as an approach called SBT by Hu et al.

[15]. We evaluate our approach using the automated metric

BLEU and compare it to other relevant models

2. Approach

Our proposed neural model assumes a typical NMT

architecture in which the model is asked to predict one word

at a time. The input to the model is the code and AST, along

with the preceding words in the summary. The model output

is the next token in the summary sequence.

2.1. Model Overview

Our model is essentially an attentional encoder-decoder

system, except with two encoders: one for code/text data and

one for AST data. In the spirit of maintaining simplicity where

possible, we used embedding and recurrent layers of equal

size for the encoders. We concatenate the output of attention

mechanisms for each encoder as depicted as following:

Figure 1. Model architecture

Precedent for combining different data sources comes

heavily from image captioning [16] (e.g., merging

convolution image output with a list of tags). One aim of this

work is to demonstrate how a similar concept is beneficial for

code summarization, in contrast to the usual seq2seq

application to SE data in which all information is put into one

sequence. We also hope to sow fertile ground for several areas

of future work in creating unique processing techniques for

each data type treating software’s text and structure

differently has a long tradition [17].

2.2. Model Details

To encourage reproducibility and for clarity, we explain our

model as a walkthrough of our actual Keras implementation.

txt_input = Input(shape=(self.txtlen,))

com_input = Input(shape=(self.comlen,))

ast_input = Input(shape=(self.astlen,))

First, above, are three input layers corresponding to the

code/text sequence, the comment sequence, and the flattened

AST sequence. We chose the sequence lengths as a balance

between model size and coverage of the dataset. The sequence

sizes of 100 for code/text and AST, and 13 words for comment,

each cover at least 80% of the training set. Shorter sequences

are padded with zeros, and longer sequences are truncated.

ee=Embedding(output_dim=self.embdims,

input_dim=self.txtvocabsize)(txt_input)

se=Embedding(output_dim=self.embdims,

input_dim=self.astvocabsize)(ast_input)

We start with a fairly common encoding structure,

including embedding layers for each of our encoded input

types (code/text and AST). The embedding will output a

shape of (batch size, txtvocabsize, embdims). What this

means is that for every batch, each word in the sequence has

one vector of length embdims. For example, (200, 100, 100)

means that for each of 200 examples in a batch, there are 100

words and each word is represented by a 100 length

embedding vector. We found two separate embeddings to

have better performance than a unified embedding space.

ast_enc=CuDNNGRU(self.rnndims,return_state=T

rue,return_sequences=False)

astout, sa = ast_enc(se)

Next is a GRU layer with rnndims units (we found 256 to

provide good results without oversizing the model) to serve

as the AST encoding. We used a CuDNNGRU to increase

training speed, not for prediction performance. The return

state flag is necessary so that we get the final hidden state of

the AST encoder. The return sequences flag is necessary

because we want the state at every cell instead just the final

state. We need the state at every cell for the attention

mechanism later.

txt_enc=CuDNNGRU(self.rnndims,return_state=True,

return_sequences=True)

txtout, st = enc(ee, initial_state=sa)

The code/text encoder operates in nearly the same way as

the AST encoder, except that we start the code/text GRU with

the final state of the AST GRU. The effect is similar to if we

had simply concatenated the inputs, except that 1) we keep

separate embedding spaces, 2) we allow for attention to focus

on each input differently rather than across input types, 3) we

ensure that one input is not truncated by an excessively long

sequence of the other input type, and 4) we “keep the door

open” for further processing e.g. via convolution layers that

would benefit one input type but not the other. As we show in

our evaluation, this is an important point for future work.

Tensor txtout would normally have shape (batch size,

rnndims), an rnndimslength vector representation of every

input in the batch. However, since we have return sequences

enabled, encout has the shape (batch size, datvocabsize,

rnndims), which is the rnndims-length vector at every time-

step. That is, the rnndims-length vector at every word in the

sequence. So, we see the status of the output vector as it

changes with each word in the sequence. We also have return

state enabled, which just means that we get st, the rnndims

vector from the last cell. This is a GRU, so this st is the same

as the output vector, but we get it here anyway for

convenience, to use as the initial state in the decoder.

ast_attn = dot([astout,encout], axes=[2, 2])

ast_attn = Activation(‘softmax’)(ast_attn) ast_context

= dot([ast_attn, txtout], axes=[2, 1])

We perform the same attention operations to the AST

encoding as we do for the code/text encoding.

context = concatenate([txt_context, ast_context,

decout])

But, we still need to combine the code/text and AST

context with the decoder sequence information. This is

important because we send each word one at a time, as noted

in the previous section. The model gets to look at the previous

words in the sentence in addition to the words in the encoder

sequences. It does not have the burden of predicting the entire

output sequence all at once. Technically, what we have here

are two context matrices with shape (batch size, 13, 256) and

a decout with shape (batch size, 13, 256). The default axis is

-1, which means the last part of the shape (the 256 one in this

case). This creates a tensor of shape (batch size, 13, 768): one

768-length vector for each of the 13 input elements instead of

three 256-length vectors.

Out=TimeDistributed(Dense(self.rnndims,

activation="relu"))(context)

We are nearing the point of predicting a next word. A

TimeDistributed layer provides one dense layer per vector in

the context matrix. The result is one rnndimslength vector for

every element in the decoder sequence. For example, one

256-length vector for each of the 13 positions in the decoder

sequence. Essentially, this creates one predictor for each of

the 13 decoder positions.

out = Flatten()(out) out = Dense(self.comvocabsize,

activation="softmax")(out)

However, we are trying to output a single word, the next

word in the sequence. Ultimately we need a single output

vector of length comsvocabsize. So we first flatten the (13,

256) matrix into a single (3328) vector, then we use a dense

output layer of length comsvocabsize, and apply softmax.

Model = Model(inputs=[txt_input,com_input,

ast_input], outputs=out)

The result is a model with code/text, AST, and comment

sequence inputs, and a predicted next word in the comment

sequence as output.

2.3. Hardware Details

The hardware on which we implemented, trained, and

tested our model included one Xeon E5-1650v4 CPU, 64gb

RAM, and two Quadro P5000 GPUs.It was necessary to train

on GPUs with 16gb VRAM due to the large size of our model.

2.4. Corpus Preparation

We prepared a large corpus of Java methods from the

Sourcerer repository provided by Lopes et al. [18]. The

repository contains over 51 million Java methods from over

50000 projects. We considered updating the repository with

new downloads from GitHub, but we found that the Sourcerer

dataset was quite thorough, leading to a large amount of

overlap with newer projects that could not be eliminated (due

to name changes, code cloning, etc.). This overlap could lead

to major validity problems for our experiments (e.g., if testing

samples were inadvertently placed in the training set). We

decided to use the Sourcerer projects exclusively.

We split the code and comments on camel case and

underscore, removed non-alpha characters, and set to lower

case. We did not perform stemming. We then split the dataset

by project into training, validation, and test sets. By “by

project” we mean that we randomly divided the projects into

the three groups: 90% of projects into training, 5% into

validation, and 5% into testing.

To obtain the ASTs, we first used srcml [19] to extract an

XML representation of each method. Then we built a tool to

convert the XML representation into the flattened SBT

representation, to generate SBT-formatted output described

by Hu et al. [15] Finally, we created our own modification of

SBT in which all the code structure remained intact, but in

which we replaced all words (except official Java API class

names) in the code to a special token. We call this SBT-AO

for SBT AST only. We use this modification to simulate the

case when only an AST can be extracted. From this corpus of

Java methods, we create two datasets:

• The standard dataset contains three elements for each

Java method: 1) the pre-processed Java source code for the

method, 2) the pre-processed comment, and 3) the SBT-AO

representation of the Java code.

• The challenge dataset contains two elements for each

method: 1) the preprocessed comment, and 2) the SBT-AO

representation of the Java code.

Technically, we also have a third dataset containing the

default SBT representation (with code words) and the pre-

processed comment, which we use for experiments to

compare our approach to the baselines. However, the standard

and challenge datasets are our focus in this paper, intended to

compare the case when internal documentation is available,

and the much more difficult case with only an AST.

3. Evaluation

This section covers our evaluation, comparing our

approach to baselines over the standard and challenge datasets.

3.1. Research Questions

This section covers our evaluation, comparing our

approach to baselines over the standard and challenge datasets.

Our research objective is to determine the performance

difference between our approach and competitive baseline

approaches in two situations that we explore through these

Research Questions (RQs):

RQ1. What is the difference in performance between our

approach and competitive approaches in the “standard”

situation, assuming internal documentation?

RQ2.What is performance of our approach in the

“challenge” situation, assuming an AST only?

Essentially, existing applications of NMT for the problem

of code summarization almost entirely rely on the

programmer writing meaningful internal documentation such

as identifier names. As we will show, this assumption makes

the problem “easy” for seq2seq NMT models, since many

methods have internal documentation that is very similar to

the summary comment (a phenomenon also observed by Tan

et al. [20] and Louis et al. [21]). We ask RQ1 in order to study

the performance of our approach under this assumption.

In contrast, we ask RQ2 because the assumption of internal

documentation is often not valid. Very often, only the

bytecode is available, or programmers neglect to write good

internal documentation, or code has even been obfuscated

deliberately. In these cases, it is usually still possible to extract

an AST for a method, even if it contains no meaningful words.

In principle, the structure of a program is all that is necessary

to understand it, since ultimately that is what defines the

behavior of the program. In practice, it is very difficult to

connect structure directly to high-level concepts described in

summaries. We seek to quantify a baseline performance level

with our approach (since, to our knowledge, no published

approach functions in this situation).

3.2. Baselines

To answer RQ1 (the standard experiment), we compare our

approach to three baselines. One baseline (which we call

attendgru) is a generic attentional encoder-decoder model, to

represent an application of a strong off-the-shelf approach

from the NLP research area. Note that there are a huge variety

of NMT systems described in the NLP literature, but that a

vast majority have an attentional encoder-decoder model at

their heart to maintain an “apples to apples” comparison, the

baseline is identical to the “code/text” encoder in our

approach (the decoder is identical as well). In essence, the

baseline is the same as our proposed approach, except without

the AST encoder and associated concatenation. While we

could have chosen any number of approaches from NLP

literature, it is very difficult to say up front which will perform

best for code summarization, and we needed to ensure

minimal differences to maximize validity of our results. If, for

example, we had used an architecture with an LSTM instead

of a GRU in the encoder, we would have no way of knowing

if the difference between our approach and the baseline were

due to the AST information we added, or due to using an

LSTM instead of a GRU.

A second baseline is the SBT approach presented by Hu et

al. [15]. This approach was presented at ICPC’18, and

represents the latest publication about source code

summarization in a software engineering venue. That paper

used an LSTM-based encoder-decoder architecture based on

a popular guide for building seq2seq NMT systems, but used

their SBT representation of code instead of the source code

only. For our baseline, we use their SBT representation, but

use the same GRU-based encoder-decoder from our NLP

baseline, also to ensure an “apples to apples” comparison.

Since the model architecture is the same, we can safely

attribute performance differences to the input format (e.g.,

SBT vs. code-only). A third baseline is codenn, presented by

Iyer et al. [38]. Given the complexity of the approach, we used

their publicly-available implementation. The original paper

describes only applications to SQL and C#, but we noticed

that their C# parser extracted common code features that are

also available in Java. We made small modifications to the

C# parser so that it would function equivalently for Java. We

call our approach ast-attendgru in our experiments. We used

a greedy search algorithm for inference for all approaches,

rather than beam search, to minimize the number of

experimental variables and computation cost.

3.3. Methodology

Our methodology to answer both RQs is identical, and

follows best practice established throughout the literature on

NMT (see Section 2): for RQ1, we train our approach and

each baseline with the training set from the standard dataset

for a total of 10 epochs. Then, for each approach, we

computed performance metrics for the model after each epoch

against the validation set. (In all cases, validation

performance began to degrade after five or six epochs.) Next

we chose the model after the epoch with the highest validation

performance, and computed performance metrics for this

model against the testing set. These testing results are the

results we report in this paper. Our methodology to answer

RQ2 differs only in that we trained and tested using the

challenge dataset.

We report the performance metric BLEU [21], also in

keeping with standard practice in NMT. BLEU is a measure

of the text similarity between predicted summaries and

reference summaries. We report a composite BLEU score in

addition to BLEU1 through BLEU4 (BLEUn is a measure of

the similarity of n-length subsequences, versus entire

summary sentences).

3.4. Threats to Validity

The primary threats to validity to this evaluation include: 1)

Our dataset. We use a very large dataset with millions of Java

methods in order to maximize the generalizability of our

results, but the possibility remains that we would obtain

different results with a different dataset. And, 2) we did not

perform cross-validation. We attempt to mitigate this risk by

using random samples to split the training/validation/testing

sets, a different split could result in different performance.

This risk is common among NMT experiments due to very

high training computation costs (4+ hours per epoch).

4. Results

This section discusses our evaluation results and

observations. After answering our research questions, we

explore examples to give an insight into how the network

functions and why it works. Note that we use these

observations to build an ensemble method at the end of this

paper.

4.1. RQ1: Standard Experiment

We found in the standard experiment that ast-attendgru and

attendgru obtain roughly equal performance in terms of

BLEU score, but provide orthogonal results, as we will

explain in this section and the example in next section.

Figure 2. Below are BLEU1-4 scores and the composite BLEU

score for each approach and dataset.

In terms of BLEU score, ast-attendgru and attendgru are

roughly equal in performance: 19.6 BLEU vs 19.4 BLEU.

SBT is lower, at about 14 BLEU, and codenn is about 10

BLEU. Figure 2 includes a table with the full BLEU results

for each result (and additional data in our online appendix).

For SBT, the results conflicted with our expectations based

on the presenting paper [15], in which SBT outperformed a

standard seq2seq model like attendgru. We see two possible

explanations: First, even though our seq2seq baseline

implementation represents a standard approach, there are a

few architectural differences from the paper by Hu et al. [15],

such as different embedding vector sizes. While we did not

observe major changes in the results from these architectural

differences in our own pilot studies, it is possible that “one’s

mileage may vary” depending on the dataset. Second, the

previous study did not split by project, so methods in the same

project will be in the training and test set. The very high

reported BLEU scores in [36] could be explained by

overloaded methods with very similar structure – SBT would

detect a function in the test set with a very similar AST to an

overloaded method in the same project in the training set. The

improvement by all approaches over codenn matches

expectations from previous experiments.

The codenn approach was intended as a versatile technique

for both code search and summarization, and was a relatively

early attempt at applying NMT to the code summarization

problem. In addition, it was designed for C# and SQL

datasets; we adapted it to Java as described in the previous

section.

A key observation of the standard experiment is that ast-

attendgru and attendgru provide orthogonal predictions –

there is a set of methods in which one performs better, and a

different set in which the other has higher performance. While

ast-attendgru is slightly ahead of attendgru, we do not view

a 0.2 BLEU difference a major improvement in and of itself.

Normally we would expect an approach to outperform a

different approach by some margin across a majority of the

examples (i.e., non-orthogonal performance), and this is

indeed what we observe when comparing ast-attendgru to

SBT, as shown on the left below (around 60k methods in

which ast-attendgru performed better, vs. 20k for SBT):

Figure 3. Comparison of BLEU score overlap between models

But what we observe for ast-attendgru and attendgru is

that there are two sets of roughly 33k methods in the 91k test

set in which one or another approach has higher performance

(above, right). In other words, among the predictions in which

there was a difference between the approaches, ast-attendgru

and gives better predictions (in terms of BLEU score) for

about half, while attendgru performs better on about half.

Figure 4. Heatmap of the attention layer in ast-attendgru for the

AST input for Example 1. The x-axis is the summary input and the

y-axis is the AST (SBT-AO) input. High activation (more yellow)

indicates more attention paid to e.g., position 48 of the AST input.

4.2. RQ2: Challenge Experiment

We obtain a BLEU score of about 9.5 for ast-attendgru in

the challenge experiment. Note that the only difference

between the standard and challenge experiments is that we

trained and tested using the AST only, in the form of the SBT-

AO representation fed to ast-attendgru. Technically, there are

other configurations that would produce the same result, such

as using SBT-AO as input to attendgru instead of the source

code. Any of these configurations would meet our objective

with this experiment of establishing performance for the

scenario when only an AST is available.

4.2.1. Explanation and Example

Merely reporting BLEU scores leaves an open question as

to what the scores mean in practice. Consider these two

examples from the standard and challenge experiments

(method IDs align with our downloadable dataset for

reproducibility). We chose the following examples for

illustrative purposes, and as an aid for explanation. While

relatively short, we feel that these methods provide a useful

insight into how the models operate. For a more in depth

analysis, a human evaluation would be required, which is

beyond the scope of this paper.

Example 1 is one of the cases where ast-attendgru

succeeds when attendgru fails. To understand why, recall

that, in our model as with a majority of NMT systems, the

system predicts a sentence one word at a time. For each word,

the model receives information about the method (the

code/text plus the AST for models that use it), along with each

word that has been predicted so far. So to predict “token”, ast-

attendgru would receive the code/text, the AST, and the

phrase “sets the”.In contrast, attendgru only receives the

code/text and “sets the”. To predict the first word, “sets”,

attendgru only knows that it is the start of the sentence

(indicated by a start-of-sentence token), and the code/text

input. To help make the prediction attendgru is equipped

with an attention layer learned during training to attend to

certain parts of the input. That layer is depicted in Figure

4.4(a). Note that there is high activation (bright yellow) in

position (14,1), indicating significant attention paid to

location 14 in the code/text input: this is the word return.

What has happened is that, during training, the model saw

many examples of getter methods that were only a few lines

and ended with a return.

Example 1:

(a) (b)

Figure 5. Heatmaps of the attention layer in (a) attendgru and (b)

ast-attendgru for the code/text input for Example 1. The x-axis is

the 13 positions in the summary input. The y-axis is the 100

positions in the code input. Images are truncated to code input

length

In many cases, the model could rely on very explicit

method names, attendgru performed remarkably well in

these cases, as the situation is quite like natural language – it

learns to align words in the input vocabulary to words in the

target vocabulary, and where they belong in a sentence.

However, in cases such as Example 1 where the method name

does not clearly state what the method should do (the name

tokenUrl is not obviously a setter), attendgru struggles to

choose the right words, even if, as in Example 1, it correctly

identifies the subject of the action (“url of the token”).

These situations are where the AST is beneficial. The

code/text activation layer for ast-attendgru attends heavily

to the start of sentence token (note column 0 in Figure 5(b)),

which, since is the start of every sentence, probably acts like

a “not sure” signal. But the model also has the AST input.

Figure 5 shows the AST attention layer of ast-attendgru

when trying to predict the first word. There are four areas of

interest that help elucidate how the model processes the

structure of the model, denoted A through D in the figure, and

color-coded to the corresponding areas in the AST input. First,

area A, is the portion of the method signature prior to the

parameter. Recall that our AST representation is structure

only, so almost all methods will start the same way. So as

expected, the attention in area A is largely formless. The

heatmap shows much more definition in area B. It is the

parameter list, and the model has likely learned that short

methods with parameter lists tend to be setters. The model

activates very heavily at locations C and D, which are the start

and end of the expr stmt AST node. A very common situation

in the training set is that a short method with a parameter and

an assignment is a setter. The model has learned this and

chose “sets” as the first word.

All of the models with AST input correctly chose “sets”.

SBT found that the method is a setter, but could not determine

what was being set – we attribute this behavior to the fact that

the SBT representation blends the code/text and structural

information into a single input, which creates a challenge for

the model to learn orthogonal types of information in the same

vector space (which work in other areas e.g. image captioning

implies is not advisable [23]). While there is not space in this

paper to explore fully, we note that even ast-attendgru during

the challenge experiment correctly characterized the method

as setting the value of a property, generating an unknown

token when it could not determine which property. In fact,

ast-attendgru correctly predicted the first word of the

summary (which is usually a verb) 33% of the time during the

challenge experiment, compared to 52% of the time in the

standard experiment.

5. Ensemble Decoding and Future
Work

As a hint toward future work, we test a combination of the

attendgru and ast-attendgru models using ensemble decoding.

The combination itself is straightforward: we compute an

element-wise mean of the output vector of each model (the

same trained models used in our evaluation). The training and

test procedure does not change, except that during prediction,

we use the maximum value of the combined output vector,

rather than just one output vector from one model. This is the

same ensemble decoding procedure implemented by

OpenNMT [24], and is one of the most common of several

options described by literature on multi-source NMT [25].

Since we are combining output vectors, the models “work

together” during prediction of every word – it is not just

choosing one model or another for the whole sentence. The

idea is that one model may assign similar weights in the

output vector to two or more words, in cases where it

performs less well. And another model that performs better in

that situation may assign more weight to a single word. In our

system, the hope is that attendgru will contribute more when

code/text words are clear, but ast-attendgru will contribute

more when they are unclear.

The ensemble decoding procedure improves performance

to 20.9 BLEU, from 19.6 for ast-attendgru and 19.4 for

attendgru. This is more than a full BLEU point improvement,

which is quite significant for a relatively simple procedure.

This result points us to future work including more advanced

ensemble decoding (e.g. predicting when to use one model or

another), optimizations to the network (e.g. dropout,

parameter tuning), and, critically, using different data

processing techniques on each type of input.

6. Related Work

Automatic comment generation approaches vary from

manually-crafted templates [26,27, 28], IR [29,30, 31, 32] to

neural models [33,34,35].

Comment generation based on manually-craft templates

was one of the common methods for generating comments.

Sridhara et al. [36] developed the Software Word Usage

Model (SWUM) to capture the occurrences of terms in

source code and their linguistic and structural relationships

and then defined different templates for different semantic

segments in source code to generate readable natural language.

Moreno et al. [37] defined heuristic rules to select relevant

information in the source code, and then divided the

comments into four parts, and defined different text templates

for each part to generate natural language descriptions.

McBurney et al. [38] also used the SWUM model to extract

the keywords in the Java method, employed the PageRank

algorithm to select the important methods in the given

method’s context, and used a template-based text generation

system to generate comments. These frameworks have

achieved good results on Java classes and methods.

IR techniques have been widely used in comment

generation task. Haiduc et al. [39] used two IR techniques,

Vector Space Model and Latent Semantic Indexing, to

retrieve relevant terms from a software corpus, and then

organized these terms into comments. Eddy et al. [40] used

hierarchical PAM, a probabilistic model that selected relevant

terms from the corpus and included them to the comments.

Unlike the first two research works, Wong et al. [43] proposed

that code snippets and their descriptions on the Q&A sites can

be used to generate comments for a piece of code. They used

a token-based code clone detection tool SIM to detect similar

code snippets and used their comments as target comments.

Wong et al. [42] further thought that the resources of the Q&A

sites were limited and proposed to use token-based code clone

detection tools to retrieve similar code snippets from GitHub

and leverage the information obtained from their comments

to generate comments.

Recently many neural networks have been proposed for

comment generation. With large-scale corpora for training,

neural based approaches quickly became state-of-the-art

models on this task. Iyer et al. [16] first introduced the

seq2seq model from neural machine translation into comment

generation, whose encoder is the token embedding and

decoder is an LSTM. Their model outperforms traditional

methods on C# and SQL summaries. Inspired by the

difference between natural language and programming

language, Hu et al. [15] proposed a neural model named

DeepCom to capture the structural information of source

code. They proposed a structure-based traversal method,

using one LSTM to process the AST’s traversal sequence, and

the other LSTM to generate comments for Java methods.

LeClair et al. [25] proposed a neural method to predict the

comment by combining the sequence information and

structure information of the source code with two GRU

encoders. In addition, they reconstructed the benchmark

dataset for this task, removed duplicate and auto-generated

code in the dataset, and divided the dataset into training,

validation, and test by project.

We proposes to use abstract syntax trees for source code

summarization .Our solution is inspired by recent advances in

neural machine translation, as well as an approach called SBT

by Hu et al[15].

7. Conclusion

We have presented a neural model for generating natural

language descriptions of subroutines. We implement our

model and evaluate it over a large dataset of Java methods.

We demonstrate that our model ast-attendgru, in terms of

BLEU score, outperforms baselines from SE literature and is

slightly ahead of a strong off the shelf approach from NLP

literature. We also demonstrate that and ensemble of our

approach and the off-the-shelf NLP approach outperforms all

other tested configurations. We provide a walk-through

example to provide insight into how the models work. We

conclude that the default NMT system works well in

situations where good internal documentation is provided, but

less well when it is not provided, and that ast-attendgru

assists in these cases. We demonstrate how ast-attendgru can

produce coherent predictions even with zero internal

documentation.

References

[1] N. KALCHBRENNER, L. ESPEHOLT, K. SIMONYAN, A.

V. D. OORD, AND K. KAVUKCUOGLU, Neural machine

translation in linear time, arXiv preprint arXiv:1610.10099,
(2016).

[2] A. GRAVES, Generating sequences with recurrent neural
networks, arXiv preprint arXiv:1308.0850, (2013).

[3] A. LOUIS, S. K. DASH, E. T. BARR, AND C. SUTTON,
Deep learning to detect redundant method comments, arXiv

preprint arXiv:1806.04616, (2018).

[4] R. COLLOBERT AND J. WESTON, A unified architecture for
natural language processing: Deep neural networks with
multitask learning, in Machine Learning, Proceedings of the
Twenty-Fifth International Conference (ICML 2008), 2008, pp.
160–167.

[5] S. IYER, I. KONSTAS, A. CHEUNG, AND L.
ZETTLEMOYER, Summarizing source code using a neural

attention model., in Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (1), 2016, pp.
2073–2083.

[6] M. MALHOTRA AND J. K. CHHABRA, Class level code
summarization based on dependencies and micro patterns, in
2018 Second International Conference on Inventive
Communication and Computational Technologies (ICICCT),
IEEE, 2018, pp. 1011–1016.

[7] A. SEE, P. J. LIU, AND C. D. MANNING, Get to the point:
Summarization with pointer-generator networks, in

Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
Vancouver, Canada, July 2017, Association for Computational
Linguistics, pp. 1073–1083.

[8] H. SHI, H. ZHOU, J. CHEN, AND L. LI, On tree-based neural
sentence modeling, arXiv preprint arXiv:1808.09644, (2018).

[9] K. PAPINENI, S. ROUKOS, T. WARD, AND W. J. ZHU,
Bleu: a method for automatic evaluation of machine translation,
in Proceedings of the 40th annual meeting on association for
computational linguistics, Association for Computational
Linguistics, 2002, pp. 311–318.K.

[10] M. HAMMAD, A. ABULJADAYEL, AND M. KHALAF,
Summarizing services of java packages, Lecture Notes on
Software Engineering, 4 (2016), pp. 129–132.

[11] L. MORENO, J. APONTE, G. SRIDHARA, A. MARCUS, L.
POLLOCK, AND K. VIJAYSHANKER, Automatic
generation of natural language summaries for java classes, in
2013 21st International Conference on Program
Comprehension (ICPC), IEEE, 2013, pp. 23–32.

[12] R. COLLOBERT AND J. WESTON, A unified architecture for
natural language processing: Deep neural networks with
multitask learning, in Machine Learning, Proceedings of the
Twenty-Fifth International Conference (ICML 200.

[13] N. KALCHBRENNER, L. ESPEHOLT, K. SIMONYAN, A.
V. D. OORD, AND K. KAVUKCUOGLU, Neural machine

translation in linear time, arXiv preprint arXiv:1610.10099,
(2016).8), 2008, pp. 160–167.

[14] N. J. ABID, N. DRAGAN, M. L. COLLARD, AND J. I.
MALETIC, Using stereotypes in the automatic generation of
natural language summaries for c++ methods, in 2015 IEEE
International Conference on Software Maintenance and
Evolution (ICSME), IEEE, 2015, pp. 561–565.

[15] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin. Deep code comment

generation. In Proceedings of the 26th International
Conference on Program Comprehension, pages 200–210.
ACM, 2018.

[16] K. Chen, J. Wang, L.-C. Chen, H. Gao, W. Xu, and R. Nevatia.
Abc-cnn: An attention based convolutional neural network for
visual question answering. arXiv preprint arXiv:1511.05960,
2015.

[17] A. Marcus and J. I. Maletic. Recovering documentation-to-
source-code traceability links using latent semantic indexing.
In 25th IEEE/ACM International Conference on Software
Engineering (ICSE’03), pages 125–137, Portland, OR, 2003.

[18] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi. UCI source

code data sets, 2010. URL http://www.ics. uci.edu/$\ sim
$ lopes/ datasets/.

[19] M. L. Collard, M. J. Decker, and J. I. Maletic. Lightweight
transformation and fact extraction with the srcml toolkit. In
Source Code Analysis and Manipulation (SCAM), 2011 11th
IEEE International Working Conference on, pages 173–184.
IEEE, 2011.

[20] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens. @tcomment:

Testing javadoc comments to detect comment-code
inconsistencies. In 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation, pages 260–
269, April 2012. doi: 10.1109/ICST.2012.106.

[21] A. Louis, S. K. Dash, E. T. Barr, and C. A. Sutton. Deep
learning to detect redundant method comments. CoRR,
abs/1806.04616, 2018.

[22] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: A
method for automatic evaluation of machine translation. In
Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, ACL ’02, pages 311–318,
Stroudsburg, PA, USA, 2002. Association for Computational
Linguistics, Association for Computational Linguistics. doi:
10.3115/1073083.1073135.

[23] Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A
neural image caption generator. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
3156–3164, 2015.

[24] S.-A. Gr¨onroos. Opennmt ensemble decoding, 2019. URL
https://github. com/OpenNMT/OpenNMT-py/pull/732.

[25] E. Garmash and C. Monz. Ensemble learning for multi-source
neural machine translation. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 1409–1418, 2016.

[26] Paul W. McBurney and Collin McMillan. 2016. Automatic
Source Code Summarization of Context for Java Methods.
IEEE Trans. Software Eng. 42, 2 (2016), 103–119. https://doi.
org/ 10.1109/TSE.2015.2465386.

[27] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian

Marcus, Lori L. Pollock, and K. Vijay-Shanker. 2013.
Automatic generation of natural language summaries for Java
classes. In IEEE 21st International Conference on Program
Comprehension, ICPC 2013, San Francisco, CA, USA, 20-21
May, 2013. 23–32. https://doi.org/10. 1109/ ICPC. 2013. 6613
830.

[28] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori L.
Pollock, and K. VijayShanker. 2010. Towards automatically
generating summary comments for Java methods. In ASE.
ACM, 43–52.

[29] Brian P. Eddy, Jeffrey A. Robinson, Nicholas A. Kraft, and
Jeffrey C. Carver. 2013. Evaluating source code summarization
techniques: Replication and expansion. In IEEE 21st
International Conference on Program Comprehension, ICPC
2013, San Francisco, CA, USA, 20-21 May, 2013. 13–22.
https:// doi.org/10.1109/ICPC.2013. 6613829.

[30] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian
Marcus. 2010. On the Use of Automated Text Summarization
Techniques for Summarizing Source Code. In 17th Working
Conference on Reverse Engineering, WCRE 2010, 13-16
October 2010, Beverly, MA, USA. 35–44. https://doi.org/
10.1109/ WCRE.2010.13.

[31] Martin White, Michele Tufano, Christopher Vendome, and
Denys Poshyvanyk. 2016. Deep learning code fragments for
code clone detection. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering,
ASE 2016, Singapore, September 3-7, 2016. 87–98. https:// doi.
org/ 10.1145/2970276. 2970326.

[32] Edmund Wong, Taiyue Liu, and Lin Tan. 2015. CloCom:
Mining existing source code for automatic comment generation.
In 22nd IEEE International Conference on Software Analysis,
Evolution, and Reengineering, SANER 2015, Montreal, QC,
Canada, March 2-6, 2015. 380–389. https://doi.org/ 10. 1109/
SANER.2015.7081848.

[33] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep
code comment generation. In Proceedings of the 26th
Conference on Program Comprehension.

[34] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke
Zettlemoyer. 2016. Summarizing Source Code using a Neural
Attention Model. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers.

https://www.aclweb. org/anthology/P16-1195/.

[35] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019.
A neural model for generating natural language summaries of
program subroutines. In Proceedings of the 41st International
Conference on Software Engineering, ICSE 2019, Montreal,
QC, Canada, May 25-31, 2019. 795–806. https://doi.org/ 10.
1109/ICSE.2019.00087.

[36] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori L.
Pollock, and K. VijayShanker. 2010. Towards automatically
generating summary comments for Java methods. In ASE.
ACM, 43–52.

[37] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian

Marcus, Lori L. Pollock, and K. Vijay-Shanker. 2013.
Automatic generation of natural language summaries for Java
classes. In IEEE 21st International Conference on Program
Comprehension, ICPC 2013, San Francisco, CA, USA, 20-21
May, 2013. 23–32. https://doi.org/10. 1109/ ICPC. 2013.
6613830.

[38] Paul W. McBurney and Collin McMillan. 2016. Automatic

Source Code Summarization of Context for Java Methods.
IEEE Trans. Software Eng. 42, 2 (2016), 103–119. https://
doi.org/ 10.1109/TSE.2015.2465386.

[39] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian
Marcus. 2010. On the Use of Automated Text Summarization
Techniques for Summarizing Source Code. In 17th Working
Conference on Reverse Engineering, WCRE 2010, 13-16
October 2010, Beverly, MA, USA. 35–44. https://doi.org/ 10.
1109/WCRE.2010.13.

[40] Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. Auto
Comment: Mining question and answer sites for automatic
comment generation. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2013,
Silicon Valley, CA, USA, November 11-15, 2013. 55–67.
https://doi.org/10.1109/ASE. 2013.6693113.

	Rowan Sinclair
	1. Introduction
	2. Approach
	2.1. Model Overview
	2.2. Model Details
	2.3. Hardware Details
	2.4. Corpus Preparation

	3. Evaluation
	3.1. Research Questions
	3.2. Baselines
	3.3. Methodology
	3.4. Threats to Validity

	4. Results
	4.1. RQ1: Standard Experiment
	4.2. RQ2: Challenge Experiment
	4.2.1. Explanation and Example
	Example 1:

	5. Ensemble Decoding and Future Work
	6. Related Work
	7. Conclusion
	References

