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Abstract: Source code summarization generates brief natural language descriptions of code, aiding developer documentation. 

Traditional neural models often overlook the hierarchical structure of code, leading to inaccuracies. This study introduces the ast-attendgru 

model, utilizing Abstract Syntax Trees (AST) to capture structural features. Evaluated on Java methods using the BLEU metric, our model 

outperforms traditional methods and an NLP baseline, especially in cases with minimal documentation. Incorporating AST significantly 

improves the coherence and accuracy of code summaries. 
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1. Introduction 

Source code summarization is the task of writing brief 

natural language descriptions of code [1, 2, 3, 4]. These 

descriptions have long been the backbone of developer 

documentation such as JavaDocs [5]. Summaries like 

“uploads log files to the backup server” or “formats decimal 

values as scientific notation” can give programmers a clear 

picture of what code does, saving them time from 

comprehending the details of that code. 

Trace its technological development, at first, the dominant 

strategy was based on sentence templates and heuristics 

derived from empirical studies [6-10]. Starting around 2016, 

data-driven strategies based on neural networks came to the 

forefront, leveraging gains from both the AI/NLP and mining 

software repositories research communities [11-14]. As far as 

we know, the existing deep learning based comment 

generation approaches mainly utilize the seq2seq model in 

which the program code is encoded into hidden space first and 

then decode it to produce the target comment. However, these 

kind of approaches have the following drawbacks: (1) they 

mainly take the source code as plain text and ignore the 

hierarchical structure of the source code; (2) most of the 

approaches only consider simple features, such as,tokens, 

which overlooking the hidden information that can help grab 

the relationships between source code and comments; (3) they 

typically train the decoder to produce the code annotation by 

calculating and maximizing the odds based on the subsequent 

natural language words, however in fact, they mainly produce 

the code annotation from scratch. Therefore, these drawbacks 

result in inferior comment generation accuracy and 

inconsistent of the generated comment. 

To solve the limitations described above, this work 

proposes to use abstract syntax trees for source code 

summarization. The AST of source code provides additional 

structure features that are lost when you flatten source code 

to a sequence. These additional structure features allow the 

model to learn code representations even if the programmer 

provided features (e.g.identifiers) are obfuscated. Our 

solution is inspired by recent advances in neural machine 

translation, as well as an approach called SBT by Hu et al. 

[15]. We evaluate our approach using the automated metric 

BLEU and compare it to other relevant models 

2. Approach 

Our proposed neural model assumes a typical NMT 

architecture in which the model is asked to predict one word 

at a time. The input to the model is the code and AST, along 

with the preceding words in the summary. The model output 

is the next token in the summary sequence. 

2.1. Model Overview 

Our model is essentially an attentional encoder-decoder 

system, except with two encoders: one for code/text data and 

one for AST data. In the spirit of maintaining simplicity where 

possible, we used embedding and recurrent layers of equal 

size for the encoders. We concatenate the output of attention 

mechanisms for each encoder as depicted as following: 

 

Figure 1. Model architecture 

 

Precedent for combining different data sources comes 



 

heavily from image captioning [16] (e.g., merging 

convolution image output with a list of tags). One aim of this 

work is to demonstrate how a similar concept is beneficial for 

code summarization, in contrast to the usual seq2seq 

application to SE data in which all information is put into one 

sequence. We also hope to sow fertile ground for several areas 

of future work in creating unique processing techniques for 

each data type treating software’s text and structure 

differently has a long tradition [17]. 

2.2. Model Details 

To encourage reproducibility and for clarity, we explain our 

model as a walkthrough of our actual Keras implementation. 

txt_input = Input(shape=(self.txtlen,)) 

com_input = Input(shape=(self.comlen,)) 

ast_input = Input(shape=(self.astlen,)) 

First, above, are three input layers corresponding to the 

code/text sequence, the comment sequence, and the flattened 

AST sequence. We chose the sequence lengths as a balance 

between model size and coverage of the dataset. The sequence 

sizes of 100 for code/text and AST, and 13 words for comment, 

each cover at least 80% of the training set. Shorter sequences 

are padded with zeros, and longer sequences are truncated. 

ee=Embedding(output_dim=self.embdims, 

input_dim=self.txtvocabsize)(txt_input) 

se=Embedding(output_dim=self.embdims, 

input_dim=self.astvocabsize)(ast_input) 

We start with a fairly common encoding structure, 

including embedding layers for each of our encoded input 

types (code/text and AST). The embedding will output a 

shape of (batch size, txtvocabsize, embdims). What this 

means is that for every batch, each word in the sequence has 

one vector of length embdims. For example, (200, 100, 100) 

means that for each of 200 examples in a batch, there are 100 

words and each word is represented by a 100 length 

embedding vector. We found two separate embeddings to 

have better performance than a unified embedding space. 

ast_enc=CuDNNGRU(self.rnndims,return_state=T 

rue,return_sequences=False) 

astout, sa = ast_enc(se) 

Next is a GRU layer with rnndims units (we found 256 to 

provide good results without oversizing the model) to serve 

as the AST encoding. We used a CuDNNGRU to increase 

training speed, not for prediction performance. The return 

state flag is necessary so that we get the final hidden state of 

the AST encoder. The return sequences flag is necessary 

because we want the state at every cell instead just the final 

state. We need the state at every cell for the attention 

mechanism later. 

txt_enc=CuDNNGRU(self.rnndims,return_state=True, 

return_sequences=True) 

txtout, st = enc(ee, initial_state=sa) 

The code/text encoder operates in nearly the same way as 

the AST encoder, except that we start the code/text GRU with 

the final state of the AST GRU. The effect is similar to if we 

had simply concatenated the inputs, except that 1) we keep 

separate embedding spaces, 2) we allow for attention to focus 

on each input differently rather than across input types, 3) we 

ensure that one input is not truncated by an excessively long 

sequence of the other input type, and 4) we “keep the door 

open” for further processing e.g. via convolution layers that 

would benefit one input type but not the other. As we show in 

our evaluation, this is an important point for future work. 

Tensor txtout would normally have shape (batch size, 

rnndims), an rnndimslength vector representation of every 

input in the batch. However, since we have return sequences 

enabled, encout has the shape (batch size, datvocabsize, 

rnndims), which is the rnndims-length vector at every time- 

step. That is, the rnndims-length vector at every word in the 

sequence. So, we see the status of the output vector as it 

changes with each word in the sequence. We also have return 

state enabled, which just means that we get st, the rnndims 

vector from the last cell. This is a GRU, so this st is the same 

as the output vector, but we get it here anyway for 

convenience, to use as the initial state in the decoder. 

ast_attn = dot([astout,encout], axes=[2, 2]) 

ast_attn = Activation(‘softmax’)(ast_attn) ast_context 

= dot([ast_attn, txtout], axes=[2, 1]) 

We perform the same attention operations to the AST 

encoding as we do for the code/text encoding. 

context = concatenate( [txt_context, ast_context, 

decout]) 

But, we still need to combine the code/text and AST 

context with the decoder sequence information. This is 

important because we send each word one at a time, as noted 

in the previous section. The model gets to look at the previous 

words in the sentence in addition to the words in the encoder 

sequences. It does not have the burden of predicting the entire 

output sequence all at once. Technically, what we have here 

are two context matrices with shape (batch size, 13, 256) and 

a decout with shape (batch size, 13, 256). The default axis is 

-1, which means the last part of the shape (the 256 one in this 

case). This creates a tensor of shape (batch size, 13, 768): one 

768-length vector for each of the 13 input elements instead of 

three 256-length vectors. 

Out=TimeDistributed(Dense(self.rnndims, 

activation="relu"))(context) 

We are nearing the point of predicting a next word. A 

TimeDistributed layer provides one dense layer per vector in 

the context matrix. The result is one rnndimslength vector for 

every element in the decoder sequence. For example, one 

256-length vector for each of the 13 positions in the decoder 

sequence. Essentially, this creates one predictor for each of 

the 13 decoder positions. 

out = Flatten()(out) out = Dense(self.comvocabsize, 

activation="softmax")(out) 

However, we are trying to output a single word, the next 

word in the sequence. Ultimately we need a single output 

vector of length comsvocabsize. So we first flatten the (13, 

256) matrix into a single (3328) vector, then we use a dense 

output layer of length comsvocabsize, and apply softmax. 

Model = Model(inputs=[txt_input,com_input, 

ast_input], outputs=out) 

The result is a model with code/text, AST, and comment 

sequence inputs, and a predicted next word in the comment 

sequence as output. 

2.3. Hardware Details 

The hardware on which we implemented, trained, and 

tested our model included one Xeon E5-1650v4 CPU, 64gb 

RAM, and two Quadro P5000 GPUs.It was necessary to train 

on GPUs with 16gb VRAM due to the large size of our model. 

2.4. Corpus Preparation 

We prepared a large corpus of Java methods from the 

Sourcerer repository provided by Lopes et al. [18]. The 

repository contains over 51 million Java methods from over 

50000 projects. We considered updating the repository with 



 

new downloads from GitHub, but we found that the Sourcerer 

dataset was quite thorough, leading to a large amount of 

overlap with newer projects that could not be eliminated (due 

to name changes, code cloning, etc.). This overlap could lead 

to major validity problems for our experiments (e.g., if testing 

samples were inadvertently placed in the training set). We 

decided to use the Sourcerer projects exclusively. 

We split the code and comments on camel case and 

underscore, removed non-alpha characters, and set to lower 

case. We did not perform stemming. We then split the dataset 

by project into training, validation, and test sets. By “by 

project” we mean that we randomly divided the projects into 

the three groups: 90% of projects into training, 5% into 

validation, and 5% into testing. 

To obtain the ASTs, we first used srcml [19] to extract an 

XML representation of each method. Then we built a tool to 

convert the XML representation into the flattened SBT 

representation, to generate SBT-formatted output described 

by Hu et al. [15] Finally, we created our own modification of 

SBT in which all the code structure remained intact, but in 

which we replaced all words (except official Java API class 

names) in the code to a special token. We call this SBT-AO 

for SBT AST only. We use this modification to simulate the 

case when only an AST can be extracted. From this corpus of 

Java methods, we create two datasets: 

• The standard dataset contains three elements for each 

Java method: 1) the pre-processed Java source code for the 

method, 2) the pre-processed comment, and 3) the SBT-AO 

representation of the Java code. 

• The challenge dataset contains two elements for each 

method: 1) the preprocessed comment, and 2) the SBT-AO 

representation of the Java code. 

Technically, we also have a third dataset containing the 

default SBT representation (with code words) and the pre- 

processed comment, which we use for experiments to 

compare our approach to the baselines. However, the standard 

and challenge datasets are our focus in this paper, intended to 

compare the case when internal documentation is available, 

and the much more difficult case with only an AST. 

3. Evaluation 

This section covers our evaluation, comparing our 

approach to baselines over the standard and challenge datasets. 

3.1. Research Questions 

This section covers our evaluation, comparing our 

approach to baselines over the standard and challenge datasets. 

Our research objective is to determine the performance 

difference between our approach and competitive baseline 

approaches in two situations that we explore through these 

Research Questions (RQs): 

RQ1. What is the difference in performance between our 

approach and competitive approaches in the “standard” 

situation, assuming internal documentation? 

RQ2.What is performance of our approach in the 

“challenge” situation, assuming an AST only? 

Essentially, existing applications of NMT for the problem 

of code summarization almost entirely rely on the 

programmer writing meaningful internal documentation such 

as identifier names. As we will show, this assumption makes 

the problem “easy” for seq2seq NMT models, since many 

methods have internal documentation that is very similar to 

the summary comment (a phenomenon also observed by Tan 

et al. [20] and Louis et al. [21]). We ask RQ1 in order to study 

the performance of our approach under this assumption. 

In contrast, we ask RQ2 because the assumption of internal 

documentation is often not valid. Very often, only the 

bytecode is available, or programmers neglect to write good 

internal documentation, or code has even been obfuscated 

deliberately. In these cases, it is usually still possible to extract 

an AST for a method, even if it contains no meaningful words. 

In principle, the structure of a program is all that is necessary 

to understand it, since ultimately that is what defines the 

behavior of the program. In practice, it is very difficult to 

connect structure directly to high-level concepts described in 

summaries. We seek to quantify a baseline performance level 

with our approach (since, to our knowledge, no published 

approach functions in this situation). 

3.2. Baselines 

To answer RQ1 (the standard experiment), we compare our 

approach to three baselines. One baseline (which we call 

attendgru) is a generic attentional encoder-decoder model, to 

represent an application of a strong off-the-shelf approach 

from the NLP research area. Note that there are a huge variety 

of NMT systems described in the NLP literature, but that a 

vast majority have an attentional encoder-decoder model at 

their heart to maintain an “apples to apples” comparison, the 

baseline is identical to the “code/text” encoder in our 

approach (the decoder is identical as well). In essence, the 

baseline is the same as our proposed approach, except without 

the AST encoder and associated concatenation. While we 

could have chosen any number of approaches from NLP 

literature, it is very difficult to say up front which will perform 

best for code summarization, and we needed to ensure 

minimal differences to maximize validity of our results. If, for 

example, we had used an architecture with an LSTM instead 

of a GRU in the encoder, we would have no way of knowing 

if the difference between our approach and the baseline were 

due to the AST information we added, or due to using an 

LSTM instead of a GRU. 

A second baseline is the SBT approach presented by Hu et 

al. [15]. This approach was presented at ICPC’18, and 

represents the latest publication about source code 

summarization in a software engineering venue. That paper 

used an LSTM-based encoder-decoder architecture based on 

a popular guide for building seq2seq NMT systems, but used 

their SBT representation of code instead of the source code 

only. For our baseline, we use their SBT representation, but 

use the same GRU-based encoder-decoder from our NLP 

baseline, also to ensure an “apples to apples” comparison. 

Since the model architecture is the same, we can safely 

attribute performance differences to the input format (e.g., 

SBT vs. code-only). A third baseline is codenn, presented by 

Iyer et al. [38]. Given the complexity of the approach, we used 

their publicly-available implementation. The original paper 

describes only applications to SQL and C#, but we noticed 

that their C# parser extracted common code features that are 

also available in Java. We made small modifications to the 

C# parser so that it would function equivalently for Java. We 

call our approach ast-attendgru in our experiments. We used 

a greedy search algorithm for inference for all approaches, 

rather than beam search, to minimize the number of 

experimental variables and computation cost. 

3.3. Methodology 

Our methodology to answer both RQs is identical, and 

follows best practice established throughout the literature on 



 

NMT (see Section 2): for RQ1, we train our approach and 

each baseline with the training set from the standard dataset 

for a total of 10 epochs. Then, for each approach, we 

computed performance metrics for the model after each epoch 

against the validation set. (In all cases, validation 

performance began to degrade after five or six epochs.) Next 

we chose the model after the epoch with the highest validation 

performance, and computed performance metrics for this 

model against the testing set. These testing results are the 

results we report in this paper. Our methodology to answer 

RQ2 differs only in that we trained and tested using the 

challenge dataset. 

We report the performance metric BLEU [21], also in 

keeping with standard practice in NMT. BLEU is a measure 

of the text similarity between predicted summaries and 

reference summaries. We report a composite BLEU score in 

addition to BLEU1 through BLEU4 (BLEUn is a measure of 

the similarity of n-length subsequences, versus entire 

summary sentences). 

3.4. Threats to Validity 

The primary threats to validity to this evaluation include: 1) 

Our dataset. We use a very large dataset with millions of Java 

methods in order to maximize the generalizability of our 

results, but the possibility remains that we would obtain 

different results with a different dataset. And, 2) we did not 

perform cross-validation. We attempt to mitigate this risk by 

using random samples to split the training/validation/testing 

sets, a different split could result in different performance. 

This risk is common among NMT experiments due to very 

high training computation costs (4+ hours per epoch). 

4. Results 

This section discusses our evaluation results and 

observations. After answering our research questions, we 

explore examples to give an insight into how the network 

functions and why it works. Note that we use these 

observations to build an ensemble method at the end of this 

paper. 

4.1. RQ1: Standard Experiment 

We found in the standard experiment that ast-attendgru and 

attendgru obtain roughly equal performance in terms of 

BLEU score, but provide orthogonal results, as we will 

explain in this section and the example in next section. 
 

Figure 2. Below are BLEU1-4 scores and the composite BLEU 

score for each approach and dataset. 

 

In terms of BLEU score, ast-attendgru and attendgru are 

roughly equal in performance: 19.6 BLEU vs 19.4 BLEU. 

SBT is lower, at about 14 BLEU, and codenn is about 10 

BLEU. Figure 2 includes a table with the full BLEU results 

for each result (and additional data in our online appendix). 

For SBT, the results conflicted with our expectations based 

on the presenting paper [15], in which SBT outperformed a 

standard seq2seq model like attendgru. We see two possible 

explanations: First, even though our seq2seq baseline 

implementation represents a standard approach, there are a 

few architectural differences from the paper by Hu et al. [15], 

such as different embedding vector sizes. While we did not 

observe major changes in the results from these architectural 

differences in our own pilot studies, it is possible that “one’s 

mileage may vary” depending on the dataset. Second, the 

previous study did not split by project, so methods in the same 

project will be in the training and test set. The very high 

reported BLEU scores in [36] could be explained by 

overloaded methods with very similar structure – SBT would 

detect a function in the test set with a very similar AST to an 

overloaded method in the same project in the training set. The 

improvement by all approaches over codenn matches 

expectations from previous experiments. 

The codenn approach was intended as a versatile technique 

for both code search and summarization, and was a relatively 

early attempt at applying NMT to the code summarization 

problem. In addition, it was designed for C# and SQL 

datasets; we adapted it to Java as described in the previous 

section. 

A key observation of the standard experiment is that ast- 

attendgru and attendgru provide orthogonal predictions – 

there is a set of methods in which one performs better, and a 

different set in which the other has higher performance. While 

ast-attendgru is slightly ahead of attendgru, we do not view 

a 0.2 BLEU difference a major improvement in and of itself. 

Normally we would expect an approach to outperform a 

different approach by some margin across a majority of the 

examples (i.e., non-orthogonal performance), and this is 

indeed what we observe when comparing ast-attendgru to 

SBT, as shown on the left below (around 60k methods in 

which ast-attendgru performed better, vs. 20k for SBT): 

 

Figure 3. Comparison of BLEU score overlap between models 

 

But what we observe for ast-attendgru and attendgru is 

that there are two sets of roughly 33k methods in the 91k test 

set in which one or another approach has higher performance 

(above, right). In other words, among the predictions in which 

there was a difference between the approaches, ast-attendgru 

and gives better predictions (in terms of BLEU score) for 

about half, while attendgru performs better on about half. 
 

Figure 4. Heatmap of the attention layer in ast-attendgru for the 

AST input for Example 1. The x-axis is the summary input and the 

y-axis is the AST (SBT-AO) input. High activation (more yellow) 

indicates more attention paid to e.g., position 48 of the AST input. 



 

4.2. RQ2: Challenge Experiment 

We obtain a BLEU score of about 9.5 for ast-attendgru in 

the challenge experiment. Note that the only difference 

between the standard and challenge experiments is that we 

trained and tested using the AST only, in the form of the SBT- 

AO representation fed to ast-attendgru. Technically, there are 

other configurations that would produce the same result, such 

as using SBT-AO as input to attendgru instead of the source 

code. Any of these configurations would meet our objective 

with this experiment of establishing performance for the 

scenario when only an AST is available. 

4.2.1. Explanation and Example 

Merely reporting BLEU scores leaves an open question as 

to what the scores mean in practice. Consider these two 

examples from the standard and challenge experiments 

(method IDs align with our downloadable dataset for 

reproducibility). We chose the following examples for 

illustrative purposes, and as an aid for explanation. While 

relatively short, we feel that these methods provide a useful 

insight into how the models operate. For a more in depth 

analysis, a human evaluation would be required, which is 

beyond the scope of this paper. 

Example 1 is one of the cases where ast-attendgru 

succeeds when attendgru fails. To understand why, recall 

that, in our model as with a majority of NMT systems, the 

system predicts a sentence one word at a time. For each word, 

the model receives information about the method (the 

code/text plus the AST for models that use it), along with each 

word that has been predicted so far. So to predict “token”, ast- 

attendgru would receive the code/text, the AST, and the 

phrase “sets the”.In contrast, attendgru only receives the 

code/text and “sets the”. To predict the first word, “sets”, 

attendgru only knows that it is the start of the sentence 

(indicated by a start-of-sentence token), and the code/text 

input. To help make the prediction attendgru is equipped 

with an attention layer learned during training to attend to 

certain parts of the input. That layer is depicted in Figure 

4.4(a). Note that there is high activation (bright yellow) in 

position (14,1), indicating significant attention paid to 

location 14 in the code/text input: this is the word return. 

What has happened is that, during training, the model saw 

many examples of getter methods that were only a few lines 

and ended with a return. 

 

Example 1: 
 

 

 

 
(a) (b) 

Figure 5. Heatmaps of the attention layer in (a) attendgru and (b) 

ast-attendgru for the code/text input for Example 1. The x-axis is 

the 13 positions in the summary input. The y-axis is the 100 

positions in the code input. Images are truncated to code input 

length 

 

In many cases, the model could rely on very explicit 

method names, attendgru performed remarkably well in 

these cases, as the situation is quite like natural language – it 

learns to align words in the input vocabulary to words in the 

target vocabulary, and where they belong in a sentence. 

However, in cases such as Example 1 where the method name 

does not clearly state what the method should do (the name 

tokenUrl is not obviously a setter), attendgru struggles to 

choose the right words, even if, as in Example 1, it correctly 

identifies the subject of the action (“url of the token”). 

These situations are where the AST is beneficial. The 

code/text activation layer for ast-attendgru attends heavily 

to the start of sentence token (note column 0 in Figure 5(b)), 

which, since is the start of every sentence, probably acts like 

a “not sure” signal. But the model also has the AST input. 

Figure 5 shows the AST attention layer of ast-attendgru 

when trying to predict the first word. There are four areas of 

interest that help elucidate how the model processes the 

structure of the model, denoted A through D in the figure, and 

color-coded to the corresponding areas in the AST input. First, 

area A, is the portion of the method signature prior to the 

parameter. Recall that our AST representation is structure 

only, so almost all methods will start the same way. So as 

expected, the attention in area A is largely formless. The 

heatmap shows much more definition in area B. It is the 

parameter list, and the model has likely learned that short 

methods with parameter lists tend to be setters. The model 

activates very heavily at locations C and D, which are the start 

and end of the expr stmt AST node. A very common situation 

in the training set is that a short method with a parameter and 

an assignment is a setter. The model has learned this and 

chose “sets” as the first word. 

All of the models with AST input correctly chose “sets”. 

SBT found that the method is a setter, but could not determine 

what was being set – we attribute this behavior to the fact that 

the SBT representation blends the code/text and structural 

information into a single input, which creates a challenge for 

the model to learn orthogonal types of information in the same 

vector space (which work in other areas e.g. image captioning 

implies is not advisable [23]). While there is not space in this 

paper to explore fully, we note that even ast-attendgru during 

the challenge experiment correctly characterized the method 

as setting the value of a property, generating an unknown 

token when it could not determine which property. In fact, 

ast-attendgru correctly predicted the first word of the 

summary (which is usually a verb) 33% of the time during the 

challenge experiment, compared to 52% of the time in the 

standard experiment. 



 

5. Ensemble Decoding and Future 
Work 

As a hint toward future work, we test a combination of the 

attendgru and ast-attendgru models using ensemble decoding. 

The combination itself is straightforward: we compute an 

element-wise mean of the output vector of each model (the 

same trained models used in our evaluation). The training and 

test procedure does not change, except that during prediction, 

we use the maximum value of the combined output vector, 

rather than just one output vector from one model. This is the 

same ensemble decoding procedure implemented by 

OpenNMT [24], and is one of the most common of several 

options described by literature on multi-source NMT [25]. 

Since we are combining output vectors, the models “work 

together” during prediction of every word – it is not just 

choosing one model or another for the whole sentence. The 

idea is that one model may assign similar weights in the 

output vector to two or more words, in cases where it 

performs less well. And another model that performs better in 

that situation may assign more weight to a single word. In our 

system, the hope is that attendgru will contribute more when 

code/text words are clear, but ast-attendgru will contribute 

more when they are unclear. 

The ensemble decoding procedure improves performance 

to 20.9 BLEU, from 19.6 for ast-attendgru and 19.4 for 

attendgru. This is more than a full BLEU point improvement, 

which is quite significant for a relatively simple procedure. 

This result points us to future work including more advanced 

ensemble decoding (e.g. predicting when to use one model or 

another), optimizations to the network (e.g. dropout, 

parameter tuning), and, critically, using different data 

processing techniques on each type of input. 

6. Related Work 

Automatic comment generation approaches vary from 

manually-crafted templates [26,27, 28], IR [29,30, 31, 32] to 

neural models [33,34,35]. 

Comment generation based on manually-craft templates 

was one of the common methods for generating comments. 

Sridhara et al. [36] developed the Software Word Usage 

Model (SWUM) to capture the occurrences of terms in 

source code and their linguistic and structural relationships 

and then defined different templates for different semantic 

segments in source code to generate readable natural language. 

Moreno et al. [37] defined heuristic rules to select relevant 

information in the source code, and then divided the 

comments into four parts, and defined different text templates 

for each part to generate natural language descriptions. 

McBurney et al. [38] also used the SWUM model to extract 

the keywords in the Java method, employed the PageRank 

algorithm to select the important methods in the given 

method’s context, and used a template-based text generation 

system to generate comments. These frameworks have 

achieved good results on Java classes and methods. 

IR techniques have been widely used in comment 

generation task. Haiduc et al. [39] used two IR techniques, 

Vector Space Model and Latent Semantic Indexing, to 

retrieve relevant terms from a software corpus, and then 

organized these terms into comments. Eddy et al. [40] used 

hierarchical PAM, a probabilistic model that selected relevant 

terms from the corpus and included them to the comments. 

Unlike the first two research works, Wong et al. [43] proposed 

that code snippets and their descriptions on the Q&A sites can 

be used to generate comments for a piece of code. They used 

a token-based code clone detection tool SIM to detect similar 

code snippets and used their comments as target comments. 

Wong et al. [42] further thought that the resources of the Q&A 

sites were limited and proposed to use token-based code clone 

detection tools to retrieve similar code snippets from GitHub 

and leverage the information obtained from their comments 

to generate comments. 

Recently many neural networks have been proposed for 

comment generation. With large-scale corpora for training, 

neural based approaches quickly became state-of-the-art 

models on this task. Iyer et al. [16] first introduced the 

seq2seq model from neural machine translation into comment 

generation, whose encoder is the token embedding and 

decoder is an LSTM. Their model outperforms traditional 

methods on C# and SQL summaries. Inspired by the 

difference between natural language and programming 

language, Hu et al. [15] proposed a neural model named 

DeepCom to capture the structural information of source 

code. They proposed a structure-based traversal method, 

using one LSTM to process the AST’s traversal sequence, and 

the other LSTM to generate comments for Java methods. 

LeClair et al. [25] proposed a neural method to predict the 

comment by combining the sequence information and 

structure information of the source code with two GRU 

encoders. In addition, they reconstructed the benchmark 

dataset for this task, removed duplicate and auto-generated 

code in the dataset, and divided the dataset into training, 

validation, and test by project. 

We proposes to use abstract syntax trees for source code 

summarization .Our solution is inspired by recent advances in 

neural machine translation, as well as an approach called SBT 

by Hu et al[15]. 

7. Conclusion 

We have presented a neural model for generating natural 

language descriptions of subroutines. We implement our 

model and evaluate it over a large dataset of Java methods. 

We demonstrate that our model ast-attendgru, in terms of 

BLEU score, outperforms baselines from SE literature and is 

slightly ahead of a strong off the shelf approach from NLP 

literature. We also demonstrate that and ensemble of our 

approach and the off-the-shelf NLP approach outperforms all 

other tested configurations. We provide a walk-through 

example to provide insight into how the models work. We 

conclude that the default NMT system works well in 

situations where good internal documentation is provided, but 

less well when it is not provided, and that ast-attendgru 

assists in these cases. We demonstrate how ast-attendgru can 

produce coherent predictions even with zero internal 

documentation. 
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