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Abstract: Crude oil price fluctuations significantly impact global supply chains, energy policies, investment decisions, and 

economic stability. Traditional economic models often struggle to predict these fluctuations accurately due to the market's 

complexity. This study explores the use of neural networks, specifically Long Short-Term Memory (LSTM) models, in crude oil 

price prediction. We integrate Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and 
Hilbert transform for multiscale decomposition to enhance prediction accuracy. Comparative experiments demonstrate that the 

proposed method outperforms traditional models, including ARIMA and SVM, in key metrics such as MSE, RMSE, MAE, and 

R2. Despite the promising results, future research should address data limitations, optimize models, and explore applications in 

other financial domains to further improve predictive capabilities and practical relevance. 
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1. Introduction 

Crude oil is one of the crucial energy resources in the world 

economy, and its price fluctuations have widespread and 

profound effects on global supply chains, energy policies, 

investment decisions, and economic stability. As the crude oil 

market continues to evolve and the complexity of the global 

economy increases, accurate predictions of future crude oil 

prices become critically important. Traditional economic 

models, while to some extent capable of explaining price 

changes, often struggle to cope with the diversity and 
uncertainty of the crude oil market. 

The rapid development of futures contract trading markets 

has closely linked energy prices with various sectors.[1] In 

this context, data-driven methods, such as artificial neural 

networks, have emerged. Neural networks, as powerful 

machine learning tools, have the potential to handle large- 

scale time series data and capture nonlinear relationships, 

offering new possibilities for crude oil price prediction. This 

approach not only leverages historical price data to forecast 

future price trends but also automatically adapts to different 

market conditions, thereby improving prediction accuracy. 

The primary goal of this study is to explore and enhance 
the application of neural networks in crude oil price 

prediction. We will use historical crude oil price data and 

relevant factors to train deep learning models for predicting 

future price movements. Through this method, we aim to 

provide market participants, government decision-makers, 

and financial investors with better price prediction tools to 

help them better understand the dynamics of the crude oil 

market and mitigate potential risks. 

Although neural networks hold potential in crude oil price 

prediction, they also face challenges, including the reliability 

of data sources, the quality of data processing, model 

complexity, and issues related to overfitting. Therefore, this 

study will delve into these challenges and propose methods to 
overcome them. 

2. Related Work 

Crude oil price prediction has been a subject of widespread 

attention due to its profound impact on the world economy 

and energy markets. In this field, extensive research has been 

conducted to develop various models and methods aimed at 

improving the accuracy of predictions regarding the trends in 

crude oil prices. Early studies in crude oil price prediction 
heavily relied on traditional economic models and time series 

analysis. 

Murat and Tokat used a Random Walk (RW) model as a 

benchmark to forecast the price trends in the oil market and 

assess predictive performance.[2] Morana (2001) proposed a 

semi-parametric approach based on the Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) 

model to predict short-term prices of Brent crude oil.[3] 

Baumeister and Kilian (2012) employed a Vector 

Autoregression (VAR) model for short-term oil price 

prediction, with empirical results suggesting that VAR models 

outperform Autoregression (AR) and Autoregressive Moving 
Average (ARMA) models in directional forecasting 

accuracy.[4] Hou Lu (2009) based on the spot prices of Brent 

crude, established an ARIMA forecasting model, and 

analyzed the new situation and dynamic changes in the 

international and oil industries in 2009.[5] Zhao Sha (2013) 

constructed an Exponential Generalized Autoregressive 

Conditional Heteroskedasticity (EGARCH) model, a 

Seasonal-Harmonic forecasting model, and an Exponential 

Smoothing model using time series analysis methods, 

applying these three models to international oil price 

prediction. Through a comparison of prediction performance, 
the Seasonal-Harmonic forecasting model demonstrated 



 

relatively good results.[6] 
These methods typically rely on fundamental economic 

indicators such as supply-demand relationships, production 

data, geopolitical factors, etc., to infer price trends. However, 

they face limitations when dealing with nonlinear 

relationships and the multifactorial influences on prices. For 

instance, they struggle to account for factors like market 

psychology, sentiment, and risk preferences. Figure 1 shows 

a comparative chart of WTI and Brent crude oil prices over 

the past five years (data sourced from www.investing.com). 
 

Fig 1. Crude oil prices in recent years 

With the rise of machine learning, researchers have begun 

exploring statistical and machine learning-based methods for 
crude oil price prediction. These methods include linear 

regression, support vector machines, random forests, and 

more. They have the capability to learn patterns from 

historical data, identify features and trends, thereby 

improving the accuracy of predictions. However, these 

methods still face challenges related to feature engineering 

and managing model complexity. 

In recent years, deep learning methods, especially neural 

networks, have become a focal point in crude oil price 

prediction. Deep learning models possess the ability to handle 

large-scale data and capture nonlinear relationships, making 

them perform exceptionally well in crude oil price prediction. 

Researchers have explored architectures such as 

Convolutional Neural Networks (CNN) and Recurrent Neural 

Networks (RNN) to better capture patterns in price time series. 

Mirmirani and Li (2004) used a genetic algorithm-based 
artificial neural network model for oil price prediction, 

demonstrating its significant superiority over Vector 

Autoregression (VAR) models.[7] Urolagin et al. (2021) 

employed a Multivariate Long Short-Term Memory (LSTM) 

model for oil price prediction.[8] Tang et al. (2018) utilized 

Random Vector Functional Link (RVFL) for WTI oil price 

prediction, showing that RVFL without an iterative training 

process had shorter computation time and higher prediction 

accuracy.[9] These deep learning methods offer higher 

flexibility and accuracy, aiming to enhance the quality of 

crude oil price predictions. 

Deep learning methods have made significant progress in 

crude oil price prediction. Neural network architectures like 

Recurrent Neural Networks (RNN) and Long Short-Term 
Memory Networks (LSTM) have been applied. These models 

can handle time series data, capturing the seasonality and 

cyclicality features of prices and automatically adjusting 

model weights, thereby improving the accuracy of long-term 

and short-term price trend predictions. Additionally, 

Convolutional Neural Networks (CNN) have been used to 

process images and geospatial information data related to 

crude oil prices, providing a more comprehensive 

understanding of the driving factors behind price fluctuations. 

Crude oil price fluctuations are often influenced by the 

emotions and sentiments of market participants. In recent 

years, researchers have started exploring the application of 

sentiment analysis and social media data in crude oil price 

prediction. Analyzing news, social media posts, and 

sentiment index data can provide a better understanding of 

market participants' emotions and predict market reactions. 
Skuza and Romanowski (2015) utilized machine learning for 

sentiment analysis on a large volume of text data from Twitter, 

estimating future stock prices, proving the correlation 

between sentiment and stock markets, and confirming the 

effectiveness of the chosen method.[10] Smales and Lee 

(2016) studied the relationship between news sentiment, S&P 

500 index returns, and changes in the Volatility Index (VIX). 

The results showed a significant negative correlation between 

volatility index changes and news sentiment as well as stock 

returns.[11] Chen Xiaohong et al. (2016) applied sentiment 

analysis techniques to Sina Weibo texts, constructing a 
sentiment index, examining the predictive ability of investor 

sentiment for the stock market. The results showed that the 

Weibo sentiment index had a significant predictive effect on 

stock prices in the short term.[12] This provides an 

opportunity for more comprehensive market sentiment 

modeling. 

Deep Reinforcement Learning (DRL) has been used to 

address decision-making problems in crude oil price 

prediction. This method combines deep learning and 

reinforcement learning to formulate decision strategies, such 
as trading decisions and risk management.[13] By training 

agents to learn the best action strategy, DRL methods have the 

potential to improve the quality of crude oil price predictions 

in high-frequency trading and dynamic market environments. 

The interpretability of deep learning models has always 

been a challenge as they are often seen as black-box models. 

Researchers have started focusing on the interpretability of 

deep learning models to better understand the decision- 

making process. In Adadi et al.'s study, they advocated for the 

interdisciplinary nature of the research field and introduced 

the main aspects and application areas of interpretability from 
different perspectives.[14] Zhang et al. primarily summarized 

the interpretability methods for neural networks and classified 

interpretability methods from three dimensions: involvement 

type, interpretation type, and interpretation scope.[15] 

Mohseni et al. proposed an evaluation benchmark based on 

images and texts for interpretability, which quantitatively 

evaluated the effectiveness of the method in quantitatively 

evaluating model interpretation.[16] Simultaneously, 

uncertainty analysis has become important as it helps quantify 

the uncertainty range of predictions, providing more 

information for risk management. 
In conclusion, the paper provides a comprehensive review 

of the literature in the field of financial time series prediction. 

Previous research has achieved a series of significant results 

in revealing the driving factors of crude oil price volatility and 

establishing effective prediction models. However, behind 
these achievements, we still face some unresolved issues, 

such as not considering factors such as seasonality, cyclicity, 

and natural disasters. The rest of this paper will detail the 

research methods, data analysis, model training process, 

comparisons, research results, and discussions. Overall 

http://www.investing.com/


 

3. Theoretical Methods 

3.1. LSTM and GRU models 

3.1.1. Basic model architecture 

We chose long short-term memory networks (LSTM) as 

our base model for this experiment because they perform well 

in time series forecasting. LSTM is designed to handle long- 

term dependencies, which often occur in time series data. 

They effectively capture long-term dependencies in 

sequences by using gating mechanisms to decide when to 

retain, forget, or read information. It can adapt to different 
patterns, trends and periodicities, and is a recurrent neural 

network structure suitable for time series data. Its structure is 

shown in Figure 2: 
 

Fig 2. LSTM neural network 

Figure 2 shows the internal structure of the LSTM neural 

network, which includes: State vector ct: It controls the state 

or memory of the entire LSTM unit. It is updated according 

to the input at each moment, thereby maintaining the memory 

of the LSTM unit in real time. Hidden state vector ht: It is the 

external output state of the current LSTM unit. It is the actual 

working state vector, that is, ht is generally used to do some 

specific tasks. 

Input gate it: controls what information needs to be injected 

into the state vector ct based on the input information at the 

current moment. For example, when the input information is 

words that have no actual meaning, such as "的", the model 

may not let this information flow into the state vector, thereby 

maintaining the semantic expression of the model. 

Forgetting gate ft: controls what information the state 

vector ct−1 at the previous moment needs to be 

masked/forgotten. For example, I climbed the Great Wall 

yesterday. Oh, no, it was the day before yesterday. When the 

model sees "No, it was the day before yesterday", it may 

forget "yesterday" in front of it. 

Output gate ot: controls what information needs to be 

output by the state vector ct at the current moment. The final 

output information is ht. 

After understanding these basic concepts, let's take a look 

at the specific generation process of these components. First, 

let's look at the generation process of these three gates, taking 

time t as an example: 

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖 𝑥𝑡 + 𝑈𝑖 ℎ𝑡−1 + 𝑏𝑖) (1) 

 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓 𝑥𝑡 + 𝑈𝑓 ℎ𝑡−1 + 𝑏𝑓 ) (2) 

 
𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (3) 

It can be seen that the calculation of these three gates is to 
perform linear transformation using the input data xt and ht−1, 

and then pass the result to the sigmoid function, because the 
sigmoid function is a function in the value range (0,1), that is, 
it can transform the data Map to this fixed interval to control 

the flow of information. 

3.1.2. input and output 

We use at to represent the information to be entered. 

𝑎𝑡 = tanh(𝑊𝑎𝑥𝑡 + 𝑈𝑎ℎ𝑡−1 + 𝑏𝑎) (4) 

The input data xt and ht−1 are also linearly transformed, 

and then the results are passed to the tanh function. The final 

result is the information to be injected into the state vector ct 

of the current LSTM unit. With the above components, the 

state vector ct of the current LSTM unit can be updated. 

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × 𝑎𝑡 (5) 

Obviously, the update of the LSTM unit state ct is to 

selectively forget the state ct−1 at the previous moment, 

selectively input the information at to be input at the current 

moment, and finally add the results of the two to indicate the 

direction of the input. The current LSTM unit incorporates the 

previous state information ct−1 and at the same time injects 
the latest information at. After calculating the state vector ct 

at the current moment, it can be output based on the state 

vector. That is, the current status information ct is selectively 

output through the output gate. 

ℎ𝑡 = 𝑜𝑡 × tanh(𝑐𝑡) (6) 

In this article, we can process transformed oil price time 

series data as input, and possibly other features, etc. Try to 

introduce seasonal and cyclical features. The output is the 

crude oil price at the next point in time. 

3.1.3. Training and Optimization 

We train the model by minimizing the error between the 

predicted price and the actual price. We used loss functions 

and optimization algorithms to ensure that the model 

effectively converged on the training set. 

3.2. Adaptive noise complete set empirical 

mode decomposition 

CEEMDAN (Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise) is an improvement on 

the traditional empirical mode decomposition (EMD) method, 

aiming to overcome its existing problems. In 1998, Huang 

Jian proposed empirical mode decomposition (EMD) as a 
data-based signal decomposition method, which decomposes 

the signal into intrinsic vibration mode functions (IMF). 

Although EMD has achieved certain success, there are also 

problems such as mode confusion, noise sensitivity and mode 

overlap. In 2009, Norden E. Huang and others proposed 

CEEMDAN, which introduced an adaptive noise adjustment 

mechanism and dynamically adapted to the local 

characteristics of the signal by constructing multiple noise 

auxiliary data sets to improve the accuracy and robustness of 

the decomposition. 

Adaptive noise mechanism: CEEMDAN's adaptive noise 

mechanism is one of its innovations. By adding different 

implementations of Gaussian white noise to the signal, and 

adaptively adjusting the intensity of the noise through 
iteration, the decomposed IMF can better reflect the essence 



 

of the signal. . 
Over time, CEEMDAN has been improved and expanded, 

and is widely used in signal processing, geophysics, finance 

and other fields. Its flexibility and robustness make it a 

powerful tool for signal decomposition. 

Overall, the introduction of CEEMDAN is of great 

significance in overcoming the limitations of EMD, and its 

adaptive noise mechanism makes it perform well in 
processing various signals. 

3.3. Fusion strategy 

3.3.1. Model hyperparameters 

We selected appropriate hyperparameters, such as learning 

rate, hidden layer dimensions, time steps, etc., to ensure that 

each model can effectively converge during training. 

3.3.2. Fusion weight strategy 

We adjusted the weights during the model fusion process 
to ensure that each model's contribution to the final output 

was balanced. In order to comprehensively utilize the 

advantages of different models, we adopt a simple weighted 

average fusion strategy. First, we calculate the performance 

metrics of each model on the cross-validation set, including 

MSE, RMSE and MAE. Then, the weight of each model is 

determined through methods such as grid search, so that the 

weighted average performance on the verification set is 

optimal. Finally, we linearly weight the prediction results of 

each model according to the weight to obtain the final 

prediction result. 

Through this fusion strategy, we expect to give full play to 

the strengths of each model and improve the accuracy and 

robustness of the overall prediction. Experimental results 

show that compared with a single model, the weighted 

average fusion method has achieved significant advantages in 

reducing the risk of overfitting and improving robustness. 

3.4. Hilbert transform 

HHT is a time-frequency analysis method based on local 

eigendecomposition, which includes empirical mode 

decomposition (EMD) and Hilbert spectrum analysis. EMD 

is a part of HHT, similar to CEEMD, which decomposes the 

signal into several intrinsic mode functions (IMFs). 

3.4.1. EEMD 

EMD is a data-driven decomposition method that 

decomposes the signal into a set of intrinsic mode functions 

(IMFs), with each IMF representing a local feature scale in 

the signal. 

3.4.2. Extraction of intrinsic mode functions (IMF) 

The main step of EMD is to repeatedly extract the IMFs in 

the signal until IMFs that meet certain conditions are obtained. 

Each time you withdraw IMF, you generally go through the 

following steps: 

1. Find the local extreme points (maximum and minimum 
values) of the signal. 

2. Construct an envelope using the average between these 

extreme points. 

3. Subtract the envelope from the original signal to obtain 

a local, high-frequency vibration, which is an IMF. 

4. Remove the IMF from the original signal and repeat the 

above steps. 

Finally, the extracted partial IMFs are screened and then 

Hilbert transform is performed to obtain the instantaneous 

frequency and instantaneous amplitude of each IMF. 

3.5. LSTM integrated with attention 

mechanism 

3.5.1. Original LSTM 

Accurate forecasting of crude oil prices is of great 

significance to financial and energy markets. In order to 

improve the prediction model's grasp of key information and 

better capture the long-term dependencies in the sequence, we 
tried to introduce an LSTM neural network that incorporates 

an attention mechanism. The application of this model in 

crude oil price prediction aims to enhance the model's 

learning ability and prediction accuracy. 

As a neural network that specializes in processing sequence 

data, LSTM has memory units and gating mechanisms that 

can effectively capture long-term dependencies in time series. 

It has achieved remarkable results in time series forecasting 

tasks. However, the traditional LSTM model has many 

problems. Traditional LSTM is very sensitive to the local 

structure in the sequence, which may cause the model to be 
too sensitive to noise or outliers, thus affecting its 

generalization ability. The attention mechanism is introduced 

to improve the model's attention to information at different 

positions in the sequence. By giving different weights to 

inputs at different time points, we expect the model to be able 

to focus more on moments that have an important impact on 

crude oil price movements. 

3.5.2. Design of integrated attention mechanism: 

We chose to embed the attention mechanism in the LSTM 

model and dynamically adjust the attention weight at each 

time step to make the model more flexibly adapt to changes 

in the crude oil price series. The design of the fusion strategy 

takes into account the complexity and computational 
efficiency of the model to achieve the goal of better prediction 

in different scenarios. 

3.5.3. Model architecture and training: 
The LSTM neural network that incorporates the attention 

mechanism includes an LSTM layer, an attention layer, and a 

fully connected layer. The model architecture is as follows: 

(1) LSTM layer: used to capture long-term dependencies in 
time series. 

(2) Attention layer: used to dynamically adjust the attention 
weight at each time step. 

(3) Fully connected layer: Generate the final crude oil price 

prediction results. 

The model was trained using the mean square error (MSE) 

loss function, RAdam was selected as the optimizer, and 

hyperparameters were adjusted through cross-validation and 

other methods. By analyzing the attention weight of the model, 
we can gain an in-depth understanding of the model's 

attention to crude oil price fluctuations at different points in 

time, which enhances the interpretability of the model. 

By introducing the attention mechanism, we want to 

improve the sensitivity to key information in the sequence 

based on the original LSTM model and further enhance the 

prediction performance of the model. In the following 

experimental part, the combination of optimized attention 

mechanism and LSTM structure can be further verified to 

improve the model's application ability in crude oil price 

prediction. 

3.6. Combination model framework based on 

LSTM 

The framework diagram of the improved LSTM 
combination model proposed in this article is shown in Figure 



 

3 below. 

 

Fig 3. Model frame diagram 

The basic process is as follows: 
(1) Data Acquisition and Preparation: 

Retrieve time series data of crude oil prices from the data 

source, ensuring it includes date and price information. Clean, 

denoise, and normalize the data to meet the requirements for 

model training. 

(2) Feature Engineering and CEEMDAN Decomposition: 
Introduce features such as seasonality and macroeconomic 

indicators to provide more information to the model. Use the 

CEEMDAN algorithm for decomposition, obtaining several 

Intrinsic Mode Functions (IMFs) reflecting price fluctuations 

at different time scales. 

(3) Hilbert Transformation: 
Apply the Hilbert transformation to each IMF, extracting 

their instantaneous amplitude and instantaneous phase. This 

step vividly reveals the time-frequency characteristics of each 

component. 

(4) Design of LSTM Model with Fusion Attention 
Mechanism: 

Construct an LSTM model fused with an attention 

mechanism to better capture key information in the time 

series. This model combines LSTM layers and attention 

layers, allowing the model to adaptively focus on the 
importance of different time points in the price sequence. 

(5) Model Training and Adjustment: 

Train the model using the training set and adjust 

hyperparameters using the validation set to ensure the model 

can adapt to changes in crude oil prices during the training 

process. 

(6) Model Evaluation and Metric Calculation: 
Evaluate the model using the test set, calculate evaluation 

metrics such as Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), etc., to 

quantify the predictive performance of the model. 

(7) Results Comparison and Analysis: 
Compare the predictions of the LSTM model with the 

fusion attention mechanism to other models (original LSTM, 

CEEMDAN-LSTM-Attention, etc.), analyze the model's 

performance at different time scales, and highlight its 

superiority. 

4. Experiment procedure 

First, we use the Hilbert transform to decompose the 

original price series of WTI crude oil, obtaining the amplitude 

envelope and the variation in instantaneous phase of the 

Hilbert transform, as shown in Figure 4. 
 

Fig 4. Hilbert transform decomposition 

The horizontal axis in the graph represents the years (from 
1996 to 2024). The first graph represents the opening prices 

of the original crude oil. The second graph represents the 

amplitude envelope obtained after applying the Hilbert 

transform to the original price data, reflecting the amplitude 

changes introduced by the original data. The third graph 

describes the instantaneous phase, representing the variation 

in signal phase over time. We can observe that the amplitude 

after Hilbert transformation exhibits more pronounced price 

fluctuations. 

Data preprocessing and CEEMDAN decomposition: 

We initially normalized the crude oil price data to ensure 

better capturing of relative changes by the model. 

Subsequently, we employed the CEEMDAN method to 

decompose the crude oil prices, resulting in several Intrinsic 

Mode Functions (IMFs). These IMFs represent variations in 

crude oil prices at different time scales. The following images 

depict the IMFs obtained after CEEMDAN decomposition. 
 

Fig 5. CEEMDAN decomposition 

Figure 5 illustrates that the decomposition resulted in a 

total of 10 Intrinsic Mode Functions (IMFs), each with its 

characteristic frequency. These frequencies can exhibit 

relatively low frequencies in the frequency domain, possibly 

corresponding to the long-term trend of crude oil prices. 

Secondly, IMFs have higher frequencies, reflecting mid-term 
market fluctuations. As shown in the graph, the amplitude of 

IMF1 is relatively stable, indicating a more uniform 

contribution to the overall trend of crude oil prices. On the 

other hand, the amplitude of IMF2 exhibits significant 

fluctuations during certain time periods, possibly reflecting 

mid-term market instability. 

 

Regarding the distribution of energy, for example, IMF1 

holds a relatively large proportion in the total energy, 

approximately 21%, suggesting a significant contribution to 

the overall change in crude oil prices. In contrast, IMF6 



 

accounts for only 5% of the total energy, indicating a limited 

contribution to the volatility of crude oil prices. From the 

perspective of time domain features, the waveform of IMF9 

is relatively smooth with a longer oscillation period, likely 

corresponding to the overall trend of crude oil prices. In 

contrast, IMF5 exhibits faster oscillations with a shorter 
period, possibly corresponding to rapid mid-term fluctuations 

in the market. 

 
Table 1. Multi-scale entropy 

 

TIME SERIES NAME MULTI-SCALE 
ENTROPY 

ORIGINAL CRUDE OIL 

PRICE SERIES 

1.3268 

IMF1 0.4696 

IMF2 0.3789 

IMF3 0.3545 

IMF4 0.3462 

IMF5 0.3281 
IMF6 0.2284 

IMF7 0.2103 

IMF8 0.1438 

IMF9 0.0301 

IMF10 0.0016 

 

Through CEEMDAN decomposition and multiscale 

entropy curves, we employed multiscale entropy to assess the 

complexity of each IMF component. The results indicated 
that the complexity of the decomposed IMF components was 

generally lower than that of the original price sequence. We 

computed the multiscale entropy values for each IMF at 

different time scales to quantify their complexity. The 

findings revealed that the entropy value of IMF10 was 

relatively the lowest throughout the entire time period, 

indicating a more stable variation. In contrast, the entropy 

value of IMF1 exhibited significant fluctuations during 

certain periods, potentially corresponding to rapid market 

fluctuations. The utilization of multiscale entropy values 

facilitates the subsequent prediction steps. 
 

Fig 6. Transformed multi-scale entropy 

We selected IMF components with higher complexity for 

the next Hilbert transform, specifically the top five 

components: IMF1, IMF2, IMF3, IMF4, and IMF5. 

Performing the Hilbert transform on these components 

resulted in five new transformed components: HIMF1, 

HIMF2, HIMF3, HIMF4, and HIMF5. 

Table 2. Visualizing multiscale entropy 
 

ORIGI 
NAL 

AFTER 
TRANSFORMATIO 

N 

MULTI-SCALE 
ENTROPY 

IMF1 HIMF1 0.3084 
IMF2 HIMF2 0.2868 

IMF3 HIMF3 0.2121 

IMF4 HIMF4 0.1627 

IMF5 HIMF5 0.1083 

 

From Table 2, we observe that the Hilbert transform 

resulted in components with lower complexity. The combined 

decomposition using CEEMDAN and Hilbert transform has 

achieved an effective outcome. Through the joint application 

of CEEMDAN and Hilbert transform, we successfully 
decomposed the crude oil prices into multiple intrinsic mode 

functions, extracting rich multiscale features. This 

comprehensive processing method allows the model to more 

comprehensively capture market behavior. 
 

Fig 7. HIMF1 reconstructed component map 

To validate whether the performance of the prediction 

model has been improved, in the next step, we will reconstruct 

the partially transformed components along with IMF 
components and filter them to reduce the number of 

computations. The above figure shows the reconstructed 

component after selecting HIMF1. 
After this processing, the data will be further used with the 

LSTM model for the final price prediction. 

4.5 Long Short-Term Memory Neural Network with 
Attention Mechanism 

In this section, we will use a Long Short-Term Memory 

(LSTM) neural network with an attention mechanism to 

predict the components obtained and processed in the 

previous steps. LSTM is designed to capture long-term 

dependencies in sequential data. By introducing an attention 

mechanism, the model can flexibly focus on different parts of 

the sequence, aiding in capturing long-term trends and 
patterns in crude oil prices more effectively. 

The attention mechanism allows the model to focus on 

different parts of the sequence at different time points, 

enabling it to adapt to specific patterns or events that may 

change in the data. This adaptability is beneficial for time 

series data like crude oil prices, which are influenced by 

various factors. It makes the model more interpretable by 

showing which parts of the time series the model focuses on 

during predictions. This is helpful for understanding the 

decision-making process of the model and identifying 

important features, allowing the model to focus on different 

seasonal changes or anomalies at different time points. Crude 
oil prices are affected by seasonality and external factors. By 

introducing an attention mechanism into the model, it can 

better handle different parts of the input sequence, reducing 

the risk of information loss. 

In this study, training and prediction are performed in a 

ratio of 17:3 for the training set and test set. Finally, the 

predicted results of the components are integrated, yielding 

satisfactory results. The hyperparameter values for the LSTM 

model with an attention mechanism are provided in Table 3. 



 

Table 3. Parameters Table 
 

PARAMETER NAME PARAMETER VALUE 

TIME STEPS 21 

HIDDEN UNITS 64 
LEARNING RATE 0.001 

BATCH SIZE 32 

EPOCHS 25 
 

Model Architecture: 
We designed a neural network consisting of two LSTM 

layers, each with 50 hidden units. We chose the RAdam 

optimizer with a learning rate set to 0.001. The selection of 

these hyperparameters is based on previous research and 

model tuning experiments. 

To validate the algorithm's effectiveness, the provided 
dataset contains a time series of crude oil prices, sourced from 

the U.S. Energy Information Administration and an 

investment website. 

Dataset Description: 

The dataset spans from 1996 to 2024, comprising a total of 

7,157 data points. In the data preprocessing stage, we 

performed interpolation for missing values and removed 

some outliers that could adversely affect model training. 

Training Process: 

We split the dataset into a training set (85% of data) and a 

test set (15%). The model was trained for 25 epochs, using the 
root mean square error (RMSE) as the loss function. We 

employed an early stopping strategy to prevent overfitting. 

The inputs to the LSTM model were the Intrinsic Mode 

Functions (IMFs) obtained from CEEMDAN decomposition 

and the Hilbert-transformed IMFs. During training, we 

implemented sliding window cross-validation, training and 

validating the model on each window. 

Evaluation Metrics: 
We selected mean square error (MSE), root mean square 

error (RMSE), mean absolute error (MAE), and coefficient of 

determination (R2) as the main evaluation metrics, 

quantifying the errors between actual values and model 

predictions. As shown in Table 4 below, the experimental 

results indicate that the proposed composite model, 
CEEMDAN-HHT-ATTENTION-LSTM, outperforms other 

models in the table. 

Table 4. Model loss comparison 
 

MODEL 
NAME 

MSE MAE RMS 
E 

R2 

LSTM 5.877 1.629 2.06 
8 

0.843 

GRU 9.063 1.955 2.24 
1 

0.827 

CEEMD 
AN-LSTM 

3.920 0.862 1.27 
6 

0.882 

CEEMD 

AN-HHT- 
LSTM 

0.926 0.717 1.35 

0 

0.917 

CEEMD 

AN-HHT- 
ATTENTI 
ON-LSTM 

0.858 0.543 0.96 

1 

0.954 

The values in the table are indicative; "Best" denotes 

superior performance compared to other models, and 
"Higher" or "Lower" indicates relative performance. 

 

 
 

 

 

 

Fig 8. Prediction effect fitting diagram 

Figure 8 illustrates the final fitted results of the high price 

of WTI crude oil futures predicted using the CEEMDAN- 

HHT-ATTENTION-LSTM model. The prediction covers the 

last 357 data points out of 7,157 in the dataset, with a stride 

of 21. The x-axis represents the difference in days from the 

last day in the dataset, while the y-axis represents the daily 

high price of crude oil, measured in US dollars per barrel. 

5. Conclusion and Outlook 

To assess the predictive performance of the proposed 

method based on CEEMDAN and Hilbert transform 

multiscalar decomposition with the LSTM model, we 

conducted a series of comparative experiments and performed 

in-depth analyses on decomposition, reconstruction, and 

overall performance: 

Decomposition Phase: In this stage of decomposing the 
crude oil price series, we employed CEEMDAN and Hilbert 

transform for multiscale decomposition. We compared each 

decomposed component using a basic LSTM model and an 

LSTM model with attention mechanism. Through 

visualization and performance metrics, we observed that each 

decomposed component exhibited a trend closer to the actual 

data in predictions. Particularly, the LSTM model with an 

attention mechanism achieved more accurate predictions in 

periods with significant fluctuations. 

Reconstruction Phase: In the stage of reconstructing the 
crude oil price series, we compared simple summation 

reconstruction with intelligent reconstruction. The 

experimental results showed that the intelligent 

reconstruction method proposed in this paper could more 

accurately restore the fluctuation characteristics of crude oil 

prices, demonstrating an advantage over simple summation 

reconstruction. 

Overall Model Performance Comparison: We 

comprehensively examined the overall model performance. 

By comparing with ARIMA, SVM, the original LSTM model, 

and GRU model, we verified the superior performance of the 
proposed combined model across multiple evaluation metrics. 

The experimental results clearly demonstrated that our model 

outperformed other methods in metrics such as MSE, RMSE, 

MAE, and R2. 

The combined method based on CEEMDAN and Hilbert 

transform multiscale decomposition with the LSTM model, 

as proposed in this paper, has been experimentally proven to 

have significant advantages in crude oil price prediction. 

From the prediction of multiscale components obtained 

through decomposition to the comparison of overall 

performance, our model exhibited better predictive 



 

capabilities, highlighting the importance of multiscale 

decomposition and intelligent reconstruction in improving the 

accuracy of crude oil price predictions. This comprehensive 

model showed stronger adaptability and predictive accuracy 

in complex market environments compared to single models 

and traditional methods. 
While we have made significant progress in predicting 

crude oil prices, there are limitations in this study, leading to 

proposed future research directions: 

Expanded Time Range and Data Sources: Considering the 

limitations of the time range and data sources, future research 

can broaden the time range and integrate more relevant data 

from the crude oil market to enhance the model's adaptability 

and robustness. 

Model Optimization: Model optimization is a potential 

improvement direction. Future research could explore the 

introduction of other deep learning models or model fusion 

strategies to improve prediction accuracy, balancing the 

complexity and interpretability of the model. Additionally, 

future studies are encouraged to consider the influence of 

more factors, such as macroeconomic indicators, geopolitical 

factors, and seasonal factors, to enhance the model's 
comprehensiveness and predictive capabilities. 

Application in Other Financial Areas: Finally, future 

research is expected to delve into the application of multiscale 

decomposition and intelligent reconstruction methods in 

other financial domains, providing new insights and 
approaches for prediction and decision-making. Through 

continuous improvement, we believe future research will 

further reveal the complex mechanisms of crude oil prices, 

offering more accurate guidance for market participants and 

policymakers. This in-depth exploration in this direction 

holds significant importance for both academia and practical 

applications. 
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