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Abstract:This study employs high-frequency trading volume data in the financial sector to apply the Long Short-Term 

Memory (LSTM) model for purposes of risk management. By incorporating high-frequency data, which includes trading 

volume information, with the LSTM model, we develop an LSTM-RV dynamic prediction model for realized volatility. 

Employing a semi-parametric Extreme Value Theory (EVT) approach, we estimate return quantiles to construct the efficiency 

risk management model. Empirical analysis reveals that the LSTM-RV prediction model markedly improves prediction 

accuracy compared to the traditional Heterogeneous Autoregressive (HAR) volatility prediction model. Additionally, the 

LSTM-RV-EVT model outperforms both the conventional model and models that exclude trading volume information. 
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1.Introduction  
In recent years, deep learning has become a prominent 

branch of machine learning, achieving notable success 

across various domains. This has led to a surge of interest in 

deep learning theories, methods, and applications both 

domestically and globally. Common deep learning models 

include Convolutional Neural Networks (CNN), Recurrent 

Neural Networks (RNN), Long Short Term Memory 

(LSTM) networks, Deep Belief Networks (DBN), and 

Restricted Boltzmann Machines (RBM), among others [1]. 

Financial risk arises from the volatility of future returns on 

financial assets, and Value at Risk (VaR) is a widely utilized 

metric for measuring financial risk. VaR quantifies financial 

asset returns, typically involving the quantiles of 

standardized returns and future volatility (standard 

deviation) of returns. There are three primary approaches to 

characterizing the distribution of returns: parametric 

methods, non-parametric methods (such as Monte Carlo 

simulation and historical simulation, which do not assume 

any specific return distribution and derive quantiles directly 

from historical data or simulations), and semi-parametric 

methods (such as Extreme Value Theory (EVT), which can 

model the tail risk of VaR). Research by Karmakar et al. [2] 

has shown that VaR prediction models based on EVT 

perform better than other models. 

Volatility forecasting is a critical aspect of VaR risk 

management and a popular research topic in finance. 

Andersen and Bollerslev [3], using high-frequency financial 

data, introduced Realized Volatility (RV), which effectively 

measures volatility in high-frequency data. Traditional RV 

forecasting primarily relies on time series analysis models. 

Sattarhoff et al. [4] found that the autocorrelation function of 

daily RV series decays slowly, indicating long memory, and 

proposed the use of the ARFIMA model to characterize and 

predict the dynamic changes in RV. Corsi [5] developed the 

Heterogeneous Autoregressive (HAR) model to capture the 

long memory of RV and predict future RV. Building on the 

HAR model, Bollerslev et al. [6] proposed the HARQ and 

HARF models. Empirical studies have demonstrated that RV 

prediction models based on high-frequency data have a 

predictive advantage over traditional low-frequency time 

series models like GARCH. 

The widespread application of machine learning and deep 

learning in technology has also gained significant attention 

in the financial field. Barunik and Krehlik [7] suggested 

using artificial neural networks to predict the volatility of 

energy markets, highlighting that incorporating high-

frequency data characteristics improves volatility prediction 

accuracy. Chen Weihua and Xu Guoxiang [8] utilized LSTM 

and stock forum data to predict RV in the high-frequency 

data domain and compared it with traditional time series 

models like GARCH, ARFIMA, and HAR, finding that the 

LSTM model outperformed traditional models in prediction 

accuracy. 

There is limited discussion in the literature on how to 

construct VaR measurement models using deep learning 

theory and LSTM models with transaction volume data and 

apply them to financial risk management. This paper aims to 

utilize high-frequency price information and transaction 

volume data to construct the realized volatility of prices and 

transaction volumes. By integrating LSTM models, we 

develop an LSTM-RV model for volatility prediction. 

Combining this with the semi-parametric EVT method for 

return quantile measurement, we construct the unique 
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financial risk management model and conduct empirical 

analysis. 

 

2. Related work  

2.1. Long Short-Term Memory (LSTM) model 

Standard Recurrent Neural Networks (RNNs) are a class of 

sequence models with short-term memory capabilities. 

However, during the training process, they often encounter 

issues with long-term dependencies, resulting in the 

vanishing gradient problem. In practical applications, the 

most effective sequence models are gated RNNs, which 

include Long Short-Term Memory (LSTM) networks and 

Gated Recurrent Unit (GRU) networks. LSTM networks are 

more widely used and generally perform better, so this paper 

focuses on the application of LSTM networks in VaR risk 

management. Similar to standard RNNs, each hidden layer 

node in an LSTM has input and output. However, each 

hidden layer node also includes a system of gated units that 

control the flow of information. These gated units selectively 

incorporate new information and forget previously 

accumulated information. The core component is the 

memory cell state unit, and the combination of memory cells 

and gated units effectively addresses the vanishing gradient 

problem of traditional RNNs. Memory cells, by introducing 

self-connecting recurrent units, can store long-term 

information. These units record the state of the memory cell 

over time and can retain information from the distant past. 

Let σ denote the sigmoid function, which ranges from 0 to 1 

and controls the opening and closing of gated units, and tanh 

denote the hyperbolic tangent function. LSTM cells can 

remember past long-term information, and the self-loop 

weight is controlled by the forget gate, which filters 

historical information. The forget gate is defined as: 

 (1) 

Among them, b g,U g, and W g represent the bias vector, 

input weight matrix, and recurrent weight matrix of the 

forget gate, respectively. xt denotes the feature vector at time 

step t, ht-1 represents the hidden state vector at time step t−1, 

and g t is the output vector of the forget gate at time step t. 

The cell state is also influenced by the input, and the external 

input gate vector i t is defined as: 

     (2) 

The parameters are defined similarly to those of the forget 

gate. The input modulation gate vector c t and the cell state 

vector c t are defined as follows: 

 (3) 

From equation (3), it is clear that the cell state ct is governed 

by two gate units: the forget gate gt and the input gate it. The 

forget gate gt regulates the previous cell state ct−1: when the 

forget gate value is near 0, the previous cell state is almost 

"forgotten"; when the value is near 1, the previous cell state 

is fully "retained.". Thus, these two gate units are essential 

in the cell state update process. The output of the LSTM cell 

is managed by the output gate. The output gate vector ot and 

the final hidden state output vector ht are defined as follows: 

 (4) 

The parameters are defined similarly to those of the forget 

gate. Essentially, an LSTM operates through three gate 

units—namely, the input gate, the forget gate, and the output 

gate—which control the input to the memory cell, update the 

cell state, and manage the output of the LSTM cell, 

respectively. This structure enables the LSTM to 

"remember" past information over extended periods. The 

memory cell can retain a portion of information for future 

use, effectively mitigating the vanishing gradient problem in 

RNNs. 

 

3.Model Construction 

Value at Risk (VaR) refers to the maximum potential loss in 

the value of a financial asset or portfolio over a specified 

time period at a given confidence level. Typically, when 

measuring VaR, it is necessary to standardize daily returns: 

            (5)                                 

Where ηt represents the standardized return on day t, Rt 

represents the negative logarithmic return on day t, and σt 

represents the volatility of returns on day t. F is the 

distribution function of standardized returns. The 100(1 – p0)% 

confidence VaR for day t, based on information from day 

t−1, is predicted as follows: 

 (6) 

Here, F−1(1−p0) denotes the (1 - p0) quantile of the 

distribution function F, and σt∣t−1 represents the volatility 

forecast for day t based on information from day t−1. 

Typically, p0 is set to 0.01 or 0.05; in this paper, p0 is set to 

0.01. Equation (6) provides the VaR for holding a certain 

asset. If considering short-selling the asset, the standardized 

return ηt is simply negated, and the VaR for the short-selling 

scenario is calculated in a similar manner. In this paper, σt is 

measured using realized volatility, and the quantile F−1(1−p0) 

is estimated using the threshold model of extreme value 

theory. A detailed description of the VaR measurement 

model follows. 

3.1.Realized Volatility 

Andersen and Bollerslev [3] constructed realized volatility, 

which is defined as the sum of squared intraday returns on 

day t. The realized volatility of the price process on day t is 

defined as follows: 

   (7) 

In addition to using high-frequency trading price data to 

measure VaR, this paper also utilizes high-frequency trading 

volume data. Let Vt,i represent the trading volume at the i  
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moment on day t. The realized volatility of the trading 

volume process on day t is defined as follows: 

  (8) 

 

3.2.Construction of the LSTM-RV Dynamic Volatility 

Prediction Model 

The log-transformed RV approximately follows a normal 

distribution, which has better statistical properties and aids 

in improving prediction accuracy. The log-transformed RV 

exhibits significant long-term memory characteristics. Given 

that the deep learning LSTM model is well-suited for 

predicting long-memory time series, this paper utilizes 

trading price information and trading volume information, 

using ln RV(p) and ln RV(V) as input variables. The LSTM 

model is employed to predict RV(p), constructing the LSTM-

RV dynamic volatility prediction model as follows: 

 (9)                   

The model comprises two parts: the logarithmic realized 

volatility sequence of prices ln RV(p)from the past t1days and 

the logarithmic realized volatility sequence of trading 

volume ln RV(V) from the past t2 days. The input variables 

are processed through a single-layer LSTM model, followed 

by a fully connected layer, ultimately yielding the predicted 

value of RV(p) for day t+1. This model offers several 

advantages: First, modeling the log-transformed RV 

enhances statistical properties and prediction accuracy. 

Second, log-transforming volatility ensures that the 

predicted results are non-negative, which is more realistic. 

Finally, the proposed model can leverage multi-source 

information such as trading price and trading volume to 

predict the realized volatility of prices. 

3.3.Construction of the LSTM-RV-EVT Model 

From equation (6), it is evident that VaR measurement 

involves the quantile of standardized returns and volatility. 

Typically, returns exhibit characteristics such as high peaks 

and fat tails, necessitating the modeling of their distribution 

when calculating return quantiles. This paper employs a 

semi-parametric model, utilizing extreme value theory (EVT) 

to estimate return quantiles. Parametric models carry the risk 

of incorrect distributional assumptions, while non-

parametric methods suffer from low statistical efficiency. 

Semi-parametric methods effectively address these 

shortcomings, achieving a better balance. In practice, the 

peak-over-threshold method is commonly used in EVT to 

measure the tail characteristics of returns. 

   (10) 

Where ξ is the shape parameter and β is the scale parameter. 

When ξ≥0, the generalized Pareto distribution exhibits heavy 

tails; when ξ<0, the distribution is truncated. Thus, given a 

value of p, the quantile estimate can be expressed as: 

   (11) 

Therefore, by combining equation (3) for the LSTM-RV 

model and equation (11) for the EVT model, and using the 

information up to day t, the expression for the VaR value on 

day t+1 can be derived. The LSTM-RV-EVT model for VaR 

is constructed as follows: 

 (12) 

The LSTM-RV-EVT Value at Risk (VaR) measurement 

model has the following advantages: First, it utilizes realized 

volatility (RV) derived from high-frequency data instead of 

volatility from classic time series, making implicit volatility 

explicit and facilitating the creation of a dynamic volatility 

model. Second, it employs the deep learning LSTM model, 

integrating multiple data sources such as trading price and 

volume information to fully exploit data and achieve 

accurate RV predictions. Finally, the model uses a semi-

parametric extreme value theory (EVT) approach to estimate 

the quantiles of return tails, avoiding the risk of incorrect 

distributional assumptions associated with parametric 

models and improving statistical estimation efficiency 

compared to non-parametric methods. 

3.4.VaR Evaluation 

After completing the VaR measurement and prediction, it is 

necessary to evaluate the accuracy of the VaR measure. The 

CC test combines both the UC test and the IND test. Soltyk 

et al.[9] developed the generalized method of moments 

conditional statistic Jcc(q) to address the CC test, where q is 

the degree of freedom. When q=1, Jcc(1) is equivalent to the 

usual likelihood ratio test. This method indicated that this 

test method is superior to the widely used likelihood ratio 

test. This paper will use the generalized method of moments 

conditional test to analyze and compare the effectiveness of 

VaR models. 

4. Empirical Analysis 

This paper uses 5-minute high-frequency trading data of the 

FTSE 100 Index, covering the period from January 4, 2006, 

to October 31, 2023, totaling 4,299 trading days. The trading 

data include 5-minute opening prices, closing prices, and 

trading volumes, with 48 5-minute closing price data points 
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for each trading day. The sample dataset is divided into a 

training set and a testing set. The training set spans from 

January 4, 2006, to December 31, 2015, and is used for 

model parameter estimation. The testing set spans from 

January 4, 2016, to October 31, 2023, and is used to validate 

the model constructed in this paper. During model training, 

90% of the training set data is used as training samples to 

estimate the parameters of the LSTM model, while 10% is 

used as the validation set. The training set interval length is 

then kept constant while rolling predictions for the next day's 

price volatility are made using the dynamic LSTM-RV 

prediction model as described in equation (3). Both t1 and t2 

are set to 19, meaning that the model uses 20 days of data to 

predict future realized volatility. 

4.1.Statistical Analysis of Data Characteristics 

Table 1 on the next page presents the descriptive statistical 

characteristics of each variable sequence used in this paper. 

As shown in the table, the skewness of the logarithmic RV 

and standardized returns is small and exhibits low kurtosis, 

while the other variable sequences display skewness and 

high kurtosis. Additionally, the J-B test statistics for each 

sequence are significant at the 1% significance level, 

indicating that none of the sequences meet the normal 

distribution assumption. The Ljung-Box test statistics Q(5)), 

Q(10), and Q(20) for lags of 5, 10, and 20 periods are all 

significant at the 1% significance level, suggesting that each 

sequence exhibits autocorrelation and long-memory 

characteristics. 

Table 1 Descriptive Statistics of Each Variable 

Stati

stic 

M

ea

n 

St

d 

D

ev 

Ske

wn

ess 

Ku

rto

sis 

J-B 
Q(5

) 

Q(1

0) 

Q(2

0) 

RV(

p) 

0.

00

03 

0.

00

04 

5.6

87 

50.

51

53 

4807

20.88

*** 

668

7**

* 

978

5.6

*** 

154

63*

** 

RV(

V) 

4.

34

69 

9.

02

0 

9.0

847 

96.

02

79 

1712

533.8

2*** 

471

0.9

*** 

720

9**

* 

102

94*

** 

lnR

V(p) 

9.

27

09 

1.

08

05 

0.3

293 

-

0.1

15 

80.01

*** 

121

91*

** 

218

41*

** 

381

39*

** 

lnR

V(V

) 

1.

10

50 

0.

64

64 

1.7

639 

6.8

36

2 

1061

2.70*

** 

797

3**

* 

144

06*

** 

249

73*

** 

Stan

dard

ized 

Retu

rn 

-

0.

11

2 

1.

14

08 

0.0

357 

-

0.2

60

7 

12.97

*** 

20.

03*

** 

47.

15*

** 

101.

14*

** 

 

*** indicates significance at the 1% level; Q(n) is the n-lag 

Ljung-Box test statistic. 

4.2. Comparison of Volatility Prediction Models 

First, this paper compares the volatility prediction accuracy 

of six models using high-frequency data: LSTM-RV, LSTM, 

HAR, HARQ, HARQF, and ARFIMA. The LSTM-RV 

model is the proposed model (3), utilizing high-frequency 

trading price and volume information. The HAR 

(Heterogeneous Autoregressive) model, proposed by Corsi , 

sets the regressors as the past 1 day, 5 days, and 22 days of 

RV, with the dependent variable being the RV for the next 

day. Bollerslev et al. extended the HAR model by 

incorporating the realized quarticity (RQ) function into all 

the regression coefficients, resulting in the HARQF model. 

If only the past 1-day RV term coefficient is extended to the 

RQ function, the HARQF model becomes the HARQ model. 

The ARFIMA model is a fractional integrated moving 

average model for ln RV, with model order parameters 

determined by the AIC criterion. This paper compares the 

performance of these models in predicting RV and 

evaluating VaR.By comparing the predicted values with the 

actual values, we obtain the prediction error. This paper uses 

four common metrics to evaluate prediction accuracy: Mean 

Squared Error (MSE), Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), and Gaussian Quasi-

Likelihood Error (QLIKE). The expressions for these 

metrics are as follows: 

 (13) 

Table 2 presents the numerical results of six volatility 

models under four prediction accuracy metrics (the smaller 

the value, the more accurate the model prediction). As shown 

in Table 2, the LSTM-RV model has the smallest indicator 

values across all four evaluation criteria, indicating the best 

performance. Figure 1 shows the percentage improvement in 

prediction accuracy of the LSTM-RV model compared to the 

other five models. Specifically, the LSTM-RV model 

improved over the HAR model by 16.15%, 23.79%, 22.09%, 

and 21.94% in MSE, MAE, QLIKE, and MAPE, 

respectively. From Table 2 and Figure 1, we can conclude 

the following: 

1. The LSTM-RV and LSTM models, based on deep 

learning, show improved performance across all metrics 

compared to the HAR and ARFIMA models. This indicates 

that the LSTM-RV and LSTM models are superior to the 

four classical time series models in terms of prediction 

accuracy and long-memory characteristics. 

2. The proposed LSTM-RV model outperforms the original 

LSTM model across all metrics, indicating that 

incorporating trading volume information into the LSTM 

model improves its prediction performance. 
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Table 2 Comparison of Prediction Accuracy of Six 

Volatility Models 

Model MSE MAE QLIKE MAPE 

LSTM-RV 4.246 0.65 0.171 0.403 

LSTM 4.417 0.664 0.182 0.416 

HAR 4.932 0.816 0.20 0.488 

HARQ 5.007 0.802 0.201 0.488 

HARQF 5.016 0.794 0.201 0.49 

ARFIMA 4.665 0.662 0.182 0.487 

 

 

Figure 1. Improvement Percentage in Prediction Accuracy 

of LSTM-RV Compared to Five Volatility Prediction 

Models 

 

4.3.Empirical Findings of VaR Measurement Models 

Table 3 presents the empirical results for 18 VaR 

measurement models. The LSTM-RV-EVT model, 

proposed in this paper, is among these models. The first 

column of Table 3 lists the names of the VaR measurement 

models. The second and fifth columns show the actual 

default rates for holding and short-selling assets, 

respectively (with a theoretical default rate of 0.01 as 

assumed in this study). The third and sixth columns show 

VaR conditional coverage statistic Jcc(q) for holding and 

short-selling assets, respectively (where q = 5). The fourth 

and seventh columns rank the effectiveness of the VaR 

measurement models, with lower ranks indicating superior 

predictive performance. Rows three to eight provide the 

empirical results for quantile estimation using the 

semiparametric EVT method. Rows nine to fourteen present 

the results using the commonly applied skewed t-distribution 

(SKST) method. Rows fifteen to twenty summarize the 

empirical results from the historical simulation method. 

Table 3 VaR Test Results for Holding and Short-Selling 

Asset Scenarios 

Model 

Held 

Asset

s 

Defa

ult 

Rate 

Held 

Asse

ts 

Jcc(5

) 

Held 

Asse

ts 

Ran

k 

Short 

Asset

s 

Defa

ult 

Rate 

Shor

t 

Asse

ts 

Jcc(5

) 

Shor

t 

Asse

ts 

Ran

k 

LSTM-

RV-

EVT 

0.014

3 

0.46

02 
1 

0.010

2 

0.95

05 
1 

LSTM-

EVT 

0.017

8 

0.08

59 
10 

0.016

7 

0.14

78 
12 

HAR-

EVT 

0.014

8 
0.12 9 

0.011

6 

0.82

90 
2 

HARQ-

EVT 

0.018

3 

0.02

66 
14 

0.014

5 

0.46

8 
9 

HARQ

F-EVT 

0.018

9 

0.02

24 
15 

0.015

6 

0.26

6 
10 

ARFIM

A-EVT 

0.021

0 

0.00

28 
18 

0.018

8 

0.03

84 
13 

LSTM-

RV-

SKST 

0.012

4 

0.28

10 
6 0.009 

0.67

65 
8 

LSTM-

SKST 

0.018

3 

0.03

15 
12 

0.015

6 

0.16

79 
11 

HAR-

SKST 

0.012

4 

0.44

88 
3 

0.008

7 

0.84

98 
4 

HARQ-

SKST 

0.016

2 

0.34

47 
4 

0.008

7 

0.76

92 
6 

HARQ

F-

SKST 

0.015

7 

0.26

94 
7 0.008 

0.93

96 
3 

ARFIM

A-

SKST 

0.018

1 

0.04

57 
11 

0.013

5 

0.39

05 
7 

LSTM-

RV-H 
0.015 

0.33

81 
4 

0.010

1 

0.95

04 
1 

LSTM-

H 

0.018

2 

0.03

09 
12 

0.016

6 

0.14

77 
11 

HAR-H 
0.016

1 

0.13

61 
7 

0.011

7 

0.82

91 
4 

HARQ-

H 

0.018

7 

0.01

4 
15 

0.014

4 

0.46

7 
7 

HARQ

F-H 

0.019

3 

0.01

2 
16 

0.015

5 

0.26

5 
9 
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ARFIM

A-H 

0.020

9 

0.00

27 
17 

0.018

7 

0.03

83 
12 

Note: For all statistics except the default rate, the model 

results are judged by the size of the p-value. A larger p-value 

indicates a better model. Statistics that fail to pass the test at 

the 1% significance level are underlined. 

From Table 3, the following conclusions can be drawn: (1) 

Under both long and short asset holding conditions, it 

achieves the highest p-value, significantly surpassing other 

models, and passing the test. This demonstrates that the 

LSTM-RV-EVT model is significantly superior to other 

VaR measurement models. (2) For short asset holdings, the 

default rate and VaR empirical results for each model are 

better than for long asset holdings, indicating an asymmetry 

in the tail distribution of standardized returns. (3) When 

combining VaR measurement and volatility prediction 

results, the ARFIMA model outperforms the HAR model in 

volatility prediction. However, it underperforms in 

predicting extreme risks. Conversely, the HAR model, while 

poorer in overall volatility prediction, excels in predicting 

extreme risks. Since VaR risk is primarily determined by 

extreme risks, the HAR model is preferred over the 

ARFIMA-EVT model in the domain of VaR measurement. 

 

5.Conclusion 

This paper examines VaR financial risk management 

through the lens of deep learning theory. By leveraging high-

frequency trading volume data, we developed an LSTM-RV 

dynamic volatility prediction model. Utilizing the EVT 

semi-parametric approach to estimate the quantiles of 

standardized returns, we formulated an LSTM-RV-EVT risk 

management model and compared its performance to models 

such as HAR-EVT, HARQ-EVT, HARQF-EVT, ARFIMA-

EVT, and LSTM-EVT. The findings are as follows: (1) The 

LSTM-RV volatility prediction model, which integrates 

trading volume data and LSTM-based deep learning, 

provides more accurate predictions than the original LSTM 

model and long-memory time series models. (2) The p-

values for VaR risk measurement models are significantly 

higher for short asset holdings than for long holdings, 

indicating asymmetry in return distributions. (3) The 

proposed risk measurement model, combining the LSTM-

RV model with semi-parametric extreme value theory, 

achieves the most precise VaR risk measurements for both 

long and short asset holding periods, surpassing the HAR-

EVT, HARQ-EVT, HARQF-EVT, ARFIMA-EVT, and 

LSTM-EVT models. (4) Regarding volatility prediction and 

VaR measurement, the ARFIMA model outperforms the 

HAR model in volatility prediction but is less effective in 

forecasting extreme risk volatilities, making the HAR model 

more suitable for VaR risk measurement. The prediction 

model and risk measurement model developed in this study 

significantly enhance the accuracy of volatility prediction 

and VaR risk measurement compared to traditional time 

series models, demonstrating the predictive strengths of deep 

learning theory. 
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