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Abstract: This study responds to the practical need for applying large language models (LLMs) to military command-and-
control (C2) tasks and proposes a new reference model for constructing and integrating cognitive chains. The aim is to provide
methodological guidance and developmental pathways for next-generation intelligent C2 information systems. First, based on the
current development status and application practices of LLM technologies, the paper analyzes the major challenges that arise in
military scenarios and the corresponding approaches for addressing them. Then, it introduces a technical roadmap for enabling
intelligent command entities through LLMs and derives a scenario-driven mechanism that supports multi-agent organizational
operations and capability formation. Finally, it examines the concept and technical foundation of cognitive chains in depth and
presents an application vision for a “four-chain-fusion” LLM-empowered C2 system.
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1. Introduction to the Problem
In November 2022, the release of the generative pre-trained

transformer model ChatGPT triggered a rapid global surge of
interest within just a few months. This phenomenon ignited an
intense “large-model race”, during which foundation-model
products experienced explosive growth, with model types
continuously expanding and usage methods evolving at an
accelerating pace. The overall developmental stages of large
models are illustrated in Figure 1. In the civilian domain, large-
model applications have already penetrated multiple sectors,
including healthcare, financial services, and intelligent
transportation.

For example, an intelligent monitoring and adaptive
analysis system for assessing the psychological states of
specific populations adopts a technical architecture that
integrates “large models + wearable devices + multimodal
intelligent fusion”, enabling the detection of anomalous
individual or group behaviors and the early prediction of
potential risks [1]. In the military domain, Palantir has released
concept videos of its artificial intelligence platform (AIP),
demonstrating an OODA process in which conversational AI
collaborates with human operators to perform observation,
judgment, decision-making, and action tasks during land-
combat scenarios [2]. These demonstrations reveal a new
paradigm for human-AI cooperation, a deployment model for
integrating large models with simulation, data governance, and
trusted-service mechanisms, and a set of emerging application
patterns that have drawn significant attention from domestic
and international defense-technology communities. The
technical architecture of Palantir AIP is shown in Figure 2

Figure 1. Schematic Diagram of Large-Model Development
Stages

.

Figure 2. Schematic Diagram of the Palantir AIP Technical
Architecture

Drawing on the author’s and the team’s practical
experience over the past two years in applying large language
models (LLMs) within various domains, it has become evident
that, compared with traditional discriminative AI models,
generative AI and foundation models demonstrate remarkable



few-shot and zero-shot learning capabilities. These models
exhibit broad applicability across diverse contexts and
scenarios, including semantic understanding and intent
recognition in human-machine interaction, multi-turn dialogue
strategy generation, intelligence retrieval and event-forecasting
in information-processing domains, document drafting, task-
factor decomposition in mission planning, and process-level
situation monitoring in integrated data-management systems.
Combined with advancements such as chain-of-thought
reasoning and human-level reinforcement learning, the rapid
progress of large-model technologies not only significantly
improves operational efficiency but also offers new cognitive
frameworks for higher-level decision-making and problem-
solving. A comparison between discriminative AI and
generative AI is illustrated conceptually in Figure 3.

Figure 3. Schematic Comparison of Discriminative AI and
Generative AI Characteristics

Large models possess certain general artificial intelligence
characteristics, such as extensive and deeply connected
knowledge, strong reasoning abilities, and enhanced learning
and decision-making competence. However, their performance
in specialized domains still requires improvement. Since large
models rely on massive datasets and high-dimensional neural
network architectures, their essence can be viewed as an
engineered transformation of AI from “qualitative change to
quantitative change”. Although theoretically scalable, practical
engineering implementation remains challenging due to
stringent requirements on computation and data. Computational
resources form the foundation for building and deploying large
models, yet most organizations cannot afford such costs.
Furthermore, high-quality, large-scale, and diverse datasets are
essential, often requiring collection and preprocessing at a
societal scale.

Therefore, a key question is how to maintain clarity when
navigating this wave of new technologies and how to more
effectively align large-model development with real-world
needs. Understanding how to guide large models toward
meaningful and practical integration within specific domains
and scenario-oriented applications is an issue that merits
thoughtful consideration.

2. Challenges in Applying Large Models to
Intelligent Command-and-Control
2.1 Related Work

The integration of large language models (LLMs) into
intelligent systems has drawn considerable attention in recent
research. Foundational works have explored the self-
organization and tool-use capabilities of LLMs [3], as well as
bootstrapped reasoning processes that serve as precursors to
cognitive-chain operations [4]. These advances lay essential
groundwork for enabling interpretable reasoning and task
decomposition in command applications.

Recent developments in generative multi-agent
environments have demonstrated the potential for interactive,
role-based collaboration among intelligent agents [5][6].
These systems simulate human-like decision-making patterns
and enable scalable coordination across complex scenarios,
providing inspiration for constructing C2-oriented agent
ecosystems. Reinforcement learning frameworks for resource
orchestration [7] and multi-agent control under uncertainty [8]
further support adaptive autonomy and role-specialized
intelligence within large-scale deployments.

Ensuring the robustness of LLM outputs under
uncertainty has become a focal point for enhancing
trustworthiness. Methods for uncertainty quantification and
risk-aware summarization [9], privacy-preserving instruction
adaptation [10], and federated fine-tuning with semantic
alignment [11] contribute significantly to dependable LLM
deployment in sensitive military contexts. These works reflect
growing attention to the operational reliability and policy
compliance of language models in real-world environments.

Supporting tools such as LLM-centric retrieval-
augmented generation [12], sparse retrieval mechanisms for
fact verification [13], and transformer-based modeling for
clinical or financial domains [14][15] have further expanded
the frontier of LLM applicability. These approaches highlight
the capacity of LLMs to integrate structured and unstructured
data for decision support and situational analysis, core
functions in command and control systems.

Innovations in intelligent agent collaboration within
microservice systems [16] and simulated agent societies [17]
reveal technical architectures conducive to multi-role
coordination and knowledge sharing. Vision-based editing
using diffusion models [18], language grounding in robotics
[19], and adaptive human–computer interaction through
reinforcement learning [20] illustrate the multi-modal and
interaction-rich pathways that support the evolution of large-
model-based command agents.

From a strategic perspective, transformer models have
also shown value in domain-specific applications such as risk
monitoring in finance [21] and dynamic portfolio optimization
under multi-agent reinforcement learning [22], underscoring
the versatility of LLMs in operational decision-making under
constraints.

Lastly, the reasoning capabilities of LLMs in zero-shot
scenarios [23] further emphasize their potential in dynamic
and unpredictable military environments, supporting the



design of flexible, reasoning-capable agents that can perform
with limited supervision.

2.2 Key Challenges and Limitations

As described earlier, large models can significantly
enhance efficiency in tasks such as human-machine interaction,
information retrieval, text generation, and workflow
automation, and they often exhibit characteristics of partial
artificial general intelligence in specific scenarios. However,
large models are not omnipotent and still show limitations,
including hallucination problems, weak interpretability of
generated content, and deficiencies in scientific computing and
logical reasoning. Among these, hallucination is a major
bottleneck hindering the widespread deployment of large
models at this stage.

The causes of hallucination in large models mainly arise
from three factors:

Limitations in AI model design: Large models are
fundamentally based on statistical patterns, making them
unable to reliably distinguish facts from fabrications, nor
strictly adhere to logical and rule-based reasoning.

Knowledge limitations in training data: Inaccurate corpora,
missing edge-case information, and hidden biases may all lead
to erroneous model outputs.

User-induced bias in prompts: If a prompt contains
misleading or fabricated information, the model may shift its
output toward this false context due to probabilistic tendencies.
An example illustrating ChatGPT’s knowledge limitations and
prompt-induced bias is shown in Figure 4.

Figure 4. Example of ChatGPT’s Knowledge Limitation and
User Prompting

Currently, academic and industrial communities have
proposed several technical solutions to address these
weaknesses, such as enhanced information retrieval, domain-
specific knowledge augmentation, and numerical reasoning
enhancement. These approaches enable large models to
produce more accurate and reliable outputs in constrained
scenarios. A conceptual illustration of controlled output
mechanisms in scenario-specific applications is provided in
Figure 5. Nevertheless, the application of large models in
military command-and-control still involves many issues
requiring careful consideration.

Figure 5. Schematic Diagram of Controllable Output
Mechanisms for Large-Model Scenario Applications

Professionalism challenges: Modern warfare demands
high precision and dynamic adaptation. Military intelligence
must address complex, real-time battlefield tasks and rapidly
changing operational needs. Most military scenarios require
strong task-specific specialization rather than generalization or
simplification.

Confrontation challenges: Military operations involve
constant information confrontation and countermeasures. Data
obfuscation, camouflage, deception, and adversarial
interference are widespread. Large variations in data quality,
low signal-to-noise ratios, and difficulties in distinguishing
authenticity pose far greater challenges to military large-model
applications compared with civilian domains.

Complexity challenges: Combat operations involve multi-
domain integration, diverse mission elements, and highly
variable battlefield environments. Military data often feature
non-structural characteristics and complex interdependencies.
Single-mode or single-state large models cannot meet such
needs, requiring multi-state and multi-modal combined
applications.

Security challenges: Military operations concern life-or-
death decision-making and require highly reliable large-model
systems. At the same time, models deployed in warfare face
adversary reconnaissance, deception, and interference. It is
necessary to prevent hostile forces from exploiting
vulnerabilities in academic research or system implementation
to mislead or manipulate model outputs.

3. Intelligence Development Requirements for
Command-and-Control Systems
3.1“+Intelligence” and “Intelligence+”

Observing the evolution of command-and-control (C2)
information systems over the past decade, the pathway toward
intelligent C2 capabilities has generally followed a “two-step”
development pattern. The first step is the “+Intelligence”
phase, which focuses on advancing informatization, service-
oriented architectures, and network foundations while
integrating AI technologies and embedded intelligent
computing models. This phase provides new methods, tools,



and mechanisms for traditional reconnaissance, early warning,
C2 operations, information confrontation, and battlefield data
applications. The second step is the “Intelligence+” phase, in
which artificial intelligence takes the leading role, enabling
proactive guidance, dynamic coordination, and organizational-
level decision augmentation. Ultimately, this leads to fully
integrated, streamlined, and system-level intelligent C2
networks.

The transition from “+Intelligence” to “Intelligence+”
manifests in two major dimensions.

From intelligent components to holistic intelligent systems.
Under the “+Intelligence” model, the C2 system embeds
intelligent modules or small models, enabling users to obtain
decision support by selecting specific software functions. This
is a “point-based” approach for enhancing local C2
intelligence. In contrast, “Intelligence+” places AI as the
dominant driver, autonomously guiding, coordinating, and
orchestrating functional modules and auxiliary tools across the
entire C2 system, thereby achieving full-process and system-
wide intelligent transformation.

From typical tasks to all-domain missions. Small
embedded models under the “+Intelligence” paradigm tend to
have limited generalization, making it difficult to adapt to
diverse operational demands. Continuous model iteration is
required to fit new application contexts. In contrast,
“Intelligence+” leverages unified information architectures
and highly generalized intelligent model clusters, enabling
adaptive support across full-spectrum battlefield operations.

Advances in large-model technologies have created
feasible technological pathways for transitioning from
“+Intelligence” to “Intelligence+”, positioning large models as
a driving force behind intelligent C2 development. By
leveraging large models’ powerful human-machine interaction,
intent inference, and cognitive generalization capabilities, C2
information systems can achieve significant improvements in
flexibility, usability, and robustness. Presently, next-
generation C2 information systems are under active
exploration and research, with an expected transition from
typical “+Intelligence” configurations to architectures where
large models serve as the core orchestrating element. This
enables multi-level intelligent model clusters to guide
operational applications across diverse scenarios and mission
types.

Small models tailored for specific conditions can
autonomously execute well-structured tasks, such as software-
supported planning, rapid matching of operational templates
derived from previous campaign cases, or intelligent troop
formation planning that automatically recommends
organizational schemes based on current requirements. Such
systems can also integrate expert feedback to refine planning
results and generate rapid planning outputs.

3.2 Large Models and Small Models

Small models and traditional AI algorithms exhibit strong
applicability and specialization in fields such as image

recognition, target detection, path planning, and intelligent
control. These models are technically mature within specific
domains and task scenarios, and they hold clear advantages
over large models in terms of domain expertise and operational
stability. At the same time, due to their small size and low
computational demand, small models are better suited for
resource-constrained battlefield command-information systems
where computing power is limited and scalability is difficult.
Therefore, small-model-based intelligent decision support will
continue to serve as a core component in enhancing intelligent
C2 capabilities for a considerable period.

Consequently, multi-state and multi-modal AI model
integration provides a feasible pathway for addressing the
challenges of deploying large models in C2 applications. This
integration enables scenario-driven collaboration between large
models and small models. Large-model products such as
AutoGPT [11] released in 2023 and multi-agent collaboration
frameworks like HuggingGPT demonstrate large models’
ability to autonomously coordinate external tools. Inspired by
the HuggingGPT paradigm, a high-level planning architecture
can be constructed as shown in Figure 6. Large models can
decompose complex problems into smaller tasks and determine
which tools or small models are best suited to solve each
subproblem. In this way, large models become orchestrators
capable of coordinating small-model resources, leveraging
small-model strengths to compensate for large-model
weaknesses, and forming a complementary and efficient
intelligent application mechanism.

Figure 6. Reference Architecture for Large-Model Planning
and Coordination

4. Large-Model-Enabled Intelligent Command
Agents
4.1 Intelligent Command Agents

An intelligent agent refers to an entity capable of
perceiving its environment and taking actions to achieve
specific objectives. An agent may take the form of software,
hardware, or an integrated system and is characterized by
autonomy, reactivity, proactivity, and interactive capability.
By sensing environmental changes, such as through sensor
inputs or data streams, an agent uses acquired knowledge and
algorithms to make judgments and decisions, then conducts
actions that influence the environment or help achieve
designated goals. Intelligent agents are widely applied across
artificial intelligence domains, including automation systems,



robotics, virtual assistants, and game characters. Their core
lies in the ability to maintain autonomous operation and
continuous evolution, enabling them to better accomplish tasks
and adapt to complex environments.

Based on this definition, and considering the application
contexts and capability requirements of military command-
and-control systems, this paper approaches command agents
(C²-AI Agents) from two perspectives: a broad interpretation
and a narrow interpretation.

From a broad perspective, a command agent represents a
new paradigm for the design, development, integration,
delivery, and iterative evolution of future military C2
information systems. During the design and development
phase, unlike traditional software analysis and requirement-
design methods, system engineers will not only complete
scenario design, workflow design, and input-output modeling
but will also place greater emphasis on using natural language
to refine user needs with precision. Fine-grained annotation of
operational scenarios will accumulate high-quality labeled
datasets essential for model training and prompt-engineering
refinement.

During the development and integration phase, system
input-output modules (I/O, including network communication),
data management components, user management modules, and
model-service interfaces will become more generalized and
standardized. This will enhance reusability and
interoperability, enabling tighter integration among different
service branches. C2 information systems will further unify
interfaces such as machine interaction protocols,
communication primitives, and even user authentication.
Cross-system interoperability will become smoother, and
cloud-based system architectures will be further advanced.

During delivery and iterative evolution, increased
openness of system-development interfaces will reduce user-
side maintenance complexity. With natural-language-driven
system description and large-model-assisted code generation
or template-based injection, users will be able to rapidly
construct scenario-specific system upgrades. This will
improve system adaptability and provide industrial developers
with clearer insights into post-fielding maintenance tasks.

From a narrow perspective, a command agent
encompasses a series of perceivable, interpretable, and
executable military-intelligence models. The conceptual model
of command agents is illustrated in Figure 7. This model
adopts a large-model-plus-small-model architecture, where
model scheduling, algorithmic integration, meta-learning, and
transfer learning techniques are combined to dynamically
integrate data, knowledge, tools, and models for military C2
tasks. This enables continuous learning, optimization, and
quantitative evaluation, driving progressive evolution of C2
systems.

Command agents may include intelligence-processing
agents, situational-perception agents, decision-support agents,
and action-control agents. These agents are expected to evolve

from manual intelligence assessment toward automated
inference transformation, from situational understanding
toward predictive situational transition, and from decision
analysis toward adversarial reasoning and strategy generation.
For example, situational-awareness agents may evolve into
models capable of predicting transitions based on probabilistic
inference, while action-control agents may evolve into semi-
autonomous or fully autonomous models capable of executing
mission-level command transitions. Ultimately, such
advancements will support the transition toward “Intelligence+”
command-system capabilities.

Figure 7. Conceptual Framework of the Intelligent Command
Agent

4.2 Vision for Large-Model-Enabled Intelligent Command
Agents

According to the four fundamental characteristics of
intelligent agents - autonomy, reactivity, pro-activeness, and
social ability - the feasibility of enabling command agents with
large models can be analyzed as follows.

Autonomy. Autonomy refers to an agent’s ability to operate
without external intervention and maintain a certain degree of
internal and behavioral control. This implies that an agent
should not only follow explicit human instructions to
accomplish tasks but also demonstrate the ability to
independently initiate and execute actions. Large models
possess strong conversational comprehension and tool-use
capabilities, which can serve as new forms of human-system
interaction media. This significantly enhances human-machine
collaboration efficiency and reduces human workload.

Large models’ abstract knowledge-learning and reasoning
capabilities will allow them to move beyond the limitations of
purely textual or rule-based knowledge. They will increasingly
exhibit adaptive abilities through real-time environmental input,
enabling dynamic adjustment and integrated decision-making.
Simultaneously, their multimodal perception and predictive
abilities, including image, audio, and signal processing, will
allow them to extract information from massive operational
datasets, such as those generated in training or adversarial
simulations. This will trigger the emergence of new
intelligence patterns, many of which do not require manual or
rule-based encoding before being integrated into command
systems.

Reactivity. Reactivity refers to an agent’s ability to respond
rapidly to environmental changes and external stimuli. This
means that an agent must perceive shifts in the surrounding
environment and take timely and appropriate actions.



Traditionally, the perceptual abilities of language models were
limited to text input, while action models were constrained to
text outputs. With multimodal integration, however, the
perceptual space of language models expands to include visual
and auditory information from the environment. This
significantly enhances a large-model-driven agent’s ability to
interact effectively with the physical world and execute
missions.

One of the key challenges for large-model-driven agents is
the intermediate step required when converting textual
reasoning into non-textual actions. The agent must first
produce a textual plan before transforming it into executable
operations, which may increase latency. However, this is
consistent with human reasoning processes, as human
behaviors are also guided by prior deliberation and planning.

Pro-activeness. Pro-activeness means that an agent not only
reacts to the environment but also actively takes actions aimed
at achieving goals. This characteristic emphasizes an agent’s
ability to reason, plan, and execute proactive measures to
accomplish goals or adapt to changes. Intuitively, future
iterations of large models will increasingly embed predictive
and anticipatory capabilities that implicitly generate such
proactive behaviors. Large models excel in conceptual
reasoning and high-level planning and can be prompted with
instructions such as “let us think step by step” to activate their
reasoning ability, including logical and mathematical inference.

Social ability. Social ability refers to an agent’s capability
to interact with other agents or humans through various forms
of communication, including natural language. Large models
demonstrate strong natural-language comprehension and
generation, and when combined with structured or protocol-
based communication channels, they can interact with other
models or humans in an interpretable manner. This forms the
basis of agent-level social capability.

Building on this, multi-agent collaboration frameworks
such as MetaGPT extend social ability by assigning different
roles to intelligent agents and enabling them to collaborate on
multi-role tasks. The design philosophy of MetaGPT resembles
a “project team” composed of intelligent agents, including
product managers, architects, software engineers, and QA
testers. Each agent autonomously generates instructions based
on its assigned role and executes specific tasks. Through inter-
agent communication and data exchange, they cooperate to
complete complex missions and ultimately deliver results to the
user.

5. New Conceptualization of Deep Cognitive-
Chain Applications for Large Models
5.1 Understanding and Interpreting Cognitive Chains

Section 4.1 provided both broad and narrow perspectives on
the concept of command agents. From a narrow perspective, a
command agent can be viewed as a set of transferable,
interpretable, and executable composite military-intelligence
agents, essentially a collection of individual agents with
specialized capabilities. How to activate various types of agents,
construct connections among them, and achieve scenario-

driven multi-agent organization and operation requires the
integration of the “cognitive chain” concept and associated
technologies.

Cognitive chains (CoT) refer to a series of logically
connected and sequentially linked reasoning steps or thought
processes that form a complete chain of reasoning. This serves
as a method for guiding individuals to think about, analyze, and
solve problems. Cognitive-chain technology enables complex
reasoning tasks to be decomposed into multiple interpretable
steps, providing clearer logical pathways and improving overall
interpretability.

Based on the reasoning capability inherent in cognitive
chains, intelligent agents can autonomously learn and perform
relevant inference when prompted, without requiring complex
iterative training. When given simultaneous prompts, agents
can generate appropriate reasoning steps and correct
conclusions, demonstrating an approximation of human-level
structured thinking and logical processing.

In the command domain, cognitive chains have long served
as a guiding framework for commanders and staff to develop
decision-making thought processes during command activities.
They have also functioned as a method for supporting C2 task
execution and organizational application. However, cognitive-
chain methods have historically been expressed only in
theoretical form and have not been fully implemented as
operational tools through human-computer interaction.

5.2 Conceptualization of Cognitive-Chain Applications

In typical operational scenarios, cognitive-chain
applications extend beyond traditional reasoning chains and
can incorporate judgment chains, computational chains, and
system-level cognitive chains to address complex military tasks.
This forms a “four-chain fusion” approach that enhances the
intelligent capability of command-information systems.

1) Judgment Cognitive-Chain Applications

Judgment cognitive chains combine one or multiple known
judgments to infer new conclusions based on causal
relationships, correlation patterns, or other logical links. The
key characteristic of this cognitive-chain type is “accuracy”.
For example, in situational awareness, large vision models can
fuse multi-source intelligence data, integrate historical datasets,
and analyze indicators of adversarial intent to produce precise
early-warning assessments. During operational planning and
formulation, judgment chains allow commanders to analyze
operational requirements and incorporate relevant data from
adversarial analysis, historical cases, doctrinal knowledge, and
battlefield examples. These steps enhance the accuracy and
robustness of operational-plan generation by providing
systematic and logically traceable pathways. The resulting
multi-branch or distributed operational plans support flexible
maneuver strategies, each validated through stepwise logical
reasoning, thereby improving interpretability and confidence.

2) Computational Cognitive-Chain Applications

Computational cognitive chains focus on decomposing
difficult or complex problems into a series of solvable steps



[20], typically applying decomposition-based methods to
control complex missions. Under uncertainty, planning,
learning, and adjustment can be achieved through “precision-
oriented” reasoning. In mission-planning scenarios, language-
model-based cognitive chains can be used to analyze military
contexts, interpret situational elements, and transform complex
environments into modular information-processing tasks. The
agent can then match each task to corresponding tools and
models, enabling organized analysis and solution generation.

For example, when a commander designates a strike
mission, a large model can automatically generate a reasoning
chain to plan the F2T2EA (find, fix, track, target, engage,
assess) process. Through logical sequencing, the model can
evaluate reconnaissance inputs, adjust target classification,
perform strike-asset allocation, and integrate multiple
intelligence modules. This produces a coherent and executable
kill chain that supports rapid and high-confidence mission
execution.

3) Parallel Cognitive-Chain Applications

Parallel cognitive chains enable intelligent agents to process
multiple tasks concurrently, improving task execution speed.
Their key characteristic is “speed”. In intelligence contexts,
multimodal large models can simultaneously process data from
synthetic aperture radar (SAR), electro-optical sensors, and
video streams to support high-efficiency target detection and
identification. This facilitates rapid integration of diverse
intelligence sources to identify new threats based on zero-shot
and few-shot capabilities. Consequently, identification
accuracy increases while source-to-action latency is
significantly reduced.

By combining diverse inputs, parallel cognitive chains
enable operational forces to detect risks at the earliest stage,
assess threats in real time, and autonomously generate multiple
alternative courses of action to ensure mission safety.

4) System Cognitive-Chain Applications

System cognitive chains adopt a system-engineering
perspective and construct reasoning patterns based on the “1 +
1 > 2” principle. Their defining characteristic is “fusion”. In
intelligent operations, large models leverage powerful human-
machine interaction and rapid contextual understanding to
interpret commander intent and provide precise
recommendations. These recommendations can then be
automatically converted into machine-interpretable instructions,
forming unified command expressions that support
interoperability among sensors, platforms, and equipment.

System cognitive chains enable seamless coordination
across domains and ensure that various operational components
function as an integrated whole. For example, multimodal large
models can fuse real-time sensor data with historical
knowledge bases to generate adaptive situational insights.
Language-model-based reasoning interfaces can further
integrate human-domain insights with machine-recognized
patterns, aligning intelligent systems for precise control and
cross-domain synchronization. This enables coordinated

decision support between humans and unmanned systems,
achieving high-efficiency collaborative operations.

6. Conclusion
New technologies must be integrated with new operational

concepts in order to fully realize their potential. Even with a
strong foundation in artificial intelligence, failure to adopt
appropriate concepts and coordinated methods of employment
will still place forces at a disadvantage on the battlefield.
Current research on operational demands, capability
requirements, and functional needs for intelligentized warfare
remains insufficient, often leading to partial or overly
generalized conclusions.

Therefore, before intelligent technologies reach full
maturity, it is essential to advance theoretical research and
develop requirements for intelligent C2 systems, with a
strategic focus on the potential of large-model applications.
Future intelligentized warfare will require the integration of
large models into C2 frameworks, force composition, and
decision-support mechanisms. This includes modes ranging
from human-in-the-loop to machine-in-the-loop C2, as well as
workflow integration, operational-content alignment, and
information-exchange requirements. Clarifying how
commanders should leverage intelligent information services
will be critical to improving decision-making capability.

At the same time, the development of AI models is highly
scenario-dependent. Even large models with strong
generalization still require extensive scenario-oriented training
to form reliable domain-specific capabilities. In the military
field, the scarcity of high-quality datasets is a major challenge.
Data often reside in fragmented, isolated repositories across
units, lacking standardization and unified formats. This limits
the coverage, diversity, and realism needed for large-model
training. As a result, large-model descriptions of scenarios are
often insufficiently aligned with actual operational data.

Addressing these issues requires task-driven scenario
refinement and the deliberate application of large-model
technologies in representative tasks. Improving adaptability
across full-spectrum missions will require the creation of
diversified task datasets, iterative updates to scenario
representations, and enhanced multimodal sample quality.
Ultimately, breakthroughs must be made in technologies that
integrate scenario requirements with large-model learning
capabilities, forming cohesive solutions that respond to urgent
operational needs.
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