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Abstract: The increasing complexity and interconnectedness of modern financial systems pose significant challenges to
traditional risk assessment models. Conventional statistical and machine learning approaches often fail to capture non-linear
dependencies and dynamic temporal patterns among financial entities. This paper proposes a hybrid deep learning framework that
integrates Graph Neural Networks (GNNs) and Transformer architectures to model both structural and temporal correlations in
financial markets. The GNN component encodes inter-firm and cross-sector relationships using graph embeddings, while the
Transformer component captures evolving sequential dependencies from time-series data such as asset prices, credit ratings, and
macroeconomic indicators. The integrated architecture leverages multi-head attention and message-passing mechanisms to jointly
learn spatial and temporal dependencies, producing a comprehensive representation of financial risks. Experiments conducted on
multiple real-world financial datasets, including equity market indices and corporate bond spreads, demonstrate the model’s
superior performance in predicting credit risk and market volatility compared to benchmark methods. The results show a notable
improvement in accuracy, stability, and interpretability, indicating that the proposed hybrid framework provides a powerful and
explainable approach for dynamic financial risk modeling.
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1. Introduction
Financial markets are characterized by their dynamic, non-

stationary, and interdependent nature. The continuous flow of
information between institutions, sectors, and global economies
leads to complex patterns of influence that traditional statistical
models, such as logistic regression or ARIMA, struggle to
capture. The propagation of risk across financial entities-
whether through contagion effects, correlated asset movements,
or systemic shocks-requires models that can represent both the
structural topology of financial systems and the temporal
evolution of risk indicators. In this context, the convergence of
graph-based learning and sequence modeling presents an
emerging paradigm that bridges the gap between relational
understanding and temporal forecasting.

Graph Neural Networks (GNNs) have recently become a
powerful tool for modeling complex relationships within
structured data. By representing financial entities such as firms,
banks, or sectors as nodes and their relationships-such as
interbank loans, ownership links, or correlation networks-as
edges, GNNs enable the learning of latent structural
dependencies. The message-passing mechanism in GNNs
allows the model to propagate information along the graph
edges, aggregating features from neighboring nodes to generate
contextual embeddings that represent both local and global
interactions. This relational modeling is critical for
understanding systemic financial risks, where localized failures
can propagate through the network, leading to cascading effects
across the entire market.

On the other hand, Transformer-based architectures,
initially developed for natural language processing, have
demonstrated remarkable capabilities in modeling sequential

dependencies through self-attention mechanisms. In financial
applications, Transformers can effectively learn complex
temporal relationships from historical data, such as price series,
credit spreads, and liquidity indicators. Unlike traditional
recurrent neural networks (RNNs) or long short-term memory
(LSTM) models, Transformers can model long-range
dependencies without suffering from gradient vanishing or
exploding problems. Their attention mechanisms allow the
model to focus adaptively on the most relevant time steps or
events, enabling dynamic interpretation of financial trends and
anomalies. As markets evolve rapidly, the capacity to model
such non-stationary patterns is crucial for accurate and timely
risk prediction.

However, while GNNs excel in capturing structural
dependencies, they are limited in temporal representation.
Conversely, Transformers specialize in temporal pattern
recognition but lack an intrinsic mechanism for modeling
graph-structured interconnections. To overcome these
limitations, this study proposes an integrated GNN-
Transformer hybrid architecture that combines the spatial
reasoning capabilities of GNNs with the temporal learning
strengths of Transformers. This integration aims to construct a
unified framework capable of jointly modeling cross-entity
relationships and time-dependent risk dynamics, leading to a
more holistic understanding of financial systems.



The proposed architecture constructs a financial graph
based on correlation matrices, ownership structures, or
interbank transactions, where each node represents a financial
entity and edges encode relational intensity. Node-level
features include multi-dimensional signals such as asset returns,
balance sheet indicators, and volatility metrics. The GNN
module first computes structural embeddings through iterative
message passing. The resulting embeddings are then fed into a
Transformer module that processes the sequence of temporal
representations to capture dynamic evolution. The final risk
prediction layer combines outputs from both components
through attention-based fusion, yielding interpretable and
robust forecasts of systemic risk or asset-level volatility. This
end-to-end learning mechanism facilitates the identification of
hidden interdependencies, early warning of market instability,
and adaptive adjustment to evolving economic conditions.

This paper makes three primary contributions. First, it
presents a unified deep learning framework that integrates
graph-based and sequence-based modeling for dynamic
financial risk assessment. Second, it introduces a graph-
temporal attention fusion mechanism that enhances
interpretability and robustness across diverse market conditions.
Third, it validates the proposed model on multiple real-world
datasets, demonstrating superior predictive performance and
stability compared with existing deep learning baselines. The
rest of the paper is structured as follows: Section II reviews
related work on deep learning applications in finance, Section
III details the proposed methodology, Section IV presents
experimental results and analyses, and Sections V and VI
provide conclusions and directions for future research.

2. Related Work
The application of deep learning in financial modeling has

gained increasing attention in recent years, particularly for
addressing the limitations of traditional econometric
approaches. This section reviews the key developments across
three main areas: graph-based modeling of financial systems,
temporal deep learning architectures for sequential financial
data, and hybrid frameworks that integrate structural and
temporal learning for enhanced risk assessment.

Early works on deep learning in finance focused primarily
on time-series forecasting, where recurrent neural networks
(RNNs) and long short-term memory (LSTM) networks were
widely applied for predicting stock prices, volatility, and
returns. Fischer and Krauss [1] demonstrated that LSTM-based
models significantly outperform conventional autoregressive
models in predicting stock movements in the S&P 500.
Similarly, Nelson et al. [2] employed LSTMs combined with
technical indicators to capture nonlinear temporal dependencies
in stock prices, showing improved prediction accuracy
compared with feedforward networks. However, RNN-based
methods suffer from sequential bottlenecks and limited
capacity for long-term dependency modeling, motivating the
adoption of Transformer architectures for financial sequence
analysis.

The Transformer model, originally proposed by Vaswani
et al. [3], revolutionized sequence learning by introducing self-

attention mechanisms that allow parallel processing and
dynamic weighting of relevant time steps. Subsequent works
have adapted Transformers for financial forecasting tasks. Wu
et al. [4] proposed a Temporal Fusion Transformer for
interpretable multivariate time-series forecasting, which
effectively captured temporal dependencies across
macroeconomic variables. Zhang et al. [5] applied a Finformer
architecture that incorporated attention over market events,
demonstrating superior accuracy in volatility forecasting. These
studies highlight the growing recognition of Transformers as
powerful tools for financial time-series modeling due to their
interpretability and capacity to manage heterogeneous data
sources.

In parallel, Graph Neural Networks (GNNs) have emerged
as powerful frameworks for representing relational and
topological information in complex systems. Financial systems
are inherently networked-interbank exposures, asset co-
movements, and firm ownership structures naturally form
graphs that encode systemic risk propagation pathways. Kipf
and Welling [6] first proposed the Graph Convolutional
Network (GCN), which generalized convolution operations to
non-Euclidean domains, enabling message passing among
connected nodes. Building on this foundation, several studies
have explored GNNs for financial applications. Wang et al. [7]
employed GCNs to model inter-firm financial contagion,
demonstrating improved default prediction in credit networks.
Li et al. [8] developed a Graph Attention Network (GAT)-
based framework to identify systemic risk clusters in stock
correlation graphs, enhancing early warning capabilities for
market stress events. These models highlight how graph-based
architectures can reveal latent structural dependencies that are
often invisible to traditional regression-based methods.

Despite these advances, most prior works have focused on
either graph structure modeling or temporal dynamics, but
rarely both. Financial risks, however, arise from the interaction
between evolving market dynamics and networked financial
relationships. Hybrid architectures that integrate spatial and
temporal learning have begun to attract attention as promising
solutions. Wu et al. [9] proposed a Spatio-Temporal Graph
Convolutional Network (ST-GCN) to capture both local and
global dependencies in economic networks. Similarly, Song et
al. [10] combined GCNs with LSTMs for dynamic stock
prediction, enabling temporal adaptation of graph embeddings
over time. While these approaches achieved encouraging
results, they often rely on fixed adjacency structures or
sequential encoders with limited context awareness. The
integration of Transformer modules with GNNs presents a
more flexible and expressive alternative, allowing the model to
learn dynamic temporal dependencies while maintaining
topological awareness.

Recent efforts have explored such combinations. Chen et
al. [11] introduced a GNN-Transformer hybrid for
cryptocurrency market modeling, achieving enhanced
forecasting accuracy by dynamically updating graph
embeddings with attention-weighted temporal signals. Hu et al.
[12] proposed a Graph-Transformer model for credit risk
assessment, where the graph module captures inter-company
linkages and the Transformer handles temporal evolution of
balance-sheet indicators. However, these frameworks often



lack interpretability in how information flows across time and
entities. Addressing this gap, our proposed method introduces
an attention-based fusion mechanism that explicitly integrates
structural and temporal attention layers to improve
transparency and robustness in financial risk estimation.

In summary, existing research has made substantial
progress in applying deep learning to financial forecasting, yet
challenges remain in capturing the joint dynamics of
interconnected entities and evolving temporal behaviors. The
proposed model builds upon these advances by unifying GNN-
based structural representation learning with Transformer-
based temporal modeling in a cohesive end-to-end framework,
enabling both high interpretability and robust generalization
under dynamic market conditions.

3. Proposed Approach
The proposed hybrid framework integrates Graph Neural

Networks (GNNs) and Transformer architectures into a
unified deep learning system for dynamic financial risk
assessment. The goal is to simultaneously model the structural
dependencies among financial entities and the temporal
evolution of risk indicators. The framework comprises three
key modules: (1) a Graph Representation Layer that encodes
inter-entity relationships, (2) a Temporal Transformer Layer
that captures sequential dependencies, and (3) a Fusion and
Prediction Layer that integrates spatial and temporal
information for final risk estimation. The overall system
design is illustrated in Figure 1, which demonstrates how
information flows from graph-based structural embeddings
through temporal modeling to the risk prediction stage.

In this architecture, the financial system is represented as a
graph � = (�,�), where each node �� ∈ �corresponds to a
financial entity (e.g., a firm or bank), and each edge
��� ∈ � represents a relationship such as asset correlation,
interbank exposure, or sectoral linkage. The adjacency matrix
� ∈ ℝ�×� encodes connection strengths ��� . Each node

possesses a feature vector �� ∈ ℝ� , consisting of indicators
such as leverage ratio, liquidity index, market capitalization,
and volatility. To capture topological information, a Graph
Convolutional Network (GCN) is employed for message
passing and aggregation:

where �� = � + � adds self-loops, �� is the
corresponding degree matrix, �(�) is the hidden representation
at layer �, �(�) is the trainable weight matrix, and �( ⋅ )is a
non-linear activation function. This mechanism allows each
financial entity to aggregate contextual information from its
neighbors, forming embeddings that reflect systemic influence
patterns and exposure interdependencies.

The Temporal Transformer Layer processes the sequence
of graph-derived embeddings over time to learn dynamic

financial behavior. For each node �� , a sequence of structural

embeddings {ℎ�
(�)}�=1

� is generated, representing its evolution
across T time steps. The Transformer employs multi-head self-
attention to model dependencies across all temporal points
simultaneously:

where �,�,�denote the query, key, and value matrices
obtained from linear transformations of the input embeddings,
and �� is the scaling factor. Multi-head attention enables the
model to capture diverse temporal patterns, focusing on
significant financial events such as liquidity shocks, market
interventions, or cross-sector contagion. Positional encodings
are added to preserve the chronological order of information.

The outputs from both modules are fused through an
attention-based integration mechanism, designed to balance
structural and temporal relevance. The final prediction layer
combines embeddings via:

where ℎ�
(���) is the GNN-derived representation,

��
(�����) is the Transformer output, and [ ⋅∥⋅ ] denotes

concatenation. The fusion weights are learned to optimize both
node-level and temporal contextual accuracy. The training
objective minimizes a hybrid loss:

where ℒ���� is the primary prediction loss (cross-entropy
or mean-square error), and ℒ����ℎ enforces smoothness by
penalizing sharp discrepancies between connected entities. This
constraint encourages structural consistency across the
financial network.

Figure 1 presents the overall architecture of the proposed
GNN-Transformer model. The left section represents the
financial graph, where nodes denote entities and weighted
edges encode relationships such as exposure or correlation. The
middle section illustrates the message-passing process that
generates structural embeddings. The right section shows the
Transformer module, which captures temporal dependencies
across historical data and fuses them with graph embeddings to
produce the final risk assessment output. This design allows the
framework to integrate both topological awareness and
temporal adaptability, making it robust to changing market
structures.



Figure 1. Overall architecture of the proposed GNN-
Transformer hybrid model for financial risk assessment

Model training proceeds in an end-to-end manner using the
Adam optimizer with an initial learning rate of 0.001 and a
mini-batch size of 64. Dropout layers and layer normalization
are used to enhance generalization and prevent overfitting. The
training data consist of historical market observations, updated
periodically to reflect the evolving topology of financial
relationships. The hybrid model is computationally efficient, as
the graph and temporal modules can be parallelized.
Furthermore, its interpretability is enhanced through attention
visualization, which enables analysts to trace which firms or
time periods contribute most strongly to risk forecasts.

In summary, the methodology provides a cohesive
integration of graph-structured learning and temporal sequence
modeling, forming a powerful and interpretable architecture for
dynamic financial risk prediction.

4. Performance Evaluation
4.1 Experimental Setup and Baselines

The experimental evaluation of the proposed GNN-
Transformer framework was performed using multiple large-
scale financial datasets to verify its predictive capability,
robustness, and interpretability. Two primary datasets were
used. The first is the Global Equity Correlation Dataset,
containing daily prices of 450 listed companies across
different sectors from 2015 to 2024. The second is the
Corporate Credit Dataset, comprising quarterly balance sheets,
bond yields, and credit ratings of 320 public corporations
between 2012 and 2024. Edges in the financial graph were
constructed based on pairwise correlations or inter-firm
exposures, with dynamic updates applied through rolling time
windows. Feature vectors were normalized using z-score
scaling, and missing entries were filled via temporal forward
interpolation. The datasets were split chronologically into
training (70%), validation (15%), and test (15%) sets to ensure
temporal consistency and prevent data leakage.

Evaluation metrics included Accuracy (ACC), F1-Score,
Root Mean Squared Error (RMSE), and Area Under the ROC
Curve (AUC). These metrics jointly measure prediction
precision, balance between recall and precision, regression
error magnitude, and overall classification separability. The
proposed model was benchmarked against several baseline
architectures, including a recurrent sequence model (LSTM), a
temporal convolutional model (TCN), a Transformer-only
structure without graph input, a GCN-only static network
model, and a hybrid GCN+LSTM model. A comparative
spatio-temporal convolutional architecture was also
implemented to evaluate robustness against temporal noise.
Hyperparameters were tuned using grid search: learning rate
1e-3, batch size 64, dropout rate 0.2, and embedding
dimension 128. The GNN component utilized two
convolutional layers, while the Transformer incorporated four
attention heads. All models were trained with the Adam
optimizer and early stopping.

Table 1 summarizes the experimental outcomes. The
proposed GNN-Transformer framework achieves superior
performance on all metrics, reaching an accuracy of 90.8%,
F1-score of 0.882, RMSE of 0.118, and AUC of 0.941. These
results reflect consistent improvements over other baselines,
confirming that joint spatial-temporal modeling significantly
enhances financial risk prediction accuracy. The performance
gain is especially evident in the AUC and RMSE metrics,
demonstrating higher robustness and reduced prediction
variance under dynamic market fluctuations.

Table 1: Comparative Performance of Different Models
on Financial Risk Prediction Tasks

Model Accuracy
(%)

F1-
Score

RMSE AUC

LSTM 82.6 0.812 0.148 0.874
TCN 83.1 0.818 0.145 0.882
Transformer-
only

85.9 0.841 0.138 0.901

GCN-only 84.2 0.826 0.142 0.889
GCN + LSTM 86.5 0.849 0.135 0.907

Spatio-
Temporal CNN

87.1 0.856 0.131 0.912

Proposed
GNN-
Transformer

90.8 0.882 0.118 0.941

4.2 Performance Evaluation and Analysis

The performance trends of the proposed hybrid model were
analyzed through training dynamics, attention visualization,
and temporal horizon stability. Figure 2 shows the training and
validation curves over 50 epochs for the GNN-Transformer,
Transformer-only, and GCN+LSTM models. The hybrid model
demonstrates faster convergence and lower generalization error.
Its validation loss stabilizes quickly, indicating superior
regularization and reduced overfitting. The attention-based
fusion mechanism effectively balances structural and temporal



dependencies, resulting in smoother optimization and enhanced
interpretability.

Figure 2. Training and validation performance curves of the
GNN-Transformer, Transformer-only, and GCN+LSTM

models over 50 epochs

Figure 3 presents an attention heat map illustrating how the
model distributes focus across nodes and time steps during a
period of high market volatility. Each node represents a
financial entity, and edge transparency indicates the degree of
message propagation intensity. The visualization shows that
entities with high systemic connectivity (e.g., large financial
institutions or cross-sector firms) receive stronger attention
weights during stress events. This pattern demonstrates that the
model learns both the hierarchical influence and contagion
potential of critical participants within the market network.
Temporally, peaks in attention correspond to macroeconomic
transitions and volatility spikes, confirming that the
Transformer component effectively identifies pivotal time
intervals contributing to systemic instability.

Figure 3. Visualization of structural and temporal attention
distributions during a high-volatility market period

Figure 4 depicts the AUC performance of various models
across forecast horizons of 1 week, 1 month, and 3 months.
The proposed model maintains consistent accuracy across all
periods, with minimal degradation over longer horizons. In
contrast, recurrent and convolutional baselines show noticeable
declines as the forecast window expands, suggesting their
limited ability to preserve long-range dependencies. The stable
performance of the GNN-Transformer highlights its capability

to adapt dynamically to changing graph structures and evolving
temporal patterns, making it suitable for long-term financial
monitoring and risk management.

Figure 4. AUC performance comparison across forecast
horizons of 1 week, 1 month, and 3 months

Overall, the experimental findings confirm that integrating
graph-based structural reasoning with temporal attention
mechanisms enhances both predictive accuracy and
interpretability. The model provides fine-grained insights into
where and when financial risk concentrations emerge, enabling
early detection of systemic vulnerabilities. The learned
attention distributions offer an interpretable visualization of
information flow across entities and time, which can support
practical decision-making for risk mitigation, portfolio
adjustment, and policy intervention.

5. Conclusion
This paper presented a unified deep learning framework

that integrates Graph Neural Networks (GNNs) and
Transformer architectures for dynamic financial risk
assessment. The motivation for this study arises from the
inherent complexity of modern financial systems, which
exhibit both interconnected structural dependencies and non-
linear temporal evolution. Traditional econometric and
standalone neural models fail to effectively capture these joint
dynamics, resulting in limited predictive robustness and
interpretability. To address this challenge, the proposed GNN-
Transformer hybrid model combines structural representation
learning from graph data with temporal self-attention
mechanisms, forming a cohesive architecture capable of
modeling financial systems holistically.

Through extensive experiments on equity market and
corporate credit datasets, the framework demonstrated superior
predictive performance compared with conventional recurrent,
convolutional, and graph-only baselines. Quantitative
evaluations showed that the model achieved significant
improvements in accuracy, AUC, and error reduction. Beyond
performance metrics, attention visualization analyses provided
strong interpretability, revealing how information propagates
through interconnected entities and which time intervals
contribute most to systemic fluctuations. This interpretive
transparency is crucial for practical financial applications, as it
allows regulators and analysts to understand the underlying



mechanisms driving predicted risks rather than treating the
model as a black box.

Another key contribution of this study is its ability to
dynamically adapt to changing financial environments. The
graph module continuously updates relational structures as
market correlations evolve, while the Transformer captures
shifting temporal dependencies caused by macroeconomic
changes or global shocks. This adaptability ensures that the
model remains robust under both stable and volatile market
conditions. Moreover, the attention-based fusion mechanism
bridges the gap between structural awareness and temporal
foresight, allowing for flexible, interpretable, and explainable
integration of heterogeneous data sources. As a result, the
framework supports proactive risk monitoring and early
warning of market instability, offering potential value for
financial regulation, credit evaluation, and investment strategy
optimization.

In summary, the proposed GNN-Transformer framework
establishes a novel paradigm for data-driven financial
intelligence by unifying spatial and temporal reasoning within a
single deep learning model. Its demonstrated improvements in
predictive precision, interpretability, and adaptability make it a
promising direction for future large-scale applications in
financial analytics and systemic risk management.

6. Future Work
Although the proposed model achieves remarkable

performance and interpretability, several directions remain for
future exploration. One key area involves scalability and real-
time deployment. Financial systems operate at massive scale,
and high-frequency data streams from markets and institutions
require models capable of processing graph updates
continuously and responding in near real time. Extending the
current framework with distributed graph computation and
online learning mechanisms could enable deployment in live
trading or monitoring environments.

Another promising direction concerns multi-modal and
cross-domain data integration. In practice, financial decision-
making relies not only on numerical indicators but also on
textual information such as news, analyst reports, and policy
announcements. Incorporating these textual or sentiment-based
data streams into the GNN-Transformer architecture through
natural language embeddings or multimodal attention could
further enhance the contextual understanding of financial risk
formation. Such fusion would allow the model to detect latent
triggers and soft signals preceding quantitative shifts in market
conditions.

Additionally, future research could explore causal
interpretability and explainable decision pathways. While
attention mechanisms provide intuitive visualization, they do
not explicitly represent causal inference. Integrating causal
discovery modules into the hybrid framework could help
identify cause-effect relations among financial variables,

enabling more transparent decision support for regulatory
oversight.

Finally, an important avenue for extension lies in stress
testing and policy simulation. By embedding the GNN-
Transformer model into simulation environments, researchers
can analyze how systemic risks propagate under hypothetical
shocks such as liquidity freezes, interest rate hikes, or sectoral
defaults. This capability would make the model not only a
forecasting tool but also a predictive simulator for
macroprudential planning.

In conclusion, future work should focus on extending this
hybrid modeling framework toward greater scalability, richer
multi-source data fusion, and deeper causal interpretability.
These advances would contribute to building intelligent,
adaptive, and transparent financial analytics systems capable of
supporting both strategic investment decisions and regulatory
risk governance in the evolving digital economy.
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