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Abstract: In order to solve the problem that the existing image super-resolution reconstruction model generates poor visual 

quality and prone to structural distortion, a deep gradient guidance based on generative adversarial network is proposed. The 

generator introduces the gradient branch to transfer the features of the gradient image and fuses the gradient information with 

the image branch to prevent the image edge distorted. Referring to MSRB, ResNext and Inception, an improved multi-scale 

residual block is proposed and applied to the basic module of the image branch and gradient branch, which makes model easier 

to obtain multi-scale information. The discriminator uses WGAN-GP to improve the stability of network training.  

Keywords: Image super-resolution; Structural distortion; WGAN-GP; Gradient guidance; Adversarial training; Multi-scale 

residual block. 
 

 

1. Introduction 

Single Image Super-Resolution (SISR) is a hot research 

topic in the field of computer vision. Its purpose is to generate 
high resolution (HR) images from single low resolution (LR) 

images, improve the visual perception quality of images and 

provide richer image information. It is a classic low-level 

vision problem [1]. Image super-resolution reconstruction is 

widely used in video surveillance, remote sensing imaging, 

medical image analysis and other fields [2]. 

With the development of deep learning, image super- 

resolution reconstruction based on deep learning has become 

the mainstream method. Dong et al [3]. proposed image super 

resolution convolutional neural network (SRCNN), which 

learned the mapping relationship between high- and low- 
resolution images through convolutional neural network and 

achieved good reconstruction results. Kim et al[4].used 

residual learning to build a very deep convolutional neural 

network for image super-resolution(VDSR). Ledig et al[5]. 

proposed the image super resolution generative adversarial 

network (SRGAN) and optimized the model via perceptual 

loss [6]. Lim et al [7]. fully considered the influence of BN 

layer in image super-resolution algorithms and proposed an 

enhanced deep residual network for image super-resolution 

(EDSR), which removed BN layer in residual block. 

Although the existing image super-resolution reconstruction 

algorithms based on convolutional neural network and 

generative adversarial network (GAN) have improved in 

image perception quality and objective index, some 

algorithms, such as ESRGAN [8], SRGAN, cannot recover 

high-frequency details well, and geometric distortion will 

occur in the reconstruction process. Ma et al [9]. proposed 

structure-preserving super-resolution (SPSR), which used 

gradient image to protect edge detail. SPSR used RRDB as 

basic module in image branch and gradient branch, which 
made model have large parameters and floating-point 

operations per second (FLOPs). In this paper, we proposed 

adeep gradient guidence network based on generative 

adversarial network named DGGGAN and proposed an 

enhanced multi-scale residual block as a basic block. The 

results of experiments show that our DGGGAN can obtain 
better performance and lower parameters and FLOPs. 

2. Methord 

2.1. Structure of the generator 

As show in figure1, our DGGGAN consists of image 

branch and gradient branch. The structure of the image 

branch is same as the existing image super-resolution 

reconstruction model based on deep learning. The shallow 

feature is extracted by one or more convolutional layers and 

the deep feature is drawn by multiple basic modules. The 

deep feature is sent to the up-sample module to amplify, the 

final output result is obtained through a convolution layer 

with 3 output channels. The composition of gradient branch 

is exactly same as the image branch. In addition, in order to 

enhance the information exchange between image branch 
and gradient branch, after several basic modules in the 

image branch, the gradient image is calculated and 

transferred into the gradient branch to fuse with the features 

transferred in the gradient branch, different from SPSR, we 

only use basic modules to extract and transmit feature map 

of gradient images instead of basic module and convolution. 

 
 

 

 

 

Fig.1 Overall framework of the DGGGAN generator 
 
 

In figure1, the gradient images is obtained via 𝐴 = [1,0, −1] 
,which is a convolutional layer with 1 × 3 convolutional 

kernal, 𝐴𝑇 is a transpose of the 𝐴. Input a LR image 𝑆, we can 

calculate the gradient image as follows: 
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Where ∇𝑆𝑥 and ∇𝑆𝑦 are gradient of 𝑥 and 𝑦 of the input 

image 𝑆 ,*’* is the convolutional calculate. Direction of 

gradient is not calculated because the large of the gradient is 

already represent the sharpness of image edges. 

2.2. Multi-scale residual block  
As show in figure2, Combine the advantages of ResNext 

and Inception, we propose an enhanced multi-scale residual 

block. Firstly, the double branches of the MSRB is extended to 

four branches, these branches are mainly composed of 3×3 and 

5 × 5 convolution. Then we use 1 × 1 convolution to improve 

non-linear expression ability. Plus we use LeakyReLU to solve 

the problem of neuron death except 1×1 convolution. Last, we 

use SEblock to improve the dependency between channels. 

 
Fig.2 Multi-scale residual block 

The input and the output of multi-scale residual block is 

denote 𝑥𝑖−1 and 𝑥𝑖 , 𝐶 is feature after fusion of four branches, 

multi-scale residual feature can be obtained as follows: 

xixi1+SEblock(C)           (2) 

2.3.  Squeeze-and-excitation block  
The core idea of SEblock[10] is to improve the 

interdependence between channels and adaptively correct the 

characteristic response strength between channels by using 

global loss. SEblock mainly includes squeeze and excitation. 

 
Fig.3 Squeeze-and-excitation block 

In figure3, input 𝑋 is a 𝐻′ × 𝑊′ × 𝐶′ feature map, use 

squeeze for feature map 𝑋, firstly, get a 𝐻 × 𝑊 × 𝐶 feature 

map 𝑈 by using convolution 𝐹𝑡𝑟 , then, squeeze the feature map 

𝑈 by Global average pooling layer: 

 
The excitation operation is obtained through the squeeze 

feature 𝑧𝑐 and learn the feature weight of each channel. The 

learned features should be able to stimulate important features 

and suppress useless features. Therefore, a gate mechanism is 

constituted by using two fully connection layers: 

 
 
 
 
 

 

Where 𝜎 is Sigmoid, 𝛿 is ReLU, 𝑊1 and 𝑊2 are weight 

matrix of two fully connection layers. Once the gate 

mechanism is obtained, the output 𝑋 ̃ is: 

 

2.4. Structure of the discriminator  
As show in figure4, our discriminator is roughly similar to 

VGG, but the convolutional kernel is 4 × 4 with stride 2, which 

is used for down sampling. Same as WGAN [11], the last layer 

of the discriminator does not use Sigmoid. Moreover, the 

discriminator uses gradient penalty [12] to independently 

punish the gradient of the discriminator for each input, the BN 

layer will modify the gradient with the batch processing 
information, so the BN layer is abandoned in the discriminator 

in our model. 

 
Fig.4 Architecture of discriminator 

 

2.5. Objective function  
Existing image super-resolution algorithms based on CNN 

often use L1 or L2 loss optimization. These methods can 

obtain better PSNR and SSIM, but the generated images are 

too smooth. The image super-resolution reconstruction 

algorithms based on generative adversarial network often uses 

perceptual loss to optimize model, the generated image 

contains richer high-frequency details, but the generated image 
is prone to structural distortion, resulting in poor visual quality.  

For the above questions, we introduce gradient loss in our loss 

function to ensure that the generated image does not have 

structural distortion. The gradient loss between HR gradient 

and SR gradient can be expressed as: 

 
Where 𝐺(. ) is calculate gradient image, we calculate L1loss 

between HR gradient and SR gradient.  

The total loss function can be expressed as: 

 
Where 𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡 is perceptual loss, we use VGG19 as feature 

extractor, then calculate feature loss between HR image and 

SR image, 𝜑(. ) is denote VGG network, the feature loss can 

be obtained as : 

 
𝐿𝑝𝑖𝑥𝑒𝑙 is pixel loss of image branch,  we use L1loss to 

express pixel loss: 

 

are gradient loss of image branch and gradient 

branch. are adversarial loss of image branch, 

we use WGAN-GP to express the adversarial loss: 

 
Where 𝑝𝑟 and 𝑝𝑔 are real sample distribution and fake 

 
 



3  

sample distribution, 𝑝�̃� is distribution after sampling 
between the real sample and the generated sample. 

3. Experiments 

3.1. Datasets 

We choose DIV2K as train dataset, which has 800 high 

resolution images. Firstly, we crop 800 HR images to 

480×480 sub-images by using stride 24, after croping, there 

are 32208 sub-images in the DIV2K train dataset. Using 

random rotation and random crop to enhance train dataset. 

The input LR image is set to 48×48, therefore, the output SR 

image is 192×192.Set5, Set14, BSD100 and Urban100 test 

dataset are selected to test performance of the generator. 

3.2. Experiments details 

We set  𝜃=1.0，𝛼=0.01，𝜇=0.01，𝛽=0.005，𝜀=0.005，𝜂=0.5 in 

eq.7 and 𝜆=10 in eq.10.The optimizer of Generator and 

discriminator select Adam with 𝛽1 =0.9, 𝛽2 =0.999, initial 

learning rate is set to 1 × 10-4 and descend a half at 

[50K,100K,200K,300K],set batchsize=16, train GAN model 

total 500K iters.There are 10 multi-scale residual blocks in 

image branch and calculate gradient image every 3 multi- 

scale blocks, the upsample factory is set to 4 × .We use 

PyTorch to design all experiments on NVIDIA RTX 3080 

GPUs. 

For model performance, we choose PSNR and SSIM as 

objective indicators. Before calculate, every RGB images 

should be converted to YCbCr space and calculate PSNR and 

SSIM only on Y channel. Plus, PI and LPIPS are used to 

evaluate perceptual quality. Lower PI and LPIPS value mean 
the model has better perceptual quality. 

3.3. Experiment results 

Validation of gradient branch effectiveness: In order to 
prove the effect of gradient branch, we remove the gradient 

branch and only retain the image branch, meanwhile, we set 

𝜇=𝜀=𝜂=0 in eq.10, we calculate PI in both cases. All results 

of this ablation experiment are shown in table1: 

Table 1. Gradient branch validity verification (PI) 
 

   Gradient branch  Set5  Set14  BSD100  Urban100  

× 3.5716 3.0795 2.7136 3.9815 
√ 3.2559 2.7565 2.3508 3.5486 

The results of table 1 show that the performance of the 

model without gradient branch is obviously lower than the 

model using image branch and gradient branch. The PI value 

on four test datasets are decline 0.3157,0.3230,0.3628, 0.4329. 

This experiment proves the model can obtain better 

performance when the model contains gradient branch. 

In figure5, we choose 42049.png in BSD100 dataset and 

show the visualize results of the output of gradient branch. 

The greater change of gray value, the greater change of 

gradient value, sharpened edge details can be observed in 
gradient images. This prior information is more conducive to 

restore high-frequency details and guide the reconstruction of 

edge details. 
 

 
(a) HR image 

 

 
(b) HR gradient 

 

 
(c) SR gradient 

Fig.5 Visualize of the output of gradient branch 

Validation of SEblock: In order to verify the effectiveness 

of SEblock in the multi-scale residual module, remove the 

SEblock in the multi-scale residual unit, and compare the 

performance of the generator with and without SEblock in the 

multi-scale residual module on the Set5 dataset. The results 

are shown in table2: 

Table 2. Results of validation of the SEblock 
 

SEblock PI FLOPs 

× 3.3427 23.6G 
√ 3.2559 23.7G 

In table2, when the multi-scale residual cell in the image 

branch and gradient branch does not contain SEblock, the PI 

value is 3.3427. The PI value is 3.2559 when the image 

branch and gradient branch contains the SEblock. However, 

the FLOPs of the generator only increase 0.1GFLOPs after 

use SEblock in the multi-scale residual module, it means that 

the SEblock can improve the performance of the generated 

network without significantly increasing the computational 

complexity of the model. 

Compare with other algorithm:We choose some PSNR- 

dirven algorithms EDSR, RCAN, RDN and DBPN, some 

perceptual-deiven algorithms SRGAN, ESRGAN, NatSR and 

SPSR. All results are shown in table3 and table4: 

Table 3. Objective index of different algorithms on test detasets 
(PSNR/SSIM) 

 

 Set5 Set14 BSD100 Urban100 

EDSR 32.46/0.89 
66 

28.79/0.78 
74 

27.70/0.74 
17 

26.64/0.80 
31 

RCAN 32.63/0.90 
02 

28.87/0.78 
89 

27.77/0.74 
35 

26.81/0.80 
88 

RDN 32.46/0.89 
90 

28.81/0.78 
71 

27.72/0.74 
19 

26.61/0.80 
28 

DBPN 32.47/0.89 
80 

28.82/0.78 
59 

27.73/0.74 
01 

26.37/0.79 
44 

ESRGA 
N 

30.45/0.86 
77 

26.28/0.77 
83 

25.31/0.65 
06 

24.36/0.70 
17 

SRGAN 29.16/0.86 
13 

26.17/0.78 
41 

25.46/0.64 
85 

24.40/0.69 
88 

NatSR 30.99/0.88 
00 

27.51/0.81 
40 

26.45/0.68 
31 

25.46/0.74 
32 

SPSR 30.40/0.86 
27 

26.64/0.79 
30 

25.51/0.65 
76 

24.80/0.72 
37 

DGGG 
AN 

30.48/0.86 
01 

26.69/0.78 
84 

25.49/0.65 
73 

24.72/0.70 
93 

In table3, we can see that the PSNR-driven algorithms 

obtain the highest PSNR and SSIM value on four test datasets, 

the PSNR value of perceptual-driven algorithms 

ESRGAN,SRGAN,NatSR,SPSR and DGGGAN is lower 
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than PSNR-driven algorithms EDSR, RCAN, RDN and 

DBPN. SRGAN obtain the lowest PSNR value on Set5 and 

Set14 datasets and slightly higher than ESRGAN on BSD100 

and Urban100 datasets, because the loss function of SRGAN 

is only determined by perceptual loss and adversarial loss, 

optimize this function will not reduce MSE value. The PSNR 

and SSIM value of DGGGAN on the four test sets are close 

to SPSR. 

The perceptual index of different algorithms are shown in 

table4. The PI and LPIPS of all perceptual-driven algorithms 

are lower than PSNR-driven algorithms, it means that these 
algorithms can generate images with better visual quality. Our 

DGGGAN obtain the best PI value on four test datasets. For 

LPIPS, our DGGGAN is generally close of SPSR. 

Table 4. Perceptual index of different algorithms on test datasets 
(PI/LPIPS) 

 

 Set5 Set14 BSD100 Urban100 

EDSR 5.9819/0.2 
088 

5.2594/0.2 
963 

5.2625/0.3 
249 

4.9844/0.2 
923 

RCAN 6.3749/0.2 
158 

5.7127/0.3 
106 

5.7588/0.3 
317 

5.4181/0.2 
944 

RDN 6.0092/0.2 
134 

5.4633/0.3 
039 

5.5412/0.3 
299 

5.2502/0.3 
162 

DBPN 6.1324/0.2 
108 

5.4596/0.2 
985 

5.4915/0.3 
250 

5.1360/0.2 
748 

ESRGA 
N 

3.7522/0.0 
748 

2.9261/0.1 
329 

2.4793/0.1 
614 

3.7704/0.1 
229 

SRGA 
N 

3.9820/0.0 
882 

3.0851/0.1 
663 

2.5459/0.1 
980 

3.6980/0.1 
551 

NatSR 4.1648/0.0 
939 

3.1094/0.1 
758 

2.7801/0.2 
114 

3.6523/0.1 
500 

SPSR 3.2743/0.0 
644 

2.9036/0.1 
318 

2.3510/0.1 
611 

3.5511/0.1 
184 

DGGG 
AN 

3.2559/0.0 
641 

2.7565/0.1 
355 

2.3508/0.1 
645 

3.5486/0.1 
107 

Table 5. Params and FLOPs of different perceptual-driven 
algorithms 

 

 SFTG 
AN 

NatS 
R 

ESRG 
AN 

SRG 
AN 

SPS 
R 

DGGG 
AN 

Para 
ms 

1.8M 
5.0 
M 

16.7M 0.7M 
24.8 
M 

14.6M 

FLO 
Ps 

0.8G 
12.5 

G 
89.7G 7.0G 

265.1 
G 

23.7G 

Table5 shows the number of parameters and the FLOPs of 

some perceptual-driven algorithms. SPSR has 24.8M 

parameters and 265.1GFLOPs, our DGGGAN only has 

14.6M parameters and 23. 7GFLOPs.Compare with the 

ESRGAN and SPSR, the FLOPs of DGGGAN is decline 1/4 

and 1/10. It shows that although the number of parameters and 

the FLOPs is lower than SPSR, the performance of our 
DGGGAN is close to SPSR. 

Figure6 choose some visualize results of perceptual-driven 

algorithms. Perceptual-driven algorithms always optimize by 
using generative adversarial network and perceptual loss, 

which can generate high perceptual quality images. Our 

DGGGAN use multi-scale residual blocks to catch the multi- 

scale feature, make the model produce richer details. For edge 

structure protection, SPSR and DGGGAN use gradient 

images to guide reconstruction, so, images generated by 

SPSR and DGGGAN do not produce structural distortion. 

Although SFTGAN use semantic segmentation to preserve 

edge details, the performance of SFTGAN is greatly affected 

by the performance of semantic segmentation model, which 

cannot guide reconstruction well. 

 

 

HR NatSR   SFTGAN   ESRGAN   SPSR   DGGGAN 
 

 
HR   NatSR   SFTGAN   ESRGAN   SPSR   DGGGAN 

 

 
HR   NatSR   SFTGAN   ESRGAN   SPSR   DGGGAN 

Fig.6 visualize results of perceptual-driven algorithms, the first row 
is baby.png from Set5, the second row is img005.png from 
Urban100 and the last row is img054.png from Urban100 

4. Conclusion 

In this paper, we proposed a deep gradient guidance 

network for image super-resolution based on generative 

adversarial network DGGGAN. Our DGGGAN algorithm 

can sufficiently use gradient information to prevented 

structural distortion and reconstructed high vision quality 
images. 

In the future work, we will consider to use the algorithm 

into the video super-resolution and decline the parameters of 

the model, then use algorithm on the embedded platform. 
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