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Abstract: This study proposes a unified end-to-end framework for response-time prediction in microservice architectures. The
framework begins with data-quality controls and normalization to align and denoise multi-source system metrics. It constructs
spatiotemporal representations by combining multivariate feature representations with historical response signals. It employs
Transformer-based cross-scale modeling to capture short-term fluctuations, long-term trends, and long-range service dependencies.
The model is trained with a mean-squared-error(MSE) objective and robust regularization. We conduct systematic evaluations on
a public microservice dataset under various conditions, including disk-I/O throttling, container-affinity changes, CPU-quota and
preemption-intensity variations, as well as workload migration and traffic-peak switching. The framework examines the dynamic
changes of overall error and high-percentile error through continuous prediction. Results demonstrate that the method maintains
low RMSE and MAE under complex runtime conditions, significantly suppresses P95 fluctuations, and preserves high goodness
of fit. It remains robust to concept drift and resource-policy changes, providing proactive and actionable signals for capacity

planning, elastic scaling, and service-level (SLO) assurance.
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1. Introduction

Microservice architecture has become the mainstream
paradigm for online services and enterprise systems. The large
number of services, deep invocation chains, and rapid load
fluctuations make end-to-end response time a critical metric
affecting user experience and service-level objectives. Relying
solely on single-point metrics or static thresholds is no longer
sufficient to support fine-grained decisions for capacity
planning, elastic scaling, and failure prevention. System-level
metrics, such as CPU, memory, I/O, and network, which are
generated in parallel with business-side request traces, offer
rich multivariate signals for response-time prediction.
However, these metrics exhibit strong coupling, temporal
variability, and noise. Designing a stable, generalizable, and
tail-aware prediction model without disrupting business
operations holds clear engineering value and research
significance[1]. In large fan-out/fan-in microservice graphs,
even rare stragglers can inflate end-to-end tail latency-the fail
at scale-making P95/P99 a first-class objective for SLOs in
production systems. Representative benchmarks such as
DeathStarBench illustrate how deep call chains exacerbate
unpredictability in latency.

Existing methods still face three major challenges in
microservice scenarios. First, system metrics exhibit nonlinear
and conditional dependencies. Sampling misalignment,
missing values, and anomalies are common across services
and nodes. Direct modeling is easily misled by noise. Second,
response time is jointly driven by mechanisms at multiple
temporal scales. Short-term jitters and long-term trends coexist,

and link-level propagation introduces long-range dependencies.
Single-scale or short-memory models struggle to balance
overall error and tail quantile performance. Third, workload
dynamics and resource policies cause concept drift, resulting
in distribution shifts between training and deployment phases.

This reduces model interpretability and stability, making it
difficult to support scheduling and emergency response in a
predictive manner[2].

To address these issues, we propose a Transformer-based
regression framework that leverages system metrics and
historical response traces. In the front-end, multi-source
metrics undergo quality control, normalization, and
spatiotemporal alignment to form stable multivariate inputs.
The middle layer performs cross-scale dependency modeling
to capture both short-term fluctuations and long-term trends in
a unified manner[3]. The back-end outputs predictions that are
sensitive to both overall error and high quantile deviations.
Robust regularization and lightweight drift awareness are
integrated to enhance model usability and generalization in
complex operational environments.

This study introduces two core innovations. First, we
propose a System-Metric-Based Multivariate Feature
Modeling (SMB-MFM) mechanism. It constructs a feature
pyramid for heterogeneous system metrics and applies robust
normalization and encoding strategies. This enables explicit
representation of the interactions among resource utilization,
queue congestion, and network state, providing stable and
informative inputs for subsequent temporal modeling[4].
Second, we design a Transformer-Based Cross-Scale
Dependency Modeling (TCS-DM) mechanism. It employs
multi-scale positional encoding and inter-layer attention fusion



to jointly capture short-term bursts and long-term trends. It
also enables transferable representations of long-path
dependencies and tail latency amplification. These two
mechanisms, combined with interpretable objectives and
regularization design, ensure that the model achieves both
global accuracy and high-percentile robustness. This dual
emphasis aligns with the requirements for prediction accuracy
and operational usability in microservice environments[5].

Compared with general-purpose time-series Transformers-

Informer (efficient ProbSparse attention), Autoformer
(decomposition with auto-correlation), FEDformer
(frequency-enhanced decomposition), and

PatchTST/TimesNet (patching or 2D temporal variation)-our
framework jointly encodes multisource system metrics (via
SMB-MFM) and cross-scale service dependencies (via
TCS-DM) within one end-to-end model, targeting tail-aware
response-time prediction under operational disturbances and
drift.

2. Related work

2.1 Response Time Prediction in Microservice
Architectures
In microservice-based architectures, response time

prediction serves as a crucial metric for evaluating system
performance and user experience. It has long been a central
focus in operational optimization and resource management.
Microservices decompose applications into independent,
single-purpose service units that interact through lightweight
communication protocols to form complex business
workflows. Under conditions of high concurrency, multi-
tenant resource sharing, and dynamic service orchestration,
response time is influenced not only by the performance of
individual services but also by the length of cross-service
invocation chains, network latency, concurrent request
distributions, and resource scheduling strategies. This highly
dynamic nature and intricate dependency structure make
traditional ~ single-dimensional ~ performance  modeling
inadequate, thereby driving the development of
multidimensional and global prediction approaches[6].

Early research primarily relied on queuing theory and
statistical regression models. These approaches established
mathematical relationships among request arrival rates, service
times, and queue lengths to model and predict response times.
While theoretically interpretable, such methods often assume
stable system environments with known parameters. As a
result, their prediction accuracy deteriorates in real-world
production settings characterized by volatile workloads and
frequently changing network conditions. Moreover, the
complex and evolving dependencies among services in
microservice systems make models based on fixed topologies
and static parameters unsuitable for real-time adaptation. With
advancements in runtime data collection and monitoring
technologies, research has increasingly shifted toward data-
driven predictive modeling based on real-time operational
metrics, aiming to overcome the adaptability and
generalization limitations of traditional methods[7].

Traditional approaches include queueing-theoretic models
and Markovian networks that relate arrival rates, service times,

and waiting times under stationarity assumptions. While
interpretable, these models degrade in production
microservices where workloads and policies shift and tail
behavior dominates user-perceived latency. Dean and
Barroso’s “The Tail at Scale” shows how rare stragglers in
fan-out/fan-in graphs can inflate end-to-end percentiles,
challenging steady-state assumptions commonly made by
analytical models[8].

The introduction of machine learning has brought new
perspectives to response time prediction in microservices. By
extracting multidimensional features from system logs and
monitoring metrics, machine learning models can capture
nonlinear relationships between service behavior and response
times. Supervised learning methods based on feature
engineering, such as random forests and gradient boosting
trees, have shown promising results when handling
heterogeneous data and nonlinear patterns. However, these
models still struggle with high-dimensional temporal data,
particularly in capturing long-range dependencies and
complex feature interactions. These limitations are especially
prominent in modeling long invocation chains across multiple
services, prompting a shift toward deep learning approaches[9].

The advancement of deep learning, particularly sequence
modeling techniques capable of learning long-term
dependencies, has provided breakthroughs in microservice
response time prediction. By leveraging recurrent neural
networks, convolutional neural networks, and hybrid
architectures, recent research has focused on modeling both
temporal and feature dimensions to capture the multi-scale
dynamic characteristics of service behavior. These methods
have shown better adaptability to varying load patterns and
changes in invocation structures, thus enabling more accurate
predictions under complex system conditions. Nevertheless, as
system scales grow and metric dimensions increase, balancing
prediction accuracy with computational efficiency and
scalability remains a critical challenge that must be
addressed[10].

Topology and path-aware systems further show structure
as a first-order driver of latency. CRISP performs critical-path
analysis over large-scale RPC traces to reveal how a few slow
edges dominate end-to-end latency[2], while TailClipper
lowers P99 via system-wide scheduling[4]. FastPERT imposes
a PERT-network inductive bias to predict end-to-end latency
on microservice DAGs, complementing metric-only models[1].

2.2 Transformer-Based Multivariate Time Series Modeling
for System Metrics

During the operation of complex systems, system metrics
serve as key indicators of resource utilization, load conditions,
and performance changes. These metrics are characterized by
their multidimensionality, high frequency, and temporal
variability. They include fundamental resource usage data
such as CPU, memory, disk I/O, and network bandwidth[11].
Additionally, they reflect interaction patterns and invocation
chain states among services. Multivariate time series modeling
of these metrics can reveal correlations among different
resources and how they impact performance indicators.
However, such data often exhibit long-range dependencies,
abrupt fluctuations, and multi-scale variations. Traditional



time series analysis methods or shallow learning models are
limited by fixed window sizes, linear assumptions, and weak
feature interaction capabilities. These limitations hinder their
ability to capture global dependencies and latent patterns in
the data[12].

The Transformer architecture introduces new possibilities
for modeling multivariate time series. Its core self-attention
mechanism can directly capture dependencies between any
positions in a sequence without being constrained by distance.
This property provides a natural advantage for modeling long-
range patterns in system metrics. Unlike recurrent neural
networks that rely on recursive structures, the Transformer can
attend to all time points and feature interactions in a single
computational step. This significantly improves modeling
efficiency and feature representation capacity. The global
attention capability enables the model to integrate information
from different resources and temporal scales more effectively.
This results in finer-grained feature representations for
performance prediction tasks[13,14].

Transformer models also demonstrate strong flexibility in
handling the multi-scale nature of system metrics. Through
multi-head attention mechanisms, the model can learn short-
term fluctuation patterns and long-term trends in parallel
subspaces. This enables the model to balance local variation
and global tendencies. Additionally, the positional encoding
mechanism provides temporal location information. This
allows the model to preserve the sequential structure of time
series without relying on order-based computation. For system
metrics with seasonal patterns and sudden spikes, the
Transformer can capture key features across multiple temporal
resolutions. This helps the prediction model adapt to dynamic
changes in resource usage patterns[15].

As the application of Transformers in time series modeling
continues to expand, researchers have begun to explore
combinations with various feature enhancement and structural
improvement techniques. For example, the integration of
feature selection, attention weight normalization, and multi-
scale convolutional fusion enhances the model's ability to
detect local anomalies and short-term dependencies. These
techniques preserve the global dependency modeling

advantage. Moreover, to address the high dimensionality and
computational cost of system metrics, lightweight Transformer
structures and sparse attention mechanisms have been
introduced. These approaches reduce computational
complexity and improve deployment feasibility in large-scale
distributed systems. Together, these advancements lay a solid
technical foundation for applying Transformer models to
system-metric-driven performance prediction tasks[16].

For multivariate coupling, Crossformer explicitly models
cross-dimension dependencies via a two-stage attention design.
Distinct from these generic LTSF models, our framework
jointly  encodes  multisource  system-metric  signals
(SMB-MFM) and models cross-scale dependencies (TCS-DM)
toward tail-aware response-time prediction under drift and
policy perturbations.

3. Method

This study proposes a time series modeling framework
for response time prediction in microservice environments,
integrating two core innovations: System-Metric-Based
Multivariate ~ Feature =~ Modeling  (SMB-MFM)  and
Transformer-Based Cross-Scale Dependency Modeling (TCS-
DM). SMB-MFM extracts multi-view feature representations
from various system metrics such as CPU usage, memory
consumption, and network bandwidth. It characterizes system
states from the perspectives of resource utilization, service
interaction, and workload patterns, thereby enhancing the
completeness and timeliness of feature representations. TCS-
DM builds upon the Transformer self-attention mechanism. It
uses multi-head attention and multi-scale feature fusion to
capture both cross-scale dependencies and feature interactions
of response time across different temporal spans. This enables
unified modeling of long-term dependencies and short-term
fluctuations. The synergy between these two components
allows the model to balance global structural modeling and
local pattern perception under dynamic and complex
microservice conditions, providing a strong foundation for
accurate response time prediction. The overall model
framework diagram mentioned is shown in Figure 1.

System Metric 6 Encoder & Past Response
Channels { CTem‘?c’:?' Time
d-dim SIMOlNon Muilti-Head —
¢ ) Self-Attention
v
Spatio-Temporal > Multi-Head Decoder
Convolution Cross-Attention
= > Masked
i 1 Multi-Head
e > Multi-Head > | Self-Attention
:tstoncal Historical Self-Attention
esponse istorica -
Time Sequence W : = Mtgt:(-)l;lsead
Matrix Encodin ulti-rea 2
- | Feed-Forward Attention
Past Response ~ =
Time

RE D FRT, Linear
A T
Input

Figure 1. Overall model architecture diagram



3.1 System-Metric-Based Multivariate Feature Modeling

This study introduces a  System-Metric-Based
Multivariate Feature Modeling (SMB-MFM) mechanism
designed to address the challenges of multi-source
heterogeneity and dynamic dependencies in microservice
response time prediction. The core idea of this mechanism is
to perform unified embedding and joint modeling of various
system metrics, such as CPU usage, memory consumption,
and network bandwidth. By semantically integrating
multivariate time series, the model obtains feature
representations that capture both global patterns and local
variations. Compared with single-dimensional or static feature
modeling approaches, this mechanism reveals nonlinear
dependencies and time-varying correlations among metrics
more effectively, laying a foundation for subsequent cross-
scale dependency modeling.

In SMB-MFM, multi-view feature encoding and fusion
paths are introduced. A unified time-series input matrix is
constructed, and embedding layers together  with
transformation functions are employed to represent multi-
dimensional metrics jointly. The goal is not only to enhance
the model's sensitivity to individual metric fluctuations but
also to capture interactive dependencies across different
metrics. This allows the prediction model to remain robust and
generalizable under dynamic and complex runtime
environments. To formalize this process, mathematical
derivations are provided, and the optimization objective is
described through the definition of a loss function. The overall
model architecture is illustrated in Figure 2.
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Figure 2. SMB-MFM module architecture

First, let the input sequence of the system metrics be:
d
X = {x,,xz,...,xr} X, €R

>

Where T represents the time step, d represents the

dimension of the system metrics, and each vector i contains
multi-dimensional indicators such as CPU, memory, and
network.

To embed different metrics into a unified representation
space, a linear transformation and an embedding layer are
introduced:

— k
z,=W,x,+b, z, e R

kxd
Where VV‘ €R

bias, and k s the dimension of the embedding space.

In temporal modeling, it is necessary to capture short-
term and long-term dependencies, so a temporal encoding
combining convolution and attention is constructed:

hr(temp) — ReLU(I/VC * Zt—pif + bc)

represents the one-dimensional convolution

. : . b, .
is the embedding matrix, ¢ is the

Where *

operation, P s the receptive field window size, and ¢

b . .
and ¢ are the convolution kernel and bias parameters.

To further aggregate the global dependencies across
metrics, multivariate feature fusion is defined:

f; = Atten[iO}/l(h’(lc’mp),H)
H = {h(t‘—”"l’),'“,h;—temp)

t

Among them, the } attention
mechanism is used to calculate the correlation between the
current moment and the global history to model cross-
dimensional and cross-temporal interactions.

Finally, the predicted response time is recorded as:

J’}HI :VI/of;-i_bo

Where W, and b" are the output layer parameters,

and yt+l

t+1

To optimize the learning of the entire SMB-MFM module,
the mean square error (MSE) is introduced as the loss function:

1 & R
Loyp e = FZ(J’,‘ _yi)2
i1

represents the predicted response time at time

Where i Vi s the
predicted value, and N s the total number of samples.

This loss function in SMB-MFM drives the joint
optimization of the embedding layer, convolutional layer, and
attention module, ensuring that the representation of
multivariate metrics closely matches the actual response time

is the actual response time,

pattern. By minimizing ~SMB-MFM  the model captures the
complex dependencies between system metrics while ensuring
the accuracy and stability of predictions at both the global and



local levels, providing a solid input feature foundation for
subsequent cross-scale modeling.

3.2 Transformer-Based Cross-Scale Dependency Modeling

This study further introduces a Transformer-Based Cross-
Scale Dependency Modeling (TCS-DM) mechanism to
address the challenges of multi-scale dependencies and long-
range correlations in microservice response time prediction.
Traditional time series forecasting methods often exhibit
biases when modeling both local and global dependencies.
Some approaches focus only on short-term patterns and
overlook long-term trends. Others prioritize global modeling
but lack sensitivity to local variations. The core of TCS-DM
lies in leveraging the self-attention structure of the
Transformer. It combines multi-scale positional encoding and
cross-layer dependency modeling to jointly represent fine-
grained local patterns and global trend dependencies. This
enhances both the expressiveness and stability of the
prediction model.

Within this mechanism, the input multivariate feature
sequences are first mapped through multi-scale positional
encodings. This allows the model to distinguish pattern
variations across different temporal spans. Then, multi-head
attention is used to jointly model the features at each temporal
scale. A cross-layer information interaction module is
designed to dynamically fuse long-term and short-term
dependencies. This architecture enables the model to capture
sudden local fluctuations while also maintaining a stable
estimation of long-term trends. As a result, the model provides
structured support for response time prediction in complex and

dynamic microservice scenarios. The overall model
architecture is illustrated in Figure 3.
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Figure 3. TCS-DM module architecture

The formal derivation is as follows. Assume that the input
feature sequence is:

F={f,, fyses Sy} SiER

Where ff comes from the feature representation of SMB-
MFM in the previous stage, T represents the time step, and

k represents the feature dimension.

First, multi-scale position encoding is introduced to expand
the original position vector into a multi-scale representation:

) t t
o _ sin(i.j ® cos(—.)
Pr 10000%" 10000%"
selsl,s2,.s,}

Where S represents different scales, ® represents the
splicing operation, and multi-scale position encoding enables
the model to perceive the difference in local and global
periods.

In the attention mechanism, the query (Q), key (K), and
value (V) across scales are defined as:

O=FW, K =FW, V=FW,
kxd
Where WQ, WK, W, eR

The core calculation of the cross-scale self-attention
mechanism is:

are projection matrices.

T
Attention(Q, K, V') = Soft max OK V

Jd

This mechanism ensures that features at different scales
can interact globally, thereby enhancing the ability to model
long-range dependencies.

To further integrate cross-scale features, an inter-
layer fusion mechanism is introduced:

H? =a-H" +(1-a)-Z"

Where H @ is the output of the layer ! , z" is the
result of the attention module, and & is the fusion weight,
which is used to balance local features and global features in
cross-scale modeling.

The final predicted value is:

j>t+l = VV(JH(L) +bo
Where L represents the number of layers of the last

Transformer encoder, and " ° and °
parameters.

are the output layer

The loss function still uses the mean square error (MSE),
which is defined as follows:

1 & R
Lics_pu :NZ(J’,‘ _yf)2
i=1

A

Where Vi Vi is the

predicted value, and N is the number of samples.

is the actual response time,

This loss function in TCS-DM guides the optimization of
cross-scale attention weights and inter-layer fusion parameters,
enabling the model to continuously adjust feature
representation during the process of modeling long- and short-
range dependencies, ensuring that output predictions capture
fine-grained fluctuations while reflecting the stability of global

L .
TCS-DM " the model achieves a

semantic alignment and

trends. By minimizing
balance between cross-scale



dependency modeling, providing a structured optimization
objective for response time prediction.

4. Experimental Results

4.1 Dataset

In this study, we selected the Microservices Bottleneck
Localization Dataset as the primary data source. This dataset
focuses on modeling system performance and response time
within microservice architectures. It collects extensive trace
information from service requests and incorporates
multidimensional system metrics, including CPU usage,
memory consumption, disk I/O, and network bandwidth.
These metrics comprehensively reflect the operational state
and performance bottlenecks of microservices in complex
environments. The dataset offers high-quality multivariate
feature inputs for response time prediction and serves as a
crucial foundation for performance modeling and dependency
analysis.

The core structure of the dataset consists of two
components. The first is a set of multidimensional system
metric sequences. These include resource utilization, service
interaction latency, and system call information, which
describe the runtime behavior of services. The second is
service-level response time records, covering the performance
of different microservice instances within request traces. By
aligning and integrating system metrics with response time
data, researchers can construct mappings between service-
level performance and resource usage. This enables more fine-
grained modeling and prediction. The dataset's design ensures
both data heterogeneity and temporal continuity, which
provides a solid basis for modeling complex dependency
structures.

In addition, the dataset offers significant advantages in
terms of scale and diversity. It contains millions of request
traces and metric records, encompassing various microservice
topologies and workload patterns. This makes it suitable for
training and validating models across different scenarios.
Within the modeling framework of this study, the dataset
provides multidimensional input features for the System-
Metric-Based Multivariate Feature Modeling (SMB-MFM)
module and supplies complete time series required by the
Transformer-Based Cross-Scale Dependency Modeling (TCS-
DM) module. This ensures that the proposed model can
effectively learn and extract predictive feature representations
under real-world complex conditions.

4.2 Experimental setup

In terms of the experimental environment, the hardware
configuration consisted of a high-performance server equipped
with dual Intel Xeon Platinum processors running at 2.9 GHz,
providing a total of 64 logical cores. The server was fitted with
512 GB of memory to ensure stability during large-scale data
processing and model training. For accelerated computation,
four NVIDIA A100 GPUs with 40 GB of memory each were
used. This setup meets the computational requirements of
Transformer architectures during multi-scale modeling. The

operating system was 64-bit Linux (Ubuntu 20.04 LTS), with
CUDA 11.6 and cuDNN 8.4 providing low-level support for
deep learning frameworks.

In terms of software, the models were implemented in a
Python 3.9 environment using PyTorch 1.12 as the core deep
learning framework. Data processing and feature engineering
were carried out with the help of NumPy, Pandas, and Scikit-
learn. TensorBoard was employed during training for
visualization purposes, allowing real-time monitoring of loss
convergence and hyperparameter adjustments. All experiments
were conducted under the same software stack to ensure
reproducibility and consistency.

Regarding hyperparameter configuration, the
Transformer module was set with a hidden dimension of 256,
eight attention heads, six stacked layers, and a feedforward
network dimension of 1024. The optimizer used was AdamW,

with an initial learning rate of 1107 . A cosine annealing
schedule was adopted for dynamic adjustment. The batch size
was set to 128, and the maximum number of training epochs
was 100. During training, a dropout rate of 0.1 was applied to
mitigate overfitting. These settings ensured a balance between
computational complexity and prediction accuracy, laying the
foundation for subsequent experimental comparisons and
performance analysis.

4.3 Experimental Results
1) Comparative experimental results

This paper first conducts a comparative experiment, and
the experimental results are shown in Table 1.

Table 1: Comparative experimental results

P95
Method RMSE | MAE | Rz ¢
Error |
USRFNet[17] 0.0820 0.0340 0.1210 0.9310
STMformer[18] | 0.0446 0.0164 0.0970 0.952
TFT-based
Model[19] 0.4960 0.1120 0.1850 0.9710
LAFF-DCN- 0.0610 0.0280 0.1100 0.9450
v2[20]
Ours
(SMB-MFM+ | 0.0310 0.0120 0.0810 0.9820
TCS-DM)

The experimental results show that different models
exhibit significant performance differences in response time
prediction for microservices. Both USRFNet and LAFF-DCN-
v2 demonstrate certain advantages over traditional baseline
models. However, they remain insufficient in handling
complex cross-scale dependencies. This limitation results in
relatively high values for RMSE, MAE, and P95 Error,
particularly in capturing tail latency. These observations
indicate that relying solely on single-structure feature fusion or
shallow modeling is inadequate for addressing the coupling
between multivariate features and temporal dependencies in
microservice architectures.




STMformer and the TFT-based model achieve improved
prediction performance to some extent. STMformer reduces
overall error through spatiotemporal relationship modeling.
The TFT model benefits from sequence modeling and
interpretability mechanisms, achieving relatively good results

in terms of R’ However, both models still show
weaknesses in high-percentile errors, such as P95 Error. This
indicates that their ability to capture extreme latency remains
limited when dealing with the multi-scale dynamic nature of
system metrics. These findings highlight the limitations of
conventional — Transformer models and single-scale
spatiotemporal fusion methods.

In contrast, the proposed joint mechanism of SMB-MFM
and TCS-DM demonstrates stronger modeling capabilities.
The SMB-MFM module enables fine-grained modeling of
multivariate system metrics, allowing the model to effectively
capture inter-metric dependencies while reducing the impact
of noise. Meanwhile, the TCS-DM component allows the
model to learn deep dependencies across temporal scales. This
enhances the model's ability to adapt to abrupt changes and
complex temporal patterns. The integration of these two
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modules significantly improves prediction stability and
accuracy.

As shown in the table, Ours (SMB-MFM + TCS-DM)
achieves the best results in RMSE, MAE, and P95 Error. The

R’ score is also significantly better than that of the
comparison models. These results indicate that the proposed
method not only outperforms others in overall error
convergence but also demonstrates robust predictive ability for
critical performance indicators such as tail latency. The
findings validate the effectiveness of combining system-
metric-based multivariate feature modeling with cross-scale
dependency modeling and confirm the practical value and
applicability of the proposed method in microservice
performance prediction tasks.

2) Study on the Environmental Sensitivity of Disk I/O
Throttling and Container Scheduling Affinity Changes to
Prediction Errors

This paper further studies the environmental sensitivity of
disk I/O throttling and container scheduling affinity changes to
prediction errors. The experimental results are shown in
Figure 4.
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Figure 4. Study on the Environmental Sensitivity of Disk I/O Throttling and Container Scheduling Affinity Changes to Prediction
Errors

Under the environmental disturbance of  “Disk 1/O
throttling x Scheduling affinity,” RMSE generally increases as
the throttling intensity rises. However, local decreases appear
in the Mild-Packed and Moderate-Packed scenarios. This
indicates that when containers are moderately packed on the
same node, stability benefits from I/O path locality and cache
locality can partially offset the performance fluctuations
introduced by throttling. In contrast, RMSE shows a sharp
increase under the Severe-Spread condition, reflecting the
amplified effect of cross-node communication and I/O

queueing delays. This phenomenon is related to the coupling
between resource contention and network uncertainty in
microservice environments. Under high-throttling levels,
distributed deployments are more likely to trigger cross-
machine data paths and request retries, which amplify
prediction errors.

The behavior of MAE differs from RMSE. It presents a
non-monotonic trend of early decrease, mid-term increase, and
final drop. This suggests that the mean absolute error is more



sensitive to localized steady states and short-period
disturbances. During the None to Mild stage, light throttling
can lead to more balanced I/O requests and smoother
fluctuations in some scenarios, resulting in lower MAE. As the
environment moves into the Moderate stage, co-located
containers cause more concentrated resource competition on
the same node, leading to higher queueing time and increased
MAE. A slight decrease in MAE under the Severe-Packed
setting implies that although overall latency becomes higher
under extreme throttling and strong affinity, the average
deviation is constrained by more predictable bottlenecks. The
SMB-MFM component captures local patterns and resource
utilization features, which help reflect the controllability of
average deviation under such “congested but regulated”
conditions.

P95 Error displays a typical jagged “spike” pattern. Sharp
increases appear in Mild-Packed, Moderate-Packed, and
Severe-Spread scenarios. This indicates that tail latency is
mainly driven by a few congested periods or sudden queueing
events, rather than being caused by continuous and systemic
deviations. The combination of Spread and Packed
deployments results in distinctly different sources of extreme
delays across throttling levels. Spread deployments are more
likely to experience network jitter and cross-disk latency,
while Packed deployments tend to hit bottlenecks at hotspot
disks or shared caches. The cross-scale attention mechanism in
TCS-DM helps to expose the coupling between short-term
spikes and long-term trends in such scenarios, which
facilitates distinguishing tail errors from average errors.

2
R” Follows an inverted U-shape, peaking at intermediate
throttling levels and declining at both ends. Local increases

also appear in some Packed settings. This indicates that under
moderate throttling and reasonable affinity, the system
dynamics become more explainable and better fitted by the
model. When throttling is too weak or too strong, unobserved
external disturbances-such as background tasks, cache jitter, or
inter-node competition-dominate the variance and reduce
model fit. The cross-scale dependency modeling achieves

higher R’ under the Moderate setting. This implies the
model captures a relatively stable ratio of slow variables (e.g.,
trends and seasonality) and fast variables (e.g., bursts and
short-term autocorrelation). In contrast, extreme conditions
like Severe-Spread break this balance due to rapidly drifting
distributions and sudden spikes, which demand stronger
anomaly detection and robust regularization. Overall, the
combination of multivariate metric representation from SMB-
MFM and cross-scale fusion from TCS-DM reveals that
average error, tail error, and explainability respond to
environmental disturbances in different ways. Only by
applying metric decomposition and cross-scale modeling
together can we achieve stable characterizations of
microservice response time.

3) Environmental Sensitivity Evaluation of Response Time
Prediction under CPU Quota and Preemption Intensity
Variations

This paper also evaluates the environmental sensitivity of
response time prediction under changes in CPU quota and
preemption intensity. The experimental results are shown in
Figure 5.
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Figure 5. Environmental Sensitivity Evaluation of Response Time Prediction under CPU Quota and Preemption Intensity
Variations

Under the disturbance of reduced CPU quota and increased
preemption intensity, RMSE shows an overall upward trend
with local fluctuations. This reflects the increase in queueing
delays and measurement noise caused by computational
constraints and forced context switching. A slight early

decrease under high quota and weak preemption indicates that
when scheduling interference is low, TCS-DM can suppress
short-term jitter through cross-scale smoothing and attention
weighting. As the quota continues to decline and preemption
intensifies, queue lengths and cache miss rates rise. The



compounded uncertainty from cross-node and cross-container
execution significantly amplifies the overall squared error.

The MAE curve differs from RMSE. It exhibits a non-
monotonic pattern of slight early decline, mid-stage increase,
local dip, and final rise. This suggests that the mean absolute
error is influenced by both near-term steady states and
microbursts. Under moderate quota and moderate preemption,
CPU allocation is more stable, and context switching is more
controllable. The modeling of local patterns and resource
usage by SMB-MFM helps the error converge to a lower level.
When entering low-quota and high-preemption scenarios,
lightweight interference  accumulates into  sustained
disturbances, causing MAE to rise. However, temporary
declines under certain medium-strength settings also show that
the model can still capture recoverable periods of stability.

P95 Error shows a distinct sawtooth pattern of spikes,
relief, and renewed spikes. This reveals the high sensitivity of
tail latency to preemption intensity. High preemption triggers
involuntary switches, cache pollution, and kernel contention
bursts, which sharply degrade response times in a few time
windows. In contrast, moderate preemption or an adequate
quota helps suppress tail risks. The cross-scale dependency
modeling in TCS-DM can decouple these instantaneous spikes
from slow-changing trends. This reduces the drag of spikes on
the learning process. However, under extreme preemption,
high percentile errors remain, which aligns with the
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mechanism that tail latency in microservices is often

dominated by a few critical path blockages.

The R’ curve shows a general downward trend with
local rebounds. This indicates that when the quota is sufficient
or preemption remains moderate, the system dynamics can
still be well captured by the model. When the quota becomes
too low or preemption too strong, unobserved scheduling
noise and workload migration cause distributional drift,
reducing model explainability. The combination of
multivariate metric representation from SMB-MFM and cross-
scale fusion from TCS-DM reveals that when CPU resources
and scheduling policies maintain a learnable ratio between
slow variables (e.g., trend, seasonality) and fast variables (e.g.,

preemption, microbursts), R’ it temporarily improves. Once
the system enters a high-interference state, the model requires
stronger robust regularization and anomaly awareness to
maintain interpretability.

4) Continuous prediction data sensitivity testing under
concept drift scenarios (load pattern migration/business peak
switching)

This article further presents a continuous prediction data
sensitivity test under concept drift scenarios (load pattern
migration/business peak switching). The experimental results
are shown in Figure 6.
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Figure 6. Continuous prediction data sensitivity testing under concept drift scenarios (load pattern migration/business peak
switching)

During continuous prediction, as the load pattern shifts
from stable phases (S1-S3) to transition phases (Shiftl—
Shift3), RMSE exhibits a stepwise increase and reaches a peak
during high-load switching (Peakl-Peak3), followed by a
clear decline in the recovery phase (Recl-Rec3). This
indicates that when the statistical distributions of request
arrival rates and resource utilization undergo drift, the
prediction error is first amplified in the squared term.
Although the cross-scale attention in TCS-DM can smooth

short-term uncertainties, it still reveals lag during the early
stages of distributional shift. This aligns with the reordering of
hot paths in microservice invocation chains under load
migration. Reconfigurations of CPU and I/O background
usage, queue lengths, and retry strategies change the delay
generation mechanism, resulting in temporary mismatches
with the parameters learned from previous patterns.

Compared with RMSE, the increase in MAE is more
gradual and begins to decrease earlier at the end of the Peak



phase. This shows that the average absolute error adapts more
quickly to slow-changing variables and is less sensitive to
extreme values. The multivariate modeling of SMB-MFM
plays a crucial role in this context. By jointly representing
CPU, memory, and network metrics, the model can capture
new steady-state trends and recalibrate the baseline more
promptly. As a result, MAE declines earlier during the
recovery phase. However, in the early stages of transition,
MAE still shows a slight increase, suggesting that local
patterns-such as burst queueing or cache jitter-can briefly
disrupt short-term predictability and must be gradually
absorbed through cross-scale fusion.

P95 Error exhibits a clear sawtooth pattern of “spike—
relief—spike” during the transition and peak phases. The spike
positions align closely with sudden changes in arrival rates,
indicating that tail latency is driven primarily by congestion
events in a few specific time windows rather than by full-
period mean shifts. After separating fast and slow timescales,
TCS-DM can decouple spike errors from trend errors. In the
later stages of the Peak phase, although mean errors (MAE)
start to decline, P95 remains high. This suggests that
secondary bottlenecks may persist even after the primary
execution paths have adapted. These may include throttling or
cold starts in individual service instances, which is consistent
with the mechanism that tail latency in microservices is often
dominated by low-probability blockages on critical paths.

R’ Remains high during the stable phases (S1-S3), but
drops significantly during the transition and peak phases, and
then gradually recovers during the recovery stages. This trend
indicates that model interpretability over the data generation

process decreases and then restores as concept drift progresses.

By combining the insights from previous metrics, it can be
observed that when load migration leads to simultaneous
changes in metric distributions and temporal dependencies, the
cross-scale model requires time to reassign attention weights.
During this period, the model's ability to explain overall
variance temporarily declines. Once the system reaches a new
steady state, the feature pyramid of SMB-MFM and the inter-
layer fusion of TCS-DM realign the fast and slow scales, and

R’ rapidly increase again. This temporal sequence-where
errors rise first and interpretability follows-illustrates the
learnable and stable zones under concept drift in microservice
systems. It also provides direct guidance for triggering
continuous prediction and online adaptation.

5. Conclusion

This study focuses on response time prediction under a
microservice architecture. It proposes a System-Metric-Based
Multivariate Feature Modeling (SMB-MFM) mechanism and a
Transformer-Based Cross-Scale Dependency Modeling (TCS-
DM) mechanism. An end-to-end regression framework is
constructed to address the challenges of heterogeneous system

metrics, long-path dependencies, and tail latency amplification.

Without interfering with business processes, the framework
uniformly integrates CPU, memory, 1/0, network metrics, and
historical response signals. It provides a stable and

information-dense foundation for capacity planning, elastic
scaling, and service quality assurance.

Existing methods face limitations in aligning and
denoising multi-source data, jointly modeling short-term jitters
and long-term trends, and maintaining availability under
concept drift. These limitations hinder the balance between
overall prediction error and tail quantile error. In this work,
SMB-MFM explicitly organizes the feature space of multiple
metrics, while TCS-DM captures both short- and long-term
dependencies through cross-scale attention. Their combination
improves the model's capability to handle complex temporal
patterns and tail risks.

This framework provides practical value in several
application domains. In cloud resource orchestration and auto-
scaling, it enables proactive quota adjustments. In AIOps
scenarios, it supports dynamic threshold generation, anomaly
convergence, and risk assessment. In cost optimization and
green computing, it offers measurable signals for joint
decision-making across performance, cost, and energy
consumption. In edge computing and multi-cloud
environments, it improves latency assurance and stability for
link-sensitive workloads.

Looking forward, four directions are worth further
exploration. First, online learning and drift adaptation can
enhance the robustness of continuous prediction. Second,
uncertainty estimation and calibration can transform predictive
outputs into actionable risk interfaces. Third, structural and
causal modeling, incorporating service call graphs and prior
knowledge, can improve interpretability and optimization.
Fourth, cross-domain transfer and privacy-preserving
collaboration can support generalization and compliant model
sharing across services. These directions will drive the
integration of SMB-MFM and TCS-DM from high-accuracy
prediction toward closed-loop decision-making.

However, our evaluation uses a single public dataset and
offline training; generalization to unseen service topologies
and online drift adaptation remain open. Future work will
integrate drift detection and quantile-aware objectives into
online training, and couple the predictor with SLO-aware
autoscaling or scheduling.
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