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Abstract: Speech recognition has evolved from rule-based systems to deep learning–driven architectures that can comprehend
complex linguistic and acoustic patterns. However, the rapid progress achieved in high-resource languages, such as English and
Mandarin, has not been equally reflected in multilingual and low-resource contexts. This disparity limits the inclusiveness and
global applicability of automatic speech recognition (ASR) technologies. In parallel, the emergence of multimodal learning-
integrating speech, vision, and text-has opened new possibilities for robust and context-aware recognition systems that align with
human communication patterns. This paper provides a comprehensive survey of recent advances in multilingual and multimodal
speech recognition. It reviews state-of-the-art models, including end-to-end architectures, self-supervised learning, and
transformer-based approaches such as wav2vec 2.0, Whisper, and SpeechT5. The review also explores multilingual pretraining
strategies, transfer learning for low-resource adaptation, and multimodal fusion techniques that combine audio with visual or
textual modalities to enhance recognition accuracy and robustness. Moreover, we analyze benchmark datasets, evaluation metrics,
and key challenges such as code-switching, domain adaptation, and cultural diversity. Finally, we highlight future trends in cross-
lingual model generalization, data-efficient learning, and multimodal interaction for next-generation intelligent speech systems.
The findings indicate that progress in multilingual and multimodal ASR is essential to bridge the linguistic divide and to achieve
equitable access to AI-driven technologies worldwide.
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1. Introduction
Speech is the most natural and efficient mode of human

communication, and developing systems capable of
understanding it has long been a core objective of artificial
intelligence research. The field of automatic speech
recognition (ASR) has witnessed remarkable evolution-from
early Hidden Markov Model (HMM) and Gaussian Mixture
Model (GMM) systems to contemporary deep learning–based
frameworks leveraging convolutional, recurrent, and
transformer architectures. With the surge of large-scale data
and computational resources, speech recognition has achieved
human-level accuracy in several high-resource languages such
as English, Mandarin, and Spanish. However, the global
landscape of linguistic diversity, consisting of more than 7,000
languages, poses significant challenges for the inclusiveness of
modern ASR systems.

The majority of current speech models remain biased
toward languages with abundant annotated data, leaving low-
resource languages underserved. This imbalance exacerbates
the technological gap between communities, impeding the
development of inclusive AI. To address this issue, recent
research has increasingly focused on multilingual and low-
resource speech recognition, which aims to generalize
knowledge across linguistic boundaries through transfer
learning, multilingual pretraining, and data-efficient
adaptation. Models such as XLS-R (Babu et al., 2022) and
Whisper (Radford et al., 2023) demonstrate that shared

representations across languages can significantly improve
performance in resource-scarce settings.

At the same time, the rise of multimodal learning has
reshaped how ASR systems interpret and reason about speech.
Human communication rarely occurs in isolation-it involves
visual cues, gestures, text, and environmental context. By
integrating audio with other modalities such as vision or text,
multimodal ASR systems enhance semantic comprehension,
improve robustness under noise, and better align with real-
world use cases such as video captioning, human-computer
interaction, and assistive technologies. Models like AV-
HuBERT (Shi et al., 2023) and SpeechT5-Multi (Tang et al.,
2024) exemplify this shift toward multimodal fusion
frameworks.

Despite these advances, several open challenges remain.
Multilingual ASR still struggles with phonetic variation, code-
switching, and the scarcity of parallel resources for
underrepresented languages. Similarly, multimodal systems
face difficulties in synchronizing heterogeneous data streams
and ensuring that visual or textual information enhances rather
than confuses recognition. Moreover, ethical considerations
such as linguistic equity, dataset bias, and privacy constraints
must be addressed for global-scale deployment.

This survey aims to systematically review and synthesize
the latest progress in multilingual and multimodal speech
recognition. It highlights representative architectures, training



paradigms, datasets, and evaluation methodologies. The paper
also discusses the interplay between multilinguality and
multimodality-how cross-lingual knowledge can be
strengthened through multimodal supervision, and vice versa.
By providing a unified perspective, this survey seeks to guide
future research toward inclusive, data-efficient, and context-
aware speech recognition systems that serve diverse linguistic
communities.

The remainder of this paper is organized as follows.
Section II reviews related work in traditional and deep
learning–based ASR. Section III discusses multilingual ASR
techniques and the challenges of cross-lingual generalization.
Section IV focuses on low-resource speech recognition
approaches, including transfer learning and self-supervised
pretraining. Section V introduces multimodal ASR,
highlighting integration strategies with vision and text. Section
VI compares datasets and evaluation benchmarks. Section VII
outlines ongoing challenges and emerging trends, and Section
VIII concludes with future research directions.

2. Related work
The development of automatic speech recognition (ASR)

has undergone a profound transformation over the past
decades, evolving from early statistical systems to end-to-end
deep learning models capable of capturing complex linguistic
and acoustic structures. Early ASR frameworks were
dominated by statistical approaches such as Hidden Markov
Models (HMMs) and Gaussian Mixture Models (GMMs).
These systems represented speech as sequences of acoustic
observations modeled by probabilistic transitions, which
allowed them to handle variability in speech duration and
noise. However, such models depended heavily on
handcrafted features and struggled with accent variation,
speaking rate, and background interference. To improve
robustness, discriminative training methods like Maximum
Mutual Information (MMI) and feature-space transformations
were introduced, but their performance gains were limited by
the expressiveness of shallow architectures.

The advent of deep neural networks (DNNs) marked a
turning point in ASR research. Hybrid DNN-HMM systems
replaced the traditional GMM component with multi-layer
perceptrons capable of modeling nonlinear relationships
between input features and phonetic states. This innovation
enabled large gains in accuracy and generalization, especially
on benchmark datasets such as TIMIT and Switchboard.
Nonetheless, these hybrid systems retained complex pipelines
involving separate acoustic, language, and lexicon models. To
simplify the architecture and reduce error propagation,
researchers shifted toward end-to-end models that directly
map audio inputs to textual outputs without intermediate
phonetic alignment. Two dominant paradigms emerged:
Connectionist Temporal Classification (CTC) and attention-
based sequence-to-sequence models. CTC introduced flexible
alignment between variable-length sequences by
marginalizing over all possible output paths, while attention-
based encoder – decoder frameworks, such as Listen, Attend
and Spell (LAS), leveraged dynamic attention mechanisms to
align input frames and output tokens. These approaches

substantially simplified ASR pipelines and enabled more
natural integration with other neural sequence models.

In parallel, transformer architectures brought a new level
of efficiency and contextual modeling to ASR. Unlike
recurrent neural networks that process inputs sequentially,
transformers use self-attention to capture long-range
dependencies in parallel. Models such as the Speech-
Transformer and Conformer have demonstrated state-of-the-
art performance across multiple speech benchmarks. Their
scalability and parallelizability make them ideal for large-scale
multilingual pretraining. At the same time, the rise of self-
supervised learning (SSL) further revolutionized speech
representation learning by enabling models to exploit vast
amounts of unlabeled audio data. Methods such as wav2vec
2.0, HuBERT, and data-scaled extensions like XLS-R
achieved remarkable generalization by pretraining on
hundreds of thousands of hours of speech and then fine-tuning
on specific languages or domains. These models significantly
reduced the reliance on labeled data, opening the door to
progress in low-resource languages that previously lacked
large annotated corpora.

Building on this foundation, multilingual ASR has
emerged as a critical research direction aiming to share
knowledge across languages. Multilingual systems train a
unified model on speech data from multiple languages, often
using shared encoders and language-specific decoders or
adapters. This approach allows the model to learn universal
phonetic representations while preserving language-specific
nuances. Cross-lingual transfer has also proven effective:
pretraining on high-resource languages can improve
recognition performance for low-resource ones through
transfer learning or parameter-efficient fine-tuning. However,
multilingual modeling introduces new challenges, such as
negative transfer, where the performance on one language
deteriorates when training jointly with others, and catastrophic
forgetting during continual learning. To address these issues,
researchers have explored adaptive fine-tuning strategies,
dynamic masking, and modular architectures that selectively
share or isolate linguistic features. Recent large-scale
multilingual systems such as Whisper and SeamlessM4T
exemplify this paradigm, achieving zero-shot recognition and
translation across dozens of languages by combining massive
multilingual pretraining with cross-modal supervision.

Meanwhile, the integration of multimodal information
has expanded the scope of ASR beyond pure audio processing.
Human communication is inherently multimodal, combining
speech, vision, and context. Audio-visual speech recognition
(AVSR) systems leverage visual cues such as lip movements
to improve recognition accuracy in noisy environments or
under occlusion. Transformer-based multimodal architectures
like AV-HuBERT and SpeechT5-Multi integrate audio, text,
and visual streams through shared attention mechanisms,
allowing the model to ground speech understanding in
contextual signals. Similarly, cross-domain pretraining that
combines ASR with speech translation, speech-to-text
summarization, or emotion recognition has enhanced
generalization and semantic richness. The convergence of
speech and natural language processing under unified
frameworks, as seen in Whisper and SpeechT5, demonstrates



how joint pretraining across modalities and tasks can yield
robust, flexible, and transferable models.

In summary, the evolution of ASR reflects a consistent
trend toward unification, scalability, and inclusivity. From
statistical to deep neural models, from supervised learning to
self-supervised and multilingual paradigms, and from
unimodal to multimodal architectures, the field has
progressively reduced dependence on handcrafted components
and language-specific resources. The next frontier lies in
achieving balanced performance across diverse linguistic
communities and environmental conditions. Multilingual and
multimodal ASR systems hold the potential to close the global
accessibility gap by enabling speech understanding for all
users, regardless of language, accent, or context. The
following sections examine these developments in depth,
focusing on techniques for multilingual speech recognition,
strategies for low-resource adaptation, and the role of
multimodal integration in advancing the next generation of
speech recognition technologies.

3. Multilingual Speech Recognition: Techniques
and Challenges

Multilingual speech recognition aims to develop a unified
model that can recognize and transcribe speech from multiple
languages with minimal degradation in performance. Unlike
monolingual systems trained exclusively on one linguistic
corpus, multilingual models must capture both the shared and
language-specific aspects of speech. This balance is essential
for enabling generalization across diverse linguistic and
phonetic systems. Recent research has shown that multilingual
ASR not only improves efficiency by consolidating multiple
language models into a single framework but also enhances
performance for low-resource languages through cross-lingual
knowledge transfer. The fundamental premise is that acoustic
and phonetic structures exhibit universal similarities that can
be jointly learned from multilingual data.

Early approaches to multilingual ASR adopted a
parameter-sharing strategy in hybrid DNN-HMM systems,
where the hidden layers of the DNN were shared among
languages while keeping the output layers language-specific.
This design leveraged commonalities in acoustic features
across languages but required separate decoders for each
linguistic target, limiting scalability. With the introduction of
end-to-end architectures, particularly those based on the
encoder–decoder paradigm, researchers began exploring fully
shared encoders with unified vocabularies or byte-pair
encoding (BPE) tokenization across languages. These models,
such as multilingual LAS and RNN-Transducer systems,
demonstrated that shared subword units could capture cross-
lingual phonetic representations effectively. The transformer-
based architectures, including Conformer and Speech-
Transformer extensions, further improved multilingual
modeling by enabling efficient attention-based alignment
across long sequences and diverse linguistic contexts.

A major breakthrough came with large-scale multilingual
pretraining frameworks such as XLSR-53 and XLS-R, which

extended self-supervised models like wav2vec 2.0 to dozens
or even hundreds of languages. These models are trained on
massive unlabeled speech corpora, learning universal
representations that can later be fine-tuned for specific tasks or
languages. The pretraining objective-often based on
contrastive or masked prediction-encourages the model to
learn phonetic and prosodic patterns that generalize across
linguistic boundaries. As a result, multilingual pretraining has
become a cornerstone for low-resource adaptation, enabling
models to perform competitively even when fine-tuned on
minimal supervised data. Models such as Whisper by OpenAI
and SeamlessM4T by Meta extend this concept to cross-modal
and cross-task learning, jointly training on speech recognition,
translation, and transcription to achieve zero-shot recognition
across languages. These systems mark a paradigm shift toward
universal ASR, where a single model can transcribe and
translate multilingual audio without explicit retraining.

However, multilingual ASR introduces several inherent
challenges. One of the most critical is negative transfer, where
languages with dissimilar phonetic or lexical structures
interfere with each other during training, leading to suboptimal
performance. For instance, tonal languages like Mandarin may
conflict with non-tonal ones when learned jointly without
careful balancing. This problem is often exacerbated by data
imbalance, as high-resource languages dominate the training
distribution. Techniques such as data sampling, loss re-
weighting, and adaptive learning rates have been employed to
mitigate such imbalances. Another issue arises from code-
switching, the phenomenon where speakers alternate between
two or more languages within a single utterance. Traditional
ASR systems struggle to handle this linguistic fluidity because
of inconsistent language modeling and vocabulary overlap.
Recent research introduces language identification
conditioning, token-level language tags, and multilingual CTC
loss designs to improve recognition under code-switching
scenarios.

Beyond the acoustic and linguistic aspects, cultural and
sociolinguistic diversity also complicates multilingual ASR.
Variations in dialect, accent, and pronunciation patterns can
cause degradation even within the same language family. To
address this, accent-robust and dialect-aware adaptation
strategies have been proposed, where speaker embeddings,
phoneme normalization, or accent-specific adapters are
introduced to preserve performance consistency. Another
dimension of the challenge involves script diversity-
multilingual ASR systems must often transcribe in different
writing systems, from Latin and Cyrillic to Devanagari and
Arabic. Subword-based tokenization methods such as
SentencePiece help unify representation spaces, but they may
lose orthographic fidelity in highly divergent languages.
Researchers are exploring hierarchical vocabularies and
grapheme-based modeling to maintain both efficiency and
linguistic integrity.

Despite these complexities, multilingual ASR has
become increasingly practical due to the scaling of both data
and model capacity. The availability of large multilingual



corpora, such as CommonVoice, Multilingual LibriSpeech,
and FLEURS, provides diverse speech sources covering
hundreds of languages. Coupled with transformer backbones
exceeding billions of parameters, these datasets enable
powerful generalization and transfer learning. Yet,
computational cost remains a barrier, particularly for low-
resource communities lacking access to large-scale training
infrastructure. Lightweight strategies such as adapter modules,
parameter-efficient fine-tuning, and quantization-based
compression are emerging to democratize multilingual ASR
deployment.

In summary, multilingual ASR represents a significant
step toward equitable access to speech technology. It provides
a foundation for bridging linguistic divides and enabling
communication across global communities. While universal
models like Whisper and SeamlessM4T demonstrate
promising zero-shot performance, achieving balanced
accuracy across all languages-especially underrepresented
ones-remains an open research problem. Future advances are
expected to come from combining multilingual pretraining
with multimodal supervision, where contextual cues from
visual and textual domains enhance the model’s understanding
of diverse linguistic environments. This cross-pollination of
multilingual and multimodal approaches forms the conceptual
bridge to the next stage of ASR evolution, discussed in the
following section.

4. Low-Resource Speech Recognition
The problem of low-resource speech recognition lies at

the intersection of data scarcity, linguistic diversity, and model
generalization. While state-of-the-art ASR systems have
achieved near-human performance in high-resource languages,
they often fail to deliver acceptable results for
underrepresented languages with limited labeled corpora.
These languages, which make up the majority of global
linguistic diversity, often lack both annotated speech data and
large-scale text corpora necessary for robust language
modeling. The disparity in available resources not only
restricts the deployment of ASR technologies in many regions
but also deepens the technological divide between dominant
and marginalized linguistic communities. Therefore, research
on low-resource ASR focuses on designing data-efficient
learning algorithms, cross-lingual transfer mechanisms, and
self-supervised pretraining strategies that minimize the
dependency on labeled data while preserving performance.

One of the most prominent solutions is transfer learning,
where a model trained on high-resource languages is adapted
to new low-resource targets. The intuition behind this
approach is that the lower layers of deep models encode
universal acoustic and phonetic features that are transferable
across languages, while the upper layers can be fine-tuned to
capture language-specific characteristics. For instance,
multilingual models such as XLS-R and Whisper provide
powerful pretrained encoders that can be fine-tuned with only
a few hours of labeled data in a new language. Techniques
such as adapter-based fine-tuning, lightweight

reparameterization, and layer-wise freezing have been
proposed to reduce the computational and data requirements
for adaptation. Moreover, cross-lingual subword modeling
using shared byte-pair encodings has proven to be particularly
effective, as it allows low-resource languages to benefit from
overlapping phonetic or orthographic structures learned from
high-resource languages.

Another key direction is data augmentation, which seeks
to artificially increase data diversity through transformations
applied to existing samples. Conventional methods such as
noise injection, speed perturbation, and SpecAugment have
long been used to improve robustness. However, recent studies
extend these methods through generative modeling, using
diffusion-based or GAN-based audio synthesis to produce
realistic speech samples for low-resource languages. This
augmentation not only expands training data but also enhances
the model ’ s capacity to handle varied acoustic conditions.
Additionally, cross-lingual pseudo-labeling-where unlabeled
audio from the target language is transcribed using a high-
resource teacher model-has become a central technique in
semi-supervised learning. Iterative self-training cycles, where
the model refines its predictions through repeated pseudo-
labeling, have demonstrated notable gains for languages with
extremely limited annotation.

Self-supervised learning (SSL) has emerged as the most
transformative paradigm for low-resource speech recognition.
Instead of relying on manual transcriptions, SSL models learn
generalizable speech representations by predicting masked or
contrastive features from raw audio. Frameworks such as
wav2vec 2.0, HuBERT, and data-scaled versions like XLSR-
128 enable universal pretraining across hundreds of thousands
of hours of multilingual speech data. These representations
capture rich phonetic and prosodic information that can be
fine-tuned on small labeled datasets, dramatically improving
performance in low-resource contexts. The use of cross-
lingual self-supervised objectives, where the model is exposed
to multiple languages during pretraining, enhances its ability
to generalize to unseen languages. Furthermore, recent models
like SpeechT5 and SeamlessM4T unify pretraining across
multiple tasks, such as speech-to-text, speech translation, and
speech generation, demonstrating strong zero-shot
performance in low-resource languages.

However, the low-resource setting introduces unique
challenges beyond data availability. The absence of
standardized orthography, dialectal variation, and noisy
recordings often make it difficult to define consistent training
objectives. Low-resource languages may also lack reliable text
normalization and tokenization tools, further complicating
data preprocessing. Moreover, the imbalance between source
and target languages in multilingual training can lead to
negative transfer, where dominant language features
overshadow those of minority languages. Researchers are
increasingly turning to meta-learning and few-shot adaptation
approaches, which train models to rapidly learn new languages
with minimal supervision. Prototypical networks and model-
agnostic meta-learning (MAML) have been adapted for ASR,



enabling systems to generalize from only a handful of labeled
samples per language.

Recent efforts also focus on improving linguistic
inclusivity through community-driven datasets. Projects such
as CommonVoice, Masakhane, and FLEURS aim to
crowdsource recordings and transcriptions from diverse
linguistic groups, providing open and scalable resources for
low-resource ASR research. Combined with multilingual self-
supervised pretraining, these initiatives are enabling models to
reach unprecedented coverage across languages, including
those previously considered technologically invisible.
Moreover, policy-level initiatives by organizations like
UNESCO emphasize the importance of preserving linguistic
heritage through speech technology, aligning low-resource
ASR with cultural sustainability and digital equity.

In conclusion, the field of low-resource speech
recognition is rapidly advancing through the synergy of
transfer learning, data augmentation, and self-supervised
pretraining. The long-standing bottleneck of insufficient
labeled data is being mitigated by representation learning and
generative augmentation, allowing the extension of ASR
systems to hundreds of languages worldwide. Yet, challenges
remain in ensuring equitable model performance, addressing
dialectal variation, and reducing computational barriers to
entry for local researchers. As the next section discusses,
integrating multimodal learning offers a promising path
toward addressing these limitations by grounding speech
recognition in visual and contextual information, thereby
enhancing robustness, comprehension, and inclusivity across
linguistic boundaries.

5. Multimodal Speech Recognition: Integration
with Vision and Text

Human communication is inherently multimodal,
encompassing speech, visual expressions, gestures, and textual
cues that together convey meaning. Traditional ASR systems,
however, operate solely on acoustic information, ignoring the
complementary signals that humans naturally use to
disambiguate speech. The concept of multimodal speech
recognition (MSR) addresses this limitation by integrating
visual and textual modalities to improve robustness, semantic
understanding, and generalization. The motivation behind
multimodal integration is straightforward: while speech
conveys linguistic content, vision provides spatial and
contextual grounding, and text encapsulates prior knowledge
and semantic structure. This multimodal fusion enables ASR
systems to perform effectively in challenging conditions such
as noisy environments, overlapping speech, or ambiguous
linguistic contexts, offering a path toward human-like
comprehension.

Audio-visual speech recognition (AVSR) is one of the
most studied forms of multimodal ASR. It exploits visual
information, particularly lip movements and facial expressions,
to supplement acoustic features. Early AVSR systems utilized
handcrafted visual descriptors combined with traditional
acoustic models, but these approaches were limited by their

dependence on predefined feature extraction. The advent of
deep learning enabled the use of convolutional and
transformer-based architectures to jointly learn spatiotemporal
representations from both modalities. Models such as LipNet,
SyncNet, and AV-HuBERT represent major milestones in this
direction. AV-HuBERT, in particular, extends self-supervised
pretraining to the multimodal domain by jointly predicting
masked visual and audio tokens, thereby learning cross-modal
correspondences without explicit supervision. Such pretraining
frameworks have demonstrated significant performance
improvements in noisy or occluded speech scenarios,
confirming that visual information can serve as a powerful
complementary modality when acoustic signals are degraded.

Beyond vision, the integration of textual and semantic
information has also become central to modern multimodal
ASR. Textual grounding allows the system to align acoustic
signals with contextual or linguistic knowledge derived from
external corpora. Models such as SpeechT5 and Whisper unify
speech and text representations through joint pretraining,
enabling tasks such as speech-to-text translation,
summarization, and contextual recognition. This approach not
only improves the syntactic and semantic fluency of
transcriptions but also provides resilience against homophones
and ambiguous utterances. The integration of textual
embeddings from pretrained language models like BERT, T5,
or GPT into ASR pipelines has further enhanced contextual
understanding. By fusing semantic priors from large text
corpora with acoustic features, these models exhibit a form of
grounded reasoning-understanding not only “what was said”
but also “ what was meant. ” Such multimodal alignment
bridges the gap between ASR and natural language
understanding, positioning modern systems closer to general-
purpose language intelligence.

Recent developments in cross-modal pretraining have
expanded the boundaries of multimodal speech recognition
even further. Large-scale foundation models such as CLIP and
GPT-4V have demonstrated that joint embeddings across
audio, image, and text domains can yield powerful
representations capable of zero-shot transfer. Inspired by these
frameworks, researchers have begun applying contrastive
learning between speech, visual frames, and textual captions to
develop unified multimodal encoders. These systems are
capable of performing diverse downstream tasks, from
transcription and translation to audiovisual scene
understanding and multimodal retrieval. For instance,
SpeechCLIP aligns audio with visual and textual contexts,
allowing the model to associate spoken words with objects or
actions visible in a scene. Similarly, multimodal large
language models trained on aligned audiovisual-text datasets
have shown the ability to process natural conversations,
identify speakers, and interpret emotional or situational cues,
marking a significant leap toward human-like perception in
ASR.

In multilingual and low-resource settings, multimodal
integration offers even greater advantages. Visual cues can
provide structural regularities that are independent of language,
while textual priors from multilingual corpora can enhance
recognition accuracy in underrepresented languages. For
example, lip movement patterns are largely language-agnostic,



making AVSR models effective in transferring knowledge
across languages without extensive labeled data. Similarly,
incorporating multilingual textual embeddings into speech
models enables them to perform zero-shot recognition or
translation in languages unseen during training. The
SeamlessM4T framework exemplifies this synergy by jointly
training across speech, text, and translation modalities to
achieve high performance in over one hundred languages. By
leveraging multimodal signals, such models not only bridge
the gap between languages but also between sensory
modalities, reinforcing their robustness and adaptability across
diverse communication environments.

Despite these remarkable advancements, multimodal
ASR still faces challenges in representation alignment,
temporal synchronization, and computational efficiency.
Fusing heterogeneous modalities requires precise temporal
correspondence between audio and visual streams, which can
be difficult to maintain under realistic recording conditions.
Moreover, multimodal training increases model complexity,
demanding higher computational resources and larger datasets
for effective convergence. Another open question concerns
interpretability-understanding how and when different
modalities contribute to recognition accuracy. Research into
attention visualization and cross-modal attribution seeks to
uncover the internal dynamics of multimodal models, offering
insights that may lead to more explainable and efficient
architectures. Ethical considerations also arise, particularly
concerning the collection and use of audiovisual data that may
contain personally identifiable information. Ensuring privacy,
fairness, and inclusivity remains a critical requirement for the
responsible deployment of multimodal ASR technologies.

In essence, multimodal speech recognition represents a
natural progression of ASR research toward comprehensive,
context-aware, and human-centric understanding. By
integrating visual and textual information, multimodal systems
go beyond the purely acoustic domain to capture intent,
emotion, and situational context. The convergence of self-
supervised learning, transformer architectures, and cross-
modal pretraining has brought the field closer to universal
models capable of handling diverse environments, languages,
and communication forms. As the next sections will discuss,
evaluating these models objectively and addressing their open
challenges are vital steps toward building globally accessible
and ethically aligned speech recognition technologies.

6. Evaluation Metrics and Benchmark Datasets
Evaluating the performance of multilingual and

multimodal speech recognition systems requires a
comprehensive framework that accounts for both linguistic
diversity and multimodal complexity. Unlike traditional
monolingual ASR tasks, where evaluation focuses primarily
on transcription accuracy, multilingual and multimodal
systems must also be assessed for generalization across
languages, robustness to environmental noise, and the degree
of semantic and contextual understanding achieved through
multimodal integration. Therefore, designing fair and
representative evaluation methodologies has become as critical
as model development itself.

The most widely used evaluation metric in ASR is Word
Error Rate (WER), which measures the ratio of insertions,
deletions, and substitutions relative to the total number of
words in the reference transcription. Although WER remains
the de facto standard due to its simplicity and interpretability,
it has limitations when applied to multilingual settings,
especially for languages that lack explicit word boundaries,
such as Mandarin, Japanese, or Thai. To address this, the
Character Error Rate (CER) and Subword Error Rate (SER)
are often employed for languages with non-segmented writing
systems or large vocabularies. These metrics provide finer
granularity and avoid penalizing segmentation inconsistencies.
However, WER and CER only measure surface-level
transcription accuracy and fail to capture semantic correctness
or contextual relevance, both of which are increasingly
important for multimodal and translation-aware systems.

In multilingual ASR, evaluation also involves measuring
cross-lingual generalization and code-switching performance.
Cross-lingual generalization tests a model’s ability to
recognize or transcribe languages unseen during training,
reflecting the robustness of learned representations. Code-
switching evaluation, on the other hand, assesses performance
on mixed-language utterances that alternate between two or
more languages. This phenomenon is common in bilingual
societies and poses significant challenges for decoding and
language modeling. Metrics like the Mixed Error Rate (MER)
have been proposed to jointly evaluate code-switching
segments. Moreover, in tasks where ASR outputs are used for
downstream applications such as speech translation or
captioning, semantic-oriented metrics like BLEU and
METEOR are applied to measure the fidelity of meaning
preservation rather than strict lexical accuracy. Recent works
also incorporate BERTScore and Semantic Error Rate
(SemER), leveraging contextual embeddings from pretrained
language models to quantify semantic alignment between
hypothesis and reference, which is particularly relevant for
multimodal and generative ASR systems.

In the multimodal context, evaluation extends beyond
textual transcription to include alignment and fusion quality
across modalities. For audio-visual ASR, metrics such as
Audio-Visual Word Error Rate (AV-WER) and
Synchronization Error (SyncER) quantify how effectively the
system integrates information from both streams. Visual
quality and temporal alignment between lip movements and
predicted speech are essential for realistic multimodal
comprehension. Researchers also employ Signal-to-Noise
Ratio (SNR) robustness tests to assess how well multimodal
models resist degradation under adverse acoustic conditions.
Furthermore, user-centered metrics like perceived
intelligibility and naturalness scores have gained attention in
evaluating interactive systems where human perception plays
a central role, such as dialogue agents and assistive
communication devices.

Alongside metrics, the choice of benchmark datasets
plays a crucial role in evaluating and comparing ASR systems.
Traditional datasets such as LibriSpeech, TED-LIUM, and
Switchboard have been instrumental in establishing baselines
for English ASR but are limited in linguistic diversity. The
growth of multilingual ASR has led to the creation of large-



scale, community-driven corpora covering hundreds of
languages. The Mozilla CommonVoice dataset, for example,
provides open-source recordings in over 100 languages
contributed by volunteers, promoting inclusivity and
transparency. Similarly, FLEURS and VoxPopuli offer aligned
multilingual speech and translation data, enabling evaluation
of cross-lingual and cross-task performance. These datasets
are particularly valuable for assessing zero-shot and few-shot
generalization, as they contain balanced subsets representing
both high- and low-resource languages.

For code-switching and multilingual realism, datasets
such as SEAME and Bangla–Hindi CS Corpus provide
naturally mixed-language utterances that capture authentic
conversational dynamics. In low-resource contexts, regional
and community-driven corpora like African Voices, IndicTTS,
and Masakhane Speech fill crucial gaps by documenting
underrepresented languages. In multimodal ASR, datasets
integrating visual information have become equally important.
LRS2, LRS3, and AVSpeech serve as standard benchmarks
for audio-visual speech recognition, offering synchronized
audio and video clips collected from diverse sources such as
lectures, news, and interviews. These datasets have facilitated
significant progress in lip-reading and audiovisual fusion
techniques. Beyond visual modalities, emerging datasets like
How2 and SpokenCOCO combine speech, text, and image
captions, enabling joint training and evaluation of multimodal
models across tasks such as speech understanding, captioning,
and retrieval.

Despite these advancements, several challenges persist in
constructing comprehensive and fair benchmarks. First,
dataset imbalance remains a major issue: high-resource
languages dominate existing corpora, skewing model
optimization toward well-represented phonetic patterns.
Second, variations in recording quality, speaker demographics,
and environmental conditions hinder cross-dataset
comparability. Moreover, multimodal datasets often require
precise temporal synchronization, which can be difficult to
achieve at scale. Researchers are now exploring synthetic data
generation and data augmentation through diffusion or voice
cloning methods to mitigate these limitations. Another
growing concern is ethical and privacy compliance,
particularly for audiovisual datasets containing identifiable
speakers. Ensuring informed consent, secure storage, and
responsible distribution of data is essential for maintaining
public trust in speech research.

In summary, evaluating multilingual and multimodal
ASR requires moving beyond conventional accuracy-based
metrics to encompass semantic, cross-lingual, and perceptual
dimensions. Similarly, dataset design must prioritize diversity,
representativeness, and ethical transparency to reflect real-
world linguistic and multimodal complexity. Robust
evaluation not only benchmarks technological progress but
also ensures that advancements in ASR serve a broader and
more equitable spectrum of global users. The following
section builds on these considerations to discuss open
challenges and emerging research directions shaping the next
generation of speech recognition technologies.

7. Open Challenges and Future Trends
Despite significant progress in multilingual and

multimodal speech recognition, a number of open challenges
continue to constrain the scalability, fairness, and
interpretability of current systems. These challenges stem not
only from the intrinsic complexity of language and multimodal
integration but also from broader societal, computational, and
ethical considerations that accompany the deployment of
large-scale AI models. Addressing these issues requires
coordinated advances in model design, data curation, and
evaluation methodology, along with a commitment to
inclusivity and sustainability in the global AI ecosystem.

One of the most persistent challenges in multilingual
ASR lies in linguistic imbalance and representation fairness.
Although large-scale multilingual models such as Whisper and
SeamlessM4T cover over one hundred languages, their
performance remains heavily skewed toward high-resource
languages with abundant training data. This imbalance
reinforces existing linguistic hierarchies, where widely spoken
languages continue to dominate digital ecosystems while
minority languages lag behind. Achieving equitable
performance across languages requires rethinking data
sampling, model objectives, and evaluation criteria. Future
research is likely to emphasize language-conditioned
adaptation, where the model dynamically allocates capacity
based on linguistic diversity and resource availability. Another
promising direction involves federated multilingual learning,
allowing localized training on community data without central
aggregation, thus improving inclusivity while respecting data
sovereignty and privacy.

Another major frontier involves robustness and
generalization in real-world environments. Current ASR
models, though powerful in controlled benchmarks, still
struggle under noisy, reverberant, or low-bandwidth
conditions. This problem becomes more acute in low-resource
regions where recording equipment and network quality are
inconsistent. While multimodal integration helps mitigate
some of these limitations, it also introduces synchronization
and alignment challenges across modalities. Developing noise-
invariant and latency-tolerant architectures that operate
efficiently on edge devices remains an active area of research.
Approaches combining adaptive front-end processing,
knowledge distillation, and continual learning are expected to
play a vital role in improving robustness without excessive
computational cost. Furthermore, expanding multimodal ASR
beyond vision and text to include physiological and
environmental sensors could open new frontiers in context-
aware understanding.

The issue of scalability and efficiency also poses
significant constraints as ASR systems grow larger.
Transformer-based architectures with billions of parameters
deliver outstanding results but are computationally demanding
and environmentally costly. Training such models requires
vast GPU clusters and high energy consumption, which raises
sustainability concerns. Model compression techniques-such
as pruning, quantization, and low-rank factorization-have
become increasingly important to enable deployment on
mobile or embedded systems. Parameter-efficient fine-tuning



approaches, including LoRA and adapter modules, are already
reducing the computational footprint of multilingual
adaptation. Looking forward, research into energy-efficient
transformer design and green AI optimization will be critical
to ensuring that progress in ASR remains both scalable and
environmentally responsible.

From a multimodal perspective, cross-modal alignment
and interpretability present new scientific challenges. As
models integrate audio, vision, and text, understanding how
these modalities interact internally becomes essential for both
debugging and ethical accountability. The attention
mechanisms that drive transformer architectures are often
treated as black boxes, making it difficult to trace how
different modalities influence recognition outcomes.
Techniques such as attention visualization, modality
attribution mapping, and explainable cross-modal reasoning
are being developed to improve transparency. Moreover, as
multimodal ASR begins to handle complex communicative
cues-such as emotion, intent, and gesture-it becomes important
to ensure that the model’s interpretations remain faithful and
unbiased. The development of standardized interpretability
benchmarks and metrics will therefore be indispensable for
responsible multimodal AI research.

Another pressing issue concerns privacy, ethics, and data
governance. Speech data inherently carries sensitive
information, including identity, emotion, and social
background. The addition of visual and contextual data further
increases the risk of misuse or unauthorized identification.
Ensuring ethical compliance in multimodal ASR requires
strong anonymization methods, differential privacy
mechanisms, and transparent data collection protocols.
Federated and decentralized learning frameworks offer
potential solutions by allowing on-device training and
preventing raw data transmission. At the same time, ethical
design must address not only privacy but also bias mitigation
and representation equity. Multilingual and multimodal
systems risk amplifying cultural stereotypes or excluding
minority voices if their training data lacks diversity.
Establishing global standards for dataset documentation,
informed consent, and demographic balance is therefore vital
to ensuring fairness in large-scale speech technologies.

Looking ahead, the next generation of ASR research is
expected to move toward universal, adaptive, and multimodal
intelligence. Future systems will not merely transcribe speech
but will understand its intent, emotion, and situational context
across languages and modalities. Advances in large-scale
pretraining, cross-lingual transfer, and self-supervised
representation learning will continue to narrow the gap
between high- and low-resource languages. Meanwhile,
multimodal ASR will evolve into an integral component of
embodied AI, supporting natural interaction in robotics, virtual
assistants, and immersive environments. The convergence of
audio, vision, and text under unified transformer backbones
promises seamless integration of speech understanding within
broader cognitive architectures. Ultimately, achieving this
vision will require interdisciplinary collaboration among
linguists, engineers, ethicists, and policymakers to ensure that
ASR technologies not only advance in capability but also align

with human values of inclusivity, transparency, and
sustainability.

In summary, the future of multilingual and multimodal
speech recognition will depend on balancing technological
innovation with ethical responsibility. The field must strive to
create models that are globally representative, computationally
efficient, and socially beneficial. Progress in this direction will
transform ASR from a domain-specific utility into a universal
medium of human–machine communication, bridging
linguistic divides and enabling truly global access to
intelligent systems.

8. Conclusion
The rapid evolution of speech recognition technology

from rule-based systems to large-scale multilingual and
multimodal architectures represents one of the most
transformative achievements in modern artificial intelligence.
This paper has provided a comprehensive overview of recent
advances in multilingual and multimodal speech recognition,
highlighting how self-supervised learning, transformer
architectures, and cross-lingual transfer have fundamentally
reshaped the design and capability of ASR systems. Through
an examination of multilingual adaptation strategies, low-
resource learning frameworks, and multimodal integration
with visual and textual information, the survey underscores a
consistent trajectory toward inclusivity, scalability, and
contextual understanding in speech technologies.

A key insight emerging from this review is that the
progress of ASR increasingly depends on shared
representation learning-the ability of models to capture
universal acoustic, phonetic, and semantic structures that
generalize across languages and modalities. Multilingual
pretraining frameworks such as XLS-R, Whisper, and
SeamlessM4T have demonstrated that a single model can
effectively perform recognition, translation, and transcription
across hundreds of languages, achieving remarkable zero-shot
and few-shot generalization. Similarly, multimodal extensions
such as AV-HuBERT and SpeechT5-Multi reveal that
incorporating visual and textual cues enables ASR systems to
approximate human-like comprehension by leveraging
contextual information. These advances collectively mark a
paradigm shift from task-specific recognition toward
integrated understanding.

Nevertheless, the challenges facing the field remain
complex and multifaceted. Persistent disparities in data
availability across languages continue to undermine fairness
and inclusivity. While large-scale pretraining has mitigated
some of these gaps, high-resource languages still dominate the
learning process, limiting the accessibility of ASR technology
for minority linguistic communities. In addition, multimodal
integration introduces new technical hurdles in
synchronization, alignment, and interpretability.
Understanding how audio, visual, and textual signals interact
within a single model remains an open research problem.
Moreover, the growing scale of models raises concerns about
computational sustainability, privacy protection, and ethical
accountability. Ensuring that the benefits of ASR extend
equitably across global populations will require concerted



efforts not only from researchers but also from policymakers
and civil society.

Looking forward, the future of speech recognition lies in
universal, adaptive, and responsible intelligence. The
combination of multilingual and multimodal learning will
enable ASR systems that are not only linguistically
comprehensive but also contextually aware and ethically
grounded. Advances in energy-efficient architectures,
federated learning, and explainable AI will allow models to
operate sustainably and transparently at scale. Moreover, as
ASR becomes increasingly integrated into interactive and
embodied AI systems-such as personal assistants, robots, and
extended reality platforms-the ability to process speech within
its full multimodal and cultural context will become essential.
This convergence will transform speech recognition from a
passive transcription tool into an active medium of
communication and understanding between humans and
machines.

Ultimately, the evolution of multilingual and multimodal
ASR embodies the broader vision of artificial intelligence as a
tool for inclusivity, accessibility, and global collaboration. The
capacity to understand speech across linguistic, cultural, and
sensory boundaries holds profound implications for education,
healthcare, governance, and social integration. Future research
must therefore balance technological ambition with social
responsibility, ensuring that advances in speech recognition
reflect not only the sophistication of algorithms but also the
diversity and dignity of the voices they seek to understand. By
bridging languages, modalities, and communities, next-
generation ASR systems have the potential to redefine how
humanity interacts with intelligent technology-making
communication not merely faster, but more universal,
equitable, and meaningful.
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