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Abstract: This paper addresses the common problem of exposure bias in advertising recommendation by proposing a new
method that integrates causal inference with bias correction to enhance the robustness and accuracy of recommendation systems
in complex environments. The study first analyzes the selective exposure characteristics of user behavior data in advertising
scenarios and points out that relying only on statistical correlation can easily lead to spurious associations, thereby reducing the
reliability of recommendations. On this basis, a causal modeling framework is designed, introducing causal inference tools such as
potential outcomes and average treatment effect to model the causal relationship between ad exposure and click behavior. At the
same time, inverse propensity weighting is applied to reweight the training data and reduce systematic bias introduced by the
exposure mechanism. The method unifies causal structure learning, counterfactual generation, and causal regularization in the
modeling process, ensuring that the recommendation results are closer to users' true preferences. The experimental section
includes comparative experiments and multi-dimensional sensitivity tests, such as hyperparameter sensitivity, environmental
sensitivity, and data sensitivity. Results show that the proposed method achieves superior performance on Precision@10,
Recall@10, ACC@10, and NDCG compared with existing methods, and demonstrates high robustness under different
experimental conditions. Overall, this study provides a systematic solution for addressing exposure bias and improving

recommendation effectiveness in advertising recommendations and offers valuable guidance for future practical applications.
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1. Introduction

In the ongoing evolution of the digital economy, advertising
recommendations have become a key element for achieving
precise marketing and enhancing user experience in the internet
industry. With the spread of mobile internet and the
exponential growth of user behavior data, recommendation
systems are no longer limited to filtering information. They
now directly influence the creation of business value and the
maintenance of user relationships. In this process, how to
effectively capture users' real preferences from massive
heterogeneous data has become a major research question. In
particular, within the highly competitive digital ecosystem,
companies urgently need more scientific and rigorous methods
to deliver  efficient, accurate, and  interpretable
recommendations[1]. This 1is essential to meet users'
expectations for personalized services and to bring higher
conversion rates and revenue to advertising platforms.

However, the complexity of advertising recommendation
goes far beyond surface-level modeling of user interests. In real
interaction scenarios, the ads that users are exposed to are not
random. They are influenced by historical decisions of the
recommendation model and by ranking mechanisms. This leads
to the so-called exposure bias problem. Exposure bias makes
the data used in training inherently selective. It amplifies

certain patterns while neglecting potential real interests, which
results in systematic bias in recommendation outcomes. Such
bias weakens the model's generalization ability and largely
limits the fairness and long-term stability of recommendation
systems. Therefore, how to effectively alleviate and correct
exposure bias during the modeling process has become a
central challenge that cannot be avoided[2].

At the same time, the goal of a recommendation system is
not only to pursue correlation but also to reveal causality. User
behavior is often the result of multiple interacting factors. It
may be driven by the attractiveness of the ad itself, the context
of interaction, platform strategies, or even social influences. If
a recommendation system relies only on statistical correlation,
it can easily generate spurious associations[3]. This undermines
the robustness of recommendation strategies. The introduction
of causal inference provides a new solution. By constructing
causal graphs and applying counterfactual reasoning, models
can better identify the causal chain between ad exposure and
user behavior. This enables reliability and interpretability even
in biased data environments. Such exploration has profound
significance for both the theory and practice of advertising
recommendation.

Combining causal inference with exposure bias correction
addresses the limitations of each single method and achieves
dual optimization at both the data and model levels. At the data
level, causal perspectives help reinterpret user click behavior,



filtering out spurious correlations and offering more reliable
training samples. At the model level, bias correction strategies
enable stable learning even with biased data. The value of this
integrated approach lies in its ability to enhance accuracy,
fairness, and interpretability at the same time. It provides a
strong foundation for the sustainable development of the digital
advertising ecosystem. More importantly, it offers theoretical
and practical support for platforms seeking safe and compliant
recommendation strategies under the pressures of privacy
protection and stricter regulations[4].

In summary, advertising recommendation research is
moving beyond the stage of relying solely on large-scale data
and deep models. It is shifting toward comprehensive
frameworks that emphasize causality and bias control. This
trend reflects deeper academic thinking on the internal logic of
recommendation systems and responds to industry demands for
high-quality advertising recommendations. By integrating
causal inference with exposure bias correction, researchers and
practitioners can build recommendation mechanisms that are
more robust and more universal. Such efforts will advance
efficiency, fairness, and trustworthiness in advertising
recommendations. This direction has strong theoretical value
and broad application prospects, and it represents a strategic
pathway for embedding recommendation technologies into the
future digital economy.

2. Related work

Existing research on advertising recommendation mainly
focuses on modeling wuser interests and improving
recommendation accuracy. Early methods often relied on
collaborative filtering or content-based approaches. They
inferred future interactions from the similarity between user
historical behaviors and item features. However, these methods
face limitations when dealing with data sparsity, cold start, and
diverse interaction patterns. They struggle to capture complex
user preferences comprehensively. With the development of
deep learning, neural networks have been introduced into
recommendation systems. Large-scale feature interaction,
sequence modeling, and context understanding are better
expressed, which significantly improves recommendation
performance[5]. Yet most of these methods are still based on
statistical correlation. They lack a deep description of causal
mechanisms and are easily affected by noise and bias.

In the specific context of advertising recommendation,
exposure bias has become a critical factor influencing model
training and inference. Advertisement display is often
determined by platform strategies, so the ads shown to users
are not balanced. Such selective exposure causes models to
learn biased patterns[6]. For example, a user's non-click may
not indicate a lack of interest but rather a lack of exposure. If
modeling is conducted directly on such unbalanced data,
systematic distortion is inevitable. To address this issue,
existing studies have attempted methods such as inverse
propensity weighting, propensity score modeling, and pseudo-
label correction. These techniques can reduce the effect of bias
and improve fairness and stability to some extent. However,
they often rely on strict assumptions and still show weaknesses
in adaptability and generalization under complex environments.

The introduction of causal inference provides a
breakthrough  for  advertising recommendations. By
constructing causal graphs and applying counterfactual

reasoning, researchers can more clearly identify the causal
chain between ad exposure and user clicks. This prevents
models from being misled by spurious correlations. In this
process, causal inference not only explains the driving factors
behind user behaviors but also helps recommendation systems
maintain robustness under biased and imbalanced data. In
recent years, causal inference has been combined with deep
learning. Directions such as causal representation learning and
causality-enhanced recommendation have emerged. These
approaches attempt to integrate interpretability and robustness
into system design while preserving modeling capacity. They
have become an important research trend in advertising
recommendation[7].

From a comprehensive perspective, combining causal
inference with exposure bias correction is becoming a key path
for advancing advertising recommendation systems. A single
bias correction method cannot fully capture causal relations,
while pure causal inference may face high reasoning
complexity when applied to large-scale data. Through organic
integration, the two approaches can complement each other.
Bias correction methods provide cleaner data for causal
inference, while causal inference offers a theoretical framework
for bias correction. This direction shows great potential in
academic research and increasing value in practice. It lays a
solid foundation for building advertising recommendation
systems that are fair, reliable, and interpretable.

3. Proposed Approach

In the method design, the overall framework takes causal
inference as the core and combines it with the exposure bias
correction mechanism to form a unified modeling process. The
overall model architecture is shown in Figure 1.
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Figure 1. Overall model architecture

First, assume that the interaction between users and ads
can be expressed as a conditional probability distribution, that
is, the user's click behavior Y is jointly affected by the ad
feature X and the exposure state E. The basic modeling goal
can be formalized as:



P(Y,X,E)
P(X,E)

Exposure state £ =1 indicates that the ad was displayed,
and £ =0 indicates that the ad was not displayed. This
modeling approach explicitly characterizes the causal effect of
exposure on user clicks and lays the mathematical foundation
for subsequent bias correction and causal reasoning.

PY|X,E)= )]

To mitigate the impact of exposure bias, we introduce the
idea of inverse propensity weighting (IPW) to reweight the
click signal of each sample. Specifically, the propensity score
is defined as:

7(X)=P(E=1|X) (2)

And by weighting the sample click results, we can get the
modified expected risk function:

Li E -1, f(X)))
N o n(X,)
Here, /() represents the loss function, and f(X;) is

the output of the recommendation model. This design can
reduce the imbalanced impact of the exposure mechanism and
make the model closer to unbiased estimation.
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In the causal inference section, this study introduces a
potential outcome framework to characterize the counterfactual

scenarios of user clicks. Potential outcomes Y(1) and Y (0)

are defined, representing the user clicks when the ad was
displayed and when it was not, respectively. The causal effect
can be represented by the average treatment effect (ATE):

ATE = E[Y(1)-Y(0)] 4)

In the actual modeling process, combining propensity
score matching with counterfactual estimation can yield more
robust causal effect estimates, thus avoiding the limitations of
inferring user interests based solely on correlations.

Finally, during the model optimization phase, bias
correction and causal inference are jointly integrated into the
recommendation objective function to construct a causal

regularization  learning  framework.  Specifically, the
optimization objective is defined as:
c\2
L=Lpy+A-E[f(X)=Y;)] 5)

Here, Y. represents the estimated click result based on

counterfactual reasoning, and A is the balancing parameter.
Through this joint optimization, the model not only corrects for
biased data but also enhances its ability to capture causal
relationships, achieving both improved accuracy and
interpretability.

4. Experiment Result

4.1 Dataset

This study uses the Criteo Display Advertising Challenge
public dataset. The dataset comes from real-world display
advertising scenarios and is designed for click-through rate

prediction tasks. It provides log samples at the impression level.
Each record includes a binary label indicating whether the ad
was clicked. Negative samples represent impressions without
clicks, while positive samples represent impressions with clicks.
In this way, the dataset naturally preserves information at the
exposure level. Its large scale and coverage of diverse delivery
and context situations make it suitable for analyzing correlation
modeling and bias issues in advertising recommendation.

The dataset contains 13 numerical features, often used as
dense features, and 26 categorical features. The categorical
features are high-cardinality sparse variables that have been
anonymized and hashed. Each impression is also linked to a
click label. The categorical fields cover multi-dimensional
context from the user, media, and advertising sides, such as site
or placement, device type, and ad creative identifiers. The
numerical fields can be understood as statistical or quantitative
features related to impression behavior. This design reflects the
sparse and high-dimensional distribution of features in real
advertising delivery. It also provides a rich information base for
representation learning, propensity modeling, and bias
correction.

In practice, common preprocessing includes filling missing
values with placeholders, merging or hashing very low-
frequency categories, scaling and truncating numerical features,
and splitting data into training, validation, and test sets by time
or date. Since samples are already generated at the impression
level, additional negative sampling is usually unnecessary.
Given its scale and feature characteristics, the Criteo dataset
supports both causal modeling and exposure bias correction. It
offers a reproducible open benchmark and comparison
environment. It also enables systematic evaluation of different
methods under a consistent data protocol.

4.2 Experimental Results

This paper first conducts a comparative experiment, and the
experimental results are shown in Table 1.

Table 1: Comparative experimental results

Method P;g‘ls(;" Réi*gl ACC@10 | NDCG
Recbole[8] 0.428 0392 0.601 0.447
CSLIM[9] 0.451 0.407 0.617 0.463

Prea[10] 0.462 0.419 0.628 0475
INGCF[11] 0.489 0.436 0.641 0.493

Ours 0.528 0472 0.667 0.521

From the results in Table 1, it can be observed that different
methods show a gradual improvement in Precision@10,
Recall@10, ACC@10, and NDCG. Traditional methods such
as Recbole and CSLIM perform poorly in precision and recall.
This indicates that although they can capture user interests to
some extent, they are still limited when dealing with exposure
bias in advertising recommendations. It also suggests that in
sparse and biased data environments, relying only on

traditional ~ collaborative =~ modeling  cannot  ensure
comprehensive and stable recommendation outcomes.
Further comparison shows that Prea and INGCF

outperform the first two methods on several metrics, especially
Recall@10 and ACC@10. This demonstrates that when a



model can capture higher-order interactions between users and
advertisements, the recommendation system gains more
advantages in identifying potential click behaviors. However,
these methods still depend mainly on statistical correlation.
They remain limited in recognizing real causal chains and thus
may still produce estimation bias under data selection bias
caused by exposure mechanisms.

It is noteworthy that the proposed method achieves the best
performance on all metrics. The improvement in Precision@10
and Recall@10 indicates that the model can recommend
advertisements that better match real user interests and also
cover more potential clicks. The advantage in ACC@10 and
NDCG further shows that the model is more robust in overall
accuracy and ranking quality. These results directly reflect the
effective integration of causal inference and exposure bias
correction. The recommendation process avoids the
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interference of spurious correlations and becomes closer to
users' true preferences.

Overall, these results confirm the practical value of the
proposed method in advertising recommendation tasks. By
introducing causal structures and inverse propensity weighting
into the model, the system achieves higher accuracy and recall,
and also significantly improves ranking performance and
fairness. This improvement provides new insights for academic
research and establishes a solid foundation for practical
applications of advertising recommendations. In particular, it
demonstrates stronger adaptability and generalization value
when facing complex environments and heterogeneous data.

This paper also gives the impact of the causal regularization
weight \ on the experimental results, and the experimental
results are shown in Figure 2.
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Figure 2. The impact of causal regularization weight A on experimental results

From the results in Figure 2, it can be seen that changes in
the causal regularization weight A lead to significant
improvements across several metrics. As A increases from 0 to
0.8, Precision@10 rises markedly. This indicates that
introducing causal constraints during modeling can effectively
reduce spurious correlations and improve the alignment
between recommendation results and users' true preferences.
Compared with the case without causal regularization, the final
precision is higher, showing the advantage of the method in
predicting click behavior.

The performance of Recall@l0 also improves as A
increases, with stronger effects at medium and high weights.
This suggests that causal regularization helps the model cover

more potential click samples, thereby enhancing
recommendation comprehensiveness. In other words, when the
model emphasizes causal consistency during training, it can
uncover users' real interests that may be hidden by exposure
mechanisms. This reduces recall loss caused by sample bias.

For ACC@10, accuracy shows a stable upward trend as A
increases. This result indicates that the introduction of causal
constraints does not harm the overall predictive stability of the
model. Instead, it strengthens the reliability of recommendation
decisions. Higher accuracy means that under different A
settings, the model maintains strong correctness in the
recommendation list, demonstrating the contribution of causal
inference and bias correction to robustness.



The NDCG results further support this conclusion. When A
increases, the ranking quality of recommendation results
improves, especially in the range of 0.6 to 0.8. This shows that
causal regularization not only optimizes recommendation
ranking but also enhances the overall rationality and fairness of
user experience. Therefore, it can be concluded that A has a
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positive effect on model performance within a certain range.
The essential reason is that causal modeling plays a central role
in reducing bias and improving interpretability and robustness.

This paper also gives the impact of embedding dimension
on experimental results, and the experimental results are shown
in Figure 3.
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Figure 3. The impact of embedding dimension on experimental results

From the results in Figure 3, it can be seen that
Precision@]10 increases steadily with the growth of embedding
dimension and reaches a high level around 256. The expansion
of the embedding dimension allows the model to capture richer
feature representations, which improves the accuracy of
advertising recommendations. However, when the dimension
further increases to 512, the improvement saturates or even
declines slightly. This suggests that an excessively large
representation space may introduce redundant information and
risk of overfitting. This finding aligns well with the practical
need to balance representation efficiency and generalization in
recommendation systems.

For Recall@10, the results show a significant improvement
as the dimension expands, especially in the range from 64 to
256. This indicates that higher-dimensional embeddings help
the model cover more potential relevant ads and reduce missed
true click interests. Yet when the dimension goes beyond 256,
the growth in recall slows down. This means that higher
dimensions do not further enlarge coverage but rather reduce
the efficiency of information use.

In terms of ACC@10, the trend is similar to Precision and
Recall. Accuracy rises with the increase of embedding
dimension and reaches its peak at medium to high dimensions.

This shows that the overall prediction correctness of the model
is maximized within a reasonable representation space. The
combination of causal constraints and embedding
representations enhances robustness. However, at higher
dimensions, the accuracy curve becomes flat, suggesting that
simply increasing dimensionality cannot bring further
performance gains.

The NDCG results further confirm the improvement in
ranking quality. Between 128 and 256 dimensions, the metric
rises notably, indicating that richer feature representations
enhance the relevance and rationality of the recommendation
list. Although performance drops slightly at 512 dimensions, it
remains better than in low dimensions. This trend shows that a
proper choice of embedding dimension is essential for
balancing ranking quality and computational cost. It also
highlights the value of causal modeling in improving ranking
performance under complex advertising recommendation
scenarios.

This paper also presents a data sensitivity experiment on the
ratio of positive and negative samples to Precision@10, and the
experimental results are shown in Figure 4.
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Figure 4. Data Sensitivity Experiment on the Ratio of
Positive and Negative Samples to Precision@10

From the results in Figure 4, it can be observed that the
ratio of positive to negative samples has a clear impact on
Precision@10. When the ratio is 1:1, the model achieves the
highest Precision@10. This shows that under balanced sample
conditions, the recommendation system can better capture
users' true click interests and maintain high accuracy in the
recommendation list. This phenomenon reflects the important
role of Dbalanced data distribution in advertising
recommendation modeling.

As the ratio becomes more skewed, Precision@10 shows a
continuous decline. When the number of negative samples
increases, the model is more easily influenced by non-click
samples during training, which weakens its ability to capture
real interests. This result indicates that excessive imbalance in
data distribution amplifies the effect of exposure bias. As a
result, recommendation outcomes become biased toward the
majority class, reducing accuracy.

At ratios of 1:3 and 1:4, the downward trend of
Precision@10 becomes more pronounced. This shows that
when the imbalance exceeds a certain threshold, causal
modeling and bias correction can mitigate the problem to some
extent, but cannot fully eliminate the negative impact. This
finding highlights the importance of data-level constraints for
causal modeling effectiveness. It also emphasizes the need to
design reasonable experimental settings and data preprocessing
strategies.

When the ratio reaches 1:5, Precision@10 falls to its lowest
point. This indicates that extreme data imbalance severely
harms recommendation performance. It also shows that causal
inference and regularization at the model level alone are not
sufficient to solve distribution bias. Deeper optimization is
required in data sampling and propensity estimation. Overall,
these results underline the significance of data sensitivity in
advertising recommendation research. They also provide
practical evidence for further exploration of more robust causal
inference and bias correction methods.

This paper also presents a data sensitivity experiment on the
degree of mismatch of the propensity model to Recall@10, and
the experimental results are shown in Figure 5.
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Figure 5. Data Sensitivity Experiment on the Degree of
Model Mismatch on Recall@10

From the results in Figure 5, it can be seen that Recall@10
shows a continuous decline as the degree of propensity model
mismatch increases. When the mismatch level is 0%, the model
achieves a recall close to 0.47. This indicates that when the
propensity model is highly consistent with the true distribution,
the recommendation system can better cover users' real
interests and ensure comprehensive results. However, once a
mismatch is introduced, the ability of the model to capture
potential click behaviors is gradually weakened.

In the range of 10% to 30% mismatch, Recall@10 drops
significantly. This shows that even a moderate level of bias has
a strong impact on the recommendation model. It indicates that
the accuracy of the propensity model is crucial for causal
inference and bias correction. If the propensity estimation is
inaccurate, the corrective ability of IPW or other debiasing
methods becomes limited, leading to reduced recall.

When the mismatch level exceeds 30%, the decline in
Recall@10 becomes more severe. This suggests that a serious
mismatch makes it difficult for the recommendation system to
extract valuable information from biased data. At this stage, the
model fails to distinguish true clicks from spurious correlations
caused by incorrect propensity estimation. As a result, coverage
becomes insufficient, and users may miss advertisements
highly relevant to their interests.

Overall, these results highlight the central role of the
propensity model in causal inference-based recommendation.
Only when propensity modeling is accurate can exposure bias
correction mechanisms function effectively and ensure robust
and reliable recommendations. In contrast, if the propensity
model is severely mismatched, the performance of the
recommendation system will still be significantly affected even
with causal constraints. This provides important insights for
future research on optimizing propensity modeling methods
and enhancing model robustness.

5. Conclusion

This study focuses on the integration of causal inference
and exposure bias correction in advertising recommendation
tasks. It systematically analyzes the limitations of existing
recommendation methods when facing selective exposure data



and proposes a new modeling framework. By introducing
causal structures and inverse propensity weighting, the model
can maintain prediction accuracy while effectively reducing the
interference of spurious correlations. This design not only
addresses the bias problem caused by over-reliance on
statistical correlation in traditional methods but also provides a
more robust technical path for advertising recommendation,
demonstrating feasibility and effectiveness in complex data
environments.

In sensitivity experiments, the proposed method shows
good stability and adaptability. Whether in hyperparameter
adjustments, environmental changes, or differences in data
distribution, the combination of causal modeling and bias
correction exhibits strong robustness. This indicates that the
method can handle uncertainty and dynamic variation
commonly present in advertising recommendation systems,
ensuring the reliability of recommendation results. In particular,
under challenging scenarios such as sample imbalance or
propensity model errors, the framework is still able to maintain
high performance, reflecting its suitability for complex
industrial applications.

The significance of this research lies not only in theoretical
innovation but also in its contribution to practical application.
Advertising recommendation is a core component of the
internet economy, directly affecting both business value and
user experience. The proposed framework that combines causal
inference with bias correction can help platforms allocate
advertising exposure opportunities more fairly and accurately,
thereby reducing potential algorithmic bias. This is of great
value for improving advertising efficiency, enhancing user
experience, and strengthening long-term platform credibility. In
other words, the contribution of this study is not only a
technical improvement but also a systematic solution that
addresses real application needs.

Overall, the findings of this study present a new perspective
on advertising recommendation that balances accuracy, fairness,
and interpretability. By integrating causal inference and bias
correction mechanisms into recommendation systems, the
model demonstrates stronger robustness and generalization in
complex environments. This approach provides a new

reference paradigm for advertising recommendation and also
offers a valuable research direction for other recommendation
or prediction tasks with bias issues. Therefore, this work has a
profound impact on both academic research and industrial
practice, laying a solid theoretical and methodological
foundation for extending causal recommendation to broader
scenarios.
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