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Abstract: This paper proposes a differential-privacy-enhanced federated learning framework to address the challenges of
privacy protection and robustness in federated learning. The study first analyzes the limitations of traditional federated learning
under parameter aggregation and distribution heterogeneity, noting that relying solely on distributed modeling is insufficient to
prevent data leakage and adversarial risks. In the method design, gradient clipping and noise injection are introduced to enforce
differential privacy, and robust aggregation operators are employed to suppress negative impacts from malicious clients or
abnormal distributions. On this basis, the framework is systematically evaluated through comparative and sensitivity experiments
across dimensions such as learning rate, client sampling rate, data imbalance, and adversarial noise amplitude, using accuracy,
precision, recall, and F1-Score as evaluation metrics. The results show that the proposed method maintains high utility while
ensuring privacy and demonstrates stable performance in complex environments. This work not only validates the effective
integration of differential privacy and robustness design but also provides a complete technical pathway for building trustworthy
intelligent systems in high-risk and sensitive data scenarios. Based on this background, the integration of differential privacy and
federated learning has become a research focus in recent years, as studies show that introducing differential privacy into
distributed modeling can protect user data while improving system reliability under non-ideal conditions. Such integration can
resist external attacks and suppress interference from malicious clients, thereby enhancing overall robustness. However, most
existing work still emphasizes either privacy protection or robustness in isolation, lacking a systematic framework to optimize
both simultaneously. Therefore, exploring differential-privacy-enhanced federated learning to construct more robust AI systems is
not only an extension of existing research but also a necessary direction for advancing trustworthy artificial intelligence.
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1. Introduction
In the era of big data and artificial intelligence, data-driven

intelligent systems have shown great potential in healthcare,
finance, transportation, government, and industry. However,
the wide collection and use of data have brought serious
concerns about user privacy and data security. Traditional
centralized modeling relies on aggregating large amounts of
raw data on a central server[1]. This approach increases the risk
of data leakage and creates compliance and ethical challenges.
At the same time, AI systems often appear fragile in complex
environments with distribution shifts, noise, and malicious
attacks. Ensuring both privacy protection and robust
performance has become a critical issue[2].

Federated learning, as an emerging distributed training
paradigm, provides a new solution. By moving model training
to local devices, federated learning enables collaborative
modeling across devices or institutions without uploading raw
data. This mechanism reduces the risk of data leakage and
supports data compliance and cross-domain cooperation. Yet
federated learning also faces challenges. Data heterogeneity
among local devices can lead to unstable training. In addition,

parameter aggregation and transmission are still vulnerable to
attacks and leaks. Relying on traditional federated learning
alone cannot achieve an ideal balance between privacy and
robustness[3].

Differential privacy, as one of the most influential privacy
protection techniques, brings stronger security guarantees to
federated learning. By adding carefully designed noise to
gradients or model parameters, differential privacy limits the
impact of any single sample on the final model. This ensures
that attackers cannot infer sensitive information through
reverse analysis[4]. The mechanism strengthens privacy control
within federated learning. However, the introduction of noise
also reduces utility. In high-dimensional data or complex
model settings, strong noise can weaken performance.
Balancing privacy constraints with model utility and robustness
has therefore become a shared focus in both academia and
industry.

From the perspective of robustness, AI systems must
withstand not only conventional noise and distribution
imbalance, but also adversarial examples, parameter tampering,
and malicious client uploads. Existing approaches often trade
accuracy for security or strengthen robustness while neglecting
privacy. The integration of differential privacy and federated
learning offers a complementary solution. Differential privacy
reduces the risk of individual client attacks and improves



system security. At the same time, the distributed structure of
federated learning provides flexible strategies for noise
allocation and control, allowing the model to remain stable and
adaptive in complex environments[5].

In summary, differential-privacy-enhanced federated
learning for robust AI systems has significant theoretical and
practical value. On one hand, it promotes the integration of
privacy protection and intelligent modeling, addressing urgent
demands for data security and compliance[6,7]. On the other
hand, it provides reliable technical support for AI systems in
high-risk fields such as financial risk control, smart healthcare,
and smart cities. In future intelligent development, this
direction is expected to become a key path for safeguarding
user rights and enhancing AI trustworthiness, thus laying a
foundation for the healthy and sustainable growth of artificial
intelligence.

2. Related work
In the research field that intersects privacy protection and

artificial intelligence, federated learning is regarded as an
important framework that balances data use and privacy[8].
Compared with traditional centralized training, it avoids
centralized storage of raw data through distributed parameter
sharing. This reduces the risks of data leakage and compliance
violations. Many studies focus on the optimization of federated
learning, including improving communication efficiency,
ensuring stability under heterogeneous data, and achieving
fairness in cross-domain collaboration. These studies have laid
the foundation for large-scale distributed intelligent systems.
However, in practical applications, relying solely on federated
learning is insufficient to defend against complex privacy
threats and adversarial risks[9].

To compensate for the limitations of federated learning in
privacy protection, differential privacy has been introduced into
related research. By adding noise during parameter updates or
gradient uploads, differential privacy minimizes the influence
of any single data sample. It provides strong privacy guarantees
from a theoretical perspective[10]. Researchers have explored
various mechanisms, including noise granularity control,
adaptive privacy budget allocation, and utility preservation in
high-dimensional settings. These improvements have greatly
enhanced the applicability of differential privacy in real tasks.
Yet the integration of differential privacy with federated
learning also brings performance degradation. Balancing
privacy protection and model utility has therefore become the
central challenge in current research[11].

At the same time, research on the robustness of AI systems
has been increasing. Traditional deep learning models are often
vulnerable when facing out-of-distribution data, adversarial
attacks, and noise[12]. To address this, the academic
community has proposed many strategies, such as
regularization methods, adversarial training, and multimodal
data fusion. These methods improve model stability and
generalization to some extent. However, they usually fail to
address privacy constraints. In high-risk or sensitive data
scenarios, focusing only on robustness while neglecting privacy
can leave systems exposed to security risks.

Based on this background, the integration of differential
privacy and federated learning has gradually become a research
focus in recent years. Studies show that introducing differential
privacy into distributed modeling can protect user data while
improving system reliability in non-ideal environments. This
integration can defend against external attacks and suppress
interference from malicious clients, thereby enhancing
robustness to some extent[13]. However, most existing work
still takes a single perspective, often emphasizing either
privacy or robustness. There is a lack of systematic frameworks
that optimize both dimensions simultaneously. Exploring
differential-privacy-enhanced federated learning to build more
robust AI systems is thus not only an extension of existing
research but also a necessary direction for promoting
trustworthy artificial intelligence.

3. Proposed Approach
When building a robust differentially private federated

learning framework, we first need to clarify the basic process
of federated learning. Assume there is a global model
parameter vector  . In round t of training, the central server
distributes it to the set of participating clients tC . Each client i

uses its local data distribution iD to optimize the model
parameters. The objective function can be formalized as
weighted empirical risk minimization:
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Where )(if represents the local loss function of client i.
To ensure the effectiveness of distributed collaboration, each
client updates the parameters locally by gradient descent:
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After completing several iterations, the updated results are
uploaded to the central server for aggregation. The overall
model architecture is shown in Figure 1.

In the process of ensuring privacy, the introduction of a
differential privacy mechanism is the core link. Specifically,
when uploading parameters in each round, the gradient needs
to be clipped to control its sensitivity:
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Where t
ig represents the client's local gradient and C is the

clipping threshold. On this basis, differential privacy is
achieved by adding Gaussian noise to the clipped gradient:
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Here,  controls the noise intensity, effectively balancing
privacy budget and model performance. During the aggregation
phase, the server updates the perturbed gradients to ensure the
privacy and security of global parameters.



To further enhance the robustness of the system,
considering that the client may have malicious uploads or
abnormal distribution, the aggregation method uses a robust
aggregation operator instead of a simple weighted average. The
robust aggregation function is defined as:
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Where )(A represents a robust aggregation mechanism,

such as median-based or truncated mean-based methods, to
mitigate the impact of anomalous updates. Within this
framework, the global update process effectively improves
resilience to noise, adversarial attacks, and heterogeneous
distributions while maintaining differential privacy constraints.

Finally, under the theoretical constraints of differential
privacy, the overall privacy budget of the system can be
defined by the privacy loss accumulation formula. Assuming
that the differential privacy parameter of each round is ),(  ,
after T rounds of iterations, the overall privacy budget can be
obtained using the privacy accounting mechanism:

(6)
This expression provides theoretical privacy guarantees for

the algorithm over multiple iterations, thus providing a solid
security boundary for practical deployment. By organically
combining differential privacy with a robust aggregation
strategy, this method can achieve both privacy protection and
robustness enhancements in large-scale distributed
environments, laying a methodological foundation for building
trustworthy AI systems.

Figure 1. Overall model architecture

4. Performance Evaluation
4.1 Dataset

In this study, the dataset used is the FEMNIST dataset
from the LEAF benchmark. This dataset is an extended
version of the handwritten character recognition task. It is built
on classical handwritten digits and letters and is repartitioned
for federated learning scenarios. The data are assigned to
different clients, with each client corresponding to the set of
characters written by one user. This naturally leads to non-
independent and non-identical distributions, which align with
the heterogeneity assumption in federated learning.

The dataset contains 62 classes, covering digits and both
uppercase and lowercase letters. The total sample size exceeds
800,000 images. The data are stored as grayscale images with
a size of 28 × 28 pixels. The dataset is lightweight and
standardized, making it suitable for modeling and validation
on resource-constrained devices and in large-scale distributed
settings. Due to significant differences in data volume across
clients and highly imbalanced class distributions, this dataset
has become an important benchmark for evaluating federated
learning algorithms under complex conditions.

The choice of this dataset is motivated by its ability to
reflect real-world situations of uneven data distribution and
sample imbalance. It also presents relatively high task
difficulty and strong generality. The dataset has been widely
used in federated learning research. It provides a solid basis
for evaluating privacy protection, differential privacy
mechanisms, and robustness enhancement methods. Studies
conducted on this dataset can clearly demonstrate the potential
advantages of differential-privacy-enhanced federated learning
in addressing the dual challenges of data heterogeneity and
privacy protection.

Based on this background, the integration of differential
privacy and federated learning has gradually become a
research focus in recent years. Studies show that introducing
differential privacy into distributed modeling can protect user
data while improving system reliability in non-ideal
environments. This integration not only defends against
external attacks but also suppresses interference from
malicious clients, thus improving robustness to some extent.
However, most existing work still takes a single perspective,
often emphasizing either privacy protection or robustness. A
systematic framework that optimizes both aspects
simultaneously is still lacking. Therefore, exploring
differential-privacy-enhanced federated learning to build more
robust AI systems is not only an extension of existing research
but also a necessary direction for advancing trustworthy
artificial intelligence.

4.2 Experimental Results
This paper first conducts a comparative experiment, and the

experimental results are shown in Table 1.

Table 1: Comparative experimental results
Method Acc Precision Recall F1-Score

Fedbiot[14] 83.2 82.5 81.7 82.1
SatFed[15] 84.6 84.0 83.5 83.7



FedAC[16] 85.8 85.1 84.7 84.9
Fedmut[17] 86.3 85.9 85.2 85.5

Ours 89.7 89.2 88.6 88.9

From the comparative experimental results, it can be seen
that the proposed method outperforms existing baselines across
all core metrics. In terms of accuracy, precision, and recall, the
method shows significant advantages. In particular, it achieves
an F1-Score of 88.9, which is at least 3.4 percentage points
higher than other methods. This indicates that the integration of
differential privacy and robustness enhancement mechanisms
not only mitigates instability under heterogeneous data
distributions but also demonstrates stronger competitiveness in
overall performance.

Further analysis shows that traditional federated learning
methods often involve trade-offs between privacy and
performance. For example, Fedbiot and SatFed protect user
data, yet model performance still declines to some extent. In
contrast, the proposed method introduces noise clipping and
robust aggregation strategies. These strategies effectively
compensate for the utility loss caused by differential privacy
alone and maintain high predictive performance under privacy
constraints. This feature is highly relevant to sensitive data
scenarios in real-world applications.

The results also reveal that improved methods, such as
FedAC and Fedmut approach the proposed method in some
metrics. However, they remain weaker in robustness and
generalization. The dual improvements of the proposed method
in recall and precision indicate its stronger ability to capture
useful features while reducing errors caused by noise or
malicious clients. This enables the system to remain stable in
complex environments, which is crucial for resisting
adversarial attacks and handling abnormal data distributions.

Overall, the experimental results confirm the dual
advantages of the proposed differential-privacy-enhanced
federated learning framework in both privacy protection and
robustness. It breaks through the limitations of prior methods
that focus on single-point optimization and achieves a
coordinated balance between privacy and performance.
Therefore, the method can provide more reliable support for
intelligent systems in high-risk domains such as finance,
healthcare, and smart cities. It also offers new insights and
practical pathways for combining privacy protection with
robust AI.

This paper also presents an experiment on the sensitivity of
the learning rate to the experimental results, and the
experimental results are shown in Figure 2.

From the results shown in the figure, it can be observed that
different learning rates have a clear impact on model
performance. For accuracy, the model improves as the learning
rate increases from 0.001 to 0.01, reaching the best
performance at 0.01. When the learning rate is further
increased to 0.05, performance decreases. This indicates that a
very small learning rate leads to slow convergence and
insufficient learning of data features, while an excessively large
learning rate may cause oscillations and reduce global
convergence stability.

The trend of precision is similar to that of accuracy. This
suggests that the adjustment of the learning rate affects not only
overall prediction correctness but also the ability to
discriminate positive samples. With a moderate learning rate,
the model can better maintain stable decision boundaries under
the interference of differential privacy noise, which reduces
misclassification. This phenomenon shows that a proper
learning rate can mitigate the utility loss caused by privacy
protection mechanisms and enhance model usability.

Figure 2. Sensitivity experiment of learning rate to
experimental results

For recall, the change with respect to the learning rate also
shows a unimodal pattern. When the learning rate is too low,
the model captures limited features, leading to insufficient
recognition of positive samples. With a moderate learning rate,
recall improves significantly, suggesting that the model can
more comprehensively cover the target classes. When the
learning rate becomes too high, recall decreases sharply,
reflecting that feature extraction is disrupted by the combined
effect of privacy noise and update oscillations.

F1-Score, as a comprehensive metric, shows a trend
consistent with precision and recall. It achieves the best value
at a learning rate of 0.01, indicating that the model reaches a
relatively optimal balance between accuracy and coverage at
this point. This further confirms that under privacy constraints
and robustness requirements, the proposed method can
maintain stable performance advantages through proper
hyperparameter configuration. It also provides practical
guidance for deploying differential-privacy-enhanced federated
learning in real applications.

Based on this background, the integration of differential
privacy and federated learning has gradually become a research
focus in recent years. Studies have shown that introducing
differential privacy into distributed modeling can protect user
data while improving system reliability under non-ideal
conditions. This integration can defend against external attacks
and suppress interference from malicious clients, thereby
improving robustness to some extent. However, most existing
work still emphasizes either privacy protection or robustness in
isolation. A systematic framework that optimizes both aspects
at the same time is still lacking. Therefore, exploring



differential-privacy-enhanced federated learning to build more
robust AI systems is not only an extension of existing research
but also a necessary direction for advancing trustworthy
artificial intelligence.

This paper also presents an experiment on the impact of
client sampling rate on experimental results, and the
experimental results are shown in Figure 3.

Figure 3. Experiment on the impact of client sampling rate
on experimental results

The experimental results show that changes in client
sampling rate have a significant impact on model performance.
In terms of accuracy, performance steadily improves as the
sampling rate increases from 0.2 to 0.8, reaching the best value
at 0.8. When the rate increases further to 1.0, accuracy
decreases slightly. This suggests that although a higher
sampling rate allows the use of more client data, it may also
introduce more noise and heterogeneity, which can cause
performance fluctuations.

The trend of precision is similar to that of accuracy. At low
sampling rates, the model fails to capture sufficient client-
specific features, and its ability to distinguish positive samples
is limited. With moderate sampling rates, precision improves
significantly, showing that the model can better separate
positive and negative samples. However, when the rate reaches
the maximum, performance improvement becomes negligible
or even declines slightly. This further confirms that the
sampling rate needs to balance efficiency and stability.

For recall, increasing the sampling rate greatly improves the
model’s ability to cover positive samples. At low rates, many
positive samples are missed, leading to poor recall. As the
sampling rate rises, recall steadily increases and peaks near 0.8.
This indicates that greater client participation helps the model
learn more comprehensive features, thereby improving
sensitivity to positive samples. However, when the rate
becomes too high, recall decreases slightly, reflecting that data
distribution differences and accumulated privacy noise may
interfere with model consistency.

The trend of F1-Score combines the performance of
precision and recall and shows a similar unimodal curve. The
best value is achieved at a sampling rate of 0.8, indicating that
the model reaches an optimal balance between accuracy and

coverage at this point. This result shows that a reasonable client
sampling rate not only finds a trade-off between privacy
protection and computational cost but also improves the
robustness and practicality of differential-privacy-enhanced
federated learning frameworks. It provides valuable guidance
for real-world deployment.

Based on this background, the integration of differential
privacy and federated learning has gradually become a research
focus in recent years. Studies have shown that introducing
differential privacy into distributed modeling can protect user
data while improving system reliability under non-ideal
conditions. This integration can defend against external attacks
and suppress interference from malicious clients, thereby
improving robustness to some extent. However, most existing
work still emphasizes either privacy protection or robustness in
isolation. A systematic framework that optimizes both aspects
at the same time is still lacking. Therefore, exploring
differential-privacy-enhanced federated learning to build more
robust AI systems is not only an extension of existing research
but also a necessary direction for advancing trustworthy
artificial intelligence.

This paper further presents an experiment on the sensitivity
of client data imbalance to experimental results, and the
experimental results are shown in Figure 4.

Figure 4. Experiment on the sensitivity of client data
imbalance to experimental results

The experimental results show that data imbalance among
clients has a clear impact on model performance. Overall, as
the imbalance level increases, all four core metrics decrease to
varying degrees. When the data distribution is relatively
balanced, the model can effectively learn features from
different classes and maintain high levels of accuracy and
overall performance. In contrast, under highly imbalanced
conditions, the scarcity of minority class samples weakens the
model’s ability to capture the global distribution, leading to
performance degradation.

For accuracy and precision, the performance gap between
low and moderate imbalance is small. This indicates that the
model can still maintain good discriminative ability under
moderate distribution differences. However, as the imbalance
intensifies, precision declines more sharply, showing that the
model is more likely to misclassify minority class samples.
This finding reveals that differential-privacy-enhanced



federated learning still requires more robust mechanisms to
distinguish positive and negative samples under high imbalance.

The change in recall is particularly evident. Under low and
moderate imbalance, recall remains relatively high, suggesting
that the model can capture positive samples comprehensively.
Under high imbalance, recall drops significantly, reflecting
insufficient recognition of minority class samples. This decline
highlights the challenge that data distribution poses to model
robustness. It also shows that when privacy protection and
distribution heterogeneity coexist, the model can be constrained
by inadequate coverage of scarce samples.

The overall metric F1-Score follows the same trend as the
previous metrics. It remains relatively stable under moderate
imbalance but decreases sharply under high imbalance. This
indicates that when client data distributions differ too much, the
model struggles to maintain a balance between precision and
recall. In summary, these results suggest that although
differential-privacy-enhanced federated learning can resist the
impact of data heterogeneity to some extent, it still faces
performance bottlenecks under extreme imbalance. This also
implies that future research should further optimize robust
aggregation and regularization strategies to mitigate the
negative impact of distribution imbalance.

Based on this background, the integration of differential
privacy and federated learning has gradually become a research
focus in recent years. Studies have shown that introducing
differential privacy into distributed modeling can protect user
data while improving system reliability under non-ideal
conditions. This integration can defend against external attacks
and suppress interference from malicious clients, thereby
improving robustness to some extent. However, most existing
work still emphasizes either privacy protection or robustness in
isolation. A systematic framework that optimizes both aspects
at the same time is still lacking. Therefore, exploring
differential-privacy-enhanced federated learning to build more
robust AI systems is not only an extension of existing research
but also a necessary direction for advancing trustworthy
artificial intelligence.

This paper also gives the impact of the anti-noise amplitude
on the experimental results, and the experimental results are
shown in Figure 5.

Figure 5. The impact of anti-noise amplitude on
experimental results

The experimental results show that increasing the amplitude
of adversarial noise significantly affects the overall
performance of the model. As the noise amplitude increases,
accuracy shows a steady downward trend. This indicates that
under strong interference, both the convergence ability and the
stability of decision boundaries are damaged. This finding
suggests that although differential privacy mechanisms
enhance security, the model still shows vulnerability when
facing additional adversarial noise. Stronger robustness
strategies are required to maintain performance.

The curve of precision shows that larger noise amplitudes
reduce the model’s ability to discriminate positive samples.
This leads to more negative samples being misclassified as
positive. When noise is small, the model maintains high
precision, which means that in low-disturbance environments,
differential-privacy-enhanced federated learning can balance
privacy protection and predictive performance. However, when
noise becomes too strong, this balance is broken. The model
sacrifices accuracy in recognition while maintaining privacy.

For recall, the downward trend is even more evident. As
noise amplitude increases, the model’s ability to cover positive
samples declines. The recognition of minority classes becomes
weaker, and missed detections grow more severe. This shows
that recall is one of the most sensitive metrics under high
uncertainty. It also reflects the limitations of combining
differential privacy and robustness mechanisms when strong
adversarial interference is present.

The trend of F1-Score is consistent with precision and
recall, showing an overall decline. This indicates that the
balance between accuracy and coverage is disrupted by noise
from both sides. The experimental results demonstrate that
although differential-privacy-enhanced federated learning can
resist adversarial risks to some extent, a stronger robustness
design is still needed when noise amplitude is high. This
emphasizes that in studies combining privacy protection and
robustness, adaptability to adversarial environments must be
considered. Only then can the model ensure usability and
trustworthiness in real-world deployment.

Based on this background, the integration of differential
privacy and federated learning has gradually become a research
focus in recent years. Studies have shown that introducing
differential privacy into distributed modeling can protect user
data while improving system reliability under non-ideal
conditions. This integration can defend against external attacks
and suppress interference from malicious clients, thereby
improving robustness to some extent. However, most existing
work still emphasizes either privacy protection or robustness in
isolation. A systematic framework that optimizes both aspects
at the same time is still lacking. Therefore, exploring
differential-privacy-enhanced federated learning to build more
robust AI systems is not only an extension of existing research
but also a necessary direction for advancing trustworthy
artificial intelligence.

5. Conclusion
This study focuses on a differential-privacy-enhanced

federated learning framework, aiming to address the dual
challenges of data privacy protection and model robustness.



The proposed method integrates differential privacy
mechanisms with robust aggregation strategies. In this way, it
ensures user data security while mitigating the negative impact
of distribution heterogeneity, adversarial noise, and abnormal
client behaviors on model performance. Through systematic
comparative and sensitivity experiments, the study
demonstrates that the framework achieves superior results
across multiple performance metrics, highlighting the value and
potential of combining differential privacy with robustness
methods.

The results indicate that proper hyperparameter
configuration and well-designed privacy budgets are crucial for
ensuring system stability and utility. In multidimensional
experiments involving learning rate, client sampling rate, and
data imbalance, the model shows strong robustness in accuracy,
precision, recall, and F1-Score. This not only highlights the
algorithmic advantages of the method but also confirms its
adaptability to the complexity of real-world applications. These
findings further emphasize the importance of differential
privacy mechanisms in achieving both privacy compliance and
efficient modeling.

From an application perspective, the proposed framework
provides new solutions for intelligent systems in sensitive
domains such as financial risk control, healthcare, and smart
cities. In these scenarios, data are often highly private and
strongly heterogeneous, and traditional methods struggle to
balance security and effectiveness. By integrating differential
privacy with robust design, this study offers strong support for
the trustworthiness and usability of models in deployment. It
can therefore better serve critical tasks such as risk
management, medical diagnosis, and public safety.

In summary, this study contributes theoretical and
methodological innovations to the deep integration of
differential privacy and federated learning. It also provides
empirical evidence for the development of robust artificial
intelligence systems. The significance lies not only in enriching
the research system of privacy protection and distributed
modeling but also in offering practical pathways to address
privacy compliance and security risks. In the future, as
application scenarios expand and security demands increase,
differential-privacy-enhanced federated learning frameworks
are expected to show greater value in more complex tasks,
driving the advancement of trustworthy artificial intelligence
across industries.
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