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Abstract: This study investigates anomaly detection in cloud backend systems and addresses the limitations of traditional
methods under high-dimensional complex data and scarce anomaly samples. A contrastive learning-based algorithm is proposed,
which constructs more discriminative latent space representations through feature mapping and representation learning and
achieves effective separation of normal and abnormal patterns by jointly optimizing contrastive loss and classification loss. To
validate the effectiveness of the method, comparative experiments were conducted on a public dataset, and the results show that
the proposed model outperforms several mainstream approaches in terms of AUC, ACC, F1-Score, and Precision. Sensitivity
experiments were also performed to analyze the effects of temperature parameter, learning rate, negative sample ratio, and
environmental disturbance on model performance. The results demonstrate that proper hyperparameter selection and
environmental modeling not only improve overall detection performance but also enhance robustness and stability. By combining
comparative experiments with sensitivity analysis, this study comprehensively verifies the effectiveness of the contrastive
learning-based anomaly detection method in cloud backend scenarios and confirms its potential application value in complex
system operations.
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1. Introduction
In the era of rapid digitalization and intelligent

development, cloud computing has become a critical
foundation for the information infrastructure of enterprises and
organizations. As the core that supports diverse applications,
the cloud backend plays an irreplaceable role in processing
massive data, handling high-concurrency requests, and
ensuring service continuity. However, with the increasing
complexity of business scenarios and the continuous growth of
data scale, anomalies in cloud backend systems have become
more prominent. These anomalies may cause performance
degradation, service interruptions, and even lead to severe
security risks and economic losses. Therefore, how to
efficiently and accurately identify anomalies in cloud backends
has become a key problem in the field of information
technology[1].

Traditional anomaly detection methods mainly rely on
statistical analysis or rule matching. These approaches are often
inadequate when faced with complex, diverse, and high-
dimensional cloud backend data. Static thresholds and fixed
rules cannot adapt to dynamic environments. With the wide
adoption of microservice architectures, containerization, and
distributed deployment, system structures have become more
flexible and complex, while anomaly patterns have become
increasingly diverse[2]. This makes it difficult for traditional
methods to capture hidden patterns in high-dimensional
features, resulting in poor detection performance. In this
context, exploring new intelligent methods to enhance the

accuracy and robustness of anomaly detection in cloud
backends is of great importance.

In recent years, contrastive learning has emerged as a
powerful self-supervised approach in representation learning
and classification tasks. Comparing features between normal
and abnormal data enables models to learn discriminative
representations without requiring large amounts of labeled data.
Compared with traditional supervised methods, contrastive
learning can better capture intrinsic structural relationships
within data, improving the model's ability to recognize
anomaly patterns in complex environments. In cloud backend
scenarios, contrastive learning not only enhances feature
discriminability but also effectively addresses data imbalance
and the scarcity of abnormal samples. This provides new
perspectives for anomaly detection[3,4].

At the societal level, cloud services have penetrated critical
industries such as finance, healthcare, transportation, and
energy. The stability and security of these systems directly
affect economic development and social operations. If backend
anomalies cannot be detected and resolved in time, large-scale
service interruptions may occur, potentially triggering systemic
risks. Research on contrastive learning-based anomaly
detection in cloud backends can therefore improve the level of
intelligent operations at the technical layer, while also
enhancing resilience and reliability at the societal layer. Such
work aligns with national strategies for secure and intelligent
management of next-generation information infrastructure,
carrying both strategic value and practical significance.



In summary, research on anomaly detection in cloud
backends using contrastive learning not only contributes to the
development of intelligent anomaly detection theory at the
academic level but also addresses practical demands for
ensuring cloud service quality in industry[5]. It will help build
more intelligent and reliable backend operation systems, reduce
risks, and improve service quality and user experience. This
research is of great importance for advancing the high-quality
development of cloud computing and safeguarding the stable
operation of the digital economy.

2. Related work
In recent years, anomaly detection in cloud backends has

gradually become an important research focus in both
academia and industry. Existing work mainly follows three
paths, including statistical modeling, machine learning, and
deep learning[6]. Early studies often relied on threshold
settings and statistical distribution analysis, such as detecting
anomalies through fluctuations in system logs or performance
indicators. These methods are simple to implement and
computationally efficient. However, they are restricted to static
rules. When facing high-dimensional, multi-source
heterogeneous data or dynamic environments, their detection
performance declines significantly, with frequent false alarms
and missed detections. This makes them unsuitable for modern
cloud backend systems.

With the development of machine learning, researchers
introduced classification and clustering methods into anomaly
detection. These approaches can learn anomaly patterns from
historical data and generalize better than traditional methods.
Common ideas include using support vector machines, random
forests, and clustering analysis to identify anomalies in the
feature space. However, their performance is limited by model
capacity and heavy reliance on feature engineering. They
struggle with complex nonlinear relationships. When data
dimensions increase or abnormal samples are scarce, results are
often unsatisfactory. Moreover, these methods usually require
large amounts of labeled data, which is difficult to obtain in
practical cloud backend environments[7].

The rise of deep learning has brought new perspectives for
anomaly detection in cloud backends. Leveraging the strong
feature extraction ability of neural networks, researchers have
proposed anomaly detection methods based on time series
modeling, graph neural networks, and autoencoder
reconstruction. These approaches can automatically capture
latent patterns in high-dimensional data and improve detection
accuracy and robustness. For example, autoencoder-based
methods use reconstruction errors to measure anomaly levels.
Recurrent neural networks and attention mechanisms are
applied to capture temporal dependencies and
multidimensional feature interactions. Although these
approaches address some limitations of traditional methods,
challenges remain. They often rely heavily on large labeled
datasets, are sensitive to changes in system structures, and lack
interpretability[8].

In recent years, contrastive learning has been introduced
into anomaly detection as a self-supervised paradigm, bringing
breakthroughs for cloud backend scenarios. By constructing

positive and negative sample pairs and emphasizing the
discriminability of feature representations, it can achieve strong
robustness even with limited labels. In cloud backend anomaly
detection, contrastive learning alleviates the problems of
insufficient labels and data imbalance. It also strengthens the
model's ability to capture hidden anomaly patterns. Although
initial studies have explored this direction, challenges remain in
effective feature construction, adaptation to diverse anomaly
categories, and real-time performance in large-scale distributed
environments. Current progress provides a solid foundation for
future research, while also revealing urgent issues that need to
be solved.

3. Proposed Approach
The core idea of this research is to construct feature

representations that can distinguish normal and abnormal
patterns through contrastive learning, thereby achieving cloud
backend anomaly identification. Specifically, it is necessary to
first perform feature modeling on the input high-dimensional
system monitoring data. This paper also gives the overall
model architecture, and its experimental results are shown in
Figure 1.

Figure 1. Overall model architecture
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This representation can effectively capture the complex
relationships between different features and lay the foundation
for subsequent discriminative learning.

After feature mapping is completed, the objective function
of contrastive learning needs to be constructed. The core of
contrastive learning is to maximize the similarity between
samples of the same class while minimizing the similarity
between samples of different classes. The specific form can be
expressed by the contrastive loss function with normalized
temperature scaling:



 

 N

k ki

ji
con

hhsim

hhsim
L

1
)/),(exp(

)/),(exp(
log





Here, )(sim represents cosine similarity,  is the

temperature parameter, ih and jh represent pairs of

positive samples, and the denominator includes all negative
samples. This loss function enables the model to automatically
close the representation of similar patterns and distinguish
features from different categories.

In the specific modeling of abnormality discrimination,
the representation obtained by contrastive learning can be
combined with the discriminant function. A linear classification
head )(g is defined, whose function is to map the latent
representation to the binary classification space of abnormality
and normality, and the output is:
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Here, W and b are parameters, )( represents the
sigmoid function, and the final output ]1,0[y represents
the probability that the sample is an anomaly. This structure
can further achieve explicit anomaly identification based on the
representation of contrastive learning.

To enhance the generalization ability of the model in
complex cloud backend scenarios, this study also introduced a
joint optimization strategy that combines contrast loss and
discriminant loss. The discriminant loss is usually in the form
of binary cross-entropy:
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Among them, ]1,0[z is the true label and y is the
predicted probability. The final optimization goal is to
comprehensively consider the two:
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Here, ]1,0[ is a balancing factor that adjusts the
contribution ratio between contrastive learning and
discrimination tasks. This allows the model to not only learn
highly discriminative representations but also directly optimize
for the discrimination task, thus better adapting to the anomaly
detection requirements of the cloud backend.

4. Experiment result
4.1 dataset

The dataset used in this study is the Yahoo Webscope S5
anomaly detection dataset. It consists of real server
performance and business request sequences and is widely used
in anomaly detection and time series modeling tasks. The
dataset includes various types of indicators, such as CPU
utilization, memory usage, and network throughput.
Anomalous intervals are labeled, which allows for direct
evaluation of model performance in cloud backend scenarios.
The dataset is moderate in size. It has a certain level of

complexity while maintaining experimental feasibility, making
it an important benchmark in anomaly detection research.

The dataset is characterized by diverse and complex
anomaly patterns. It contains both short-term burst anomalies
and long-term persistent anomalies. These characteristics
closely resemble the actual behavior of cloud backend systems,
which often exhibit dynamic and nonlinear anomalies under
different service loads and resource scheduling. Therefore, the
use of this dataset not only evaluates the representation ability
of models but also effectively simulates the real challenges of
anomaly detection in cloud backends. It holds strong practical
value.

In addition, the Yahoo Webscope S5 dataset has been
widely adopted in the research community and provides a
common benchmark for method comparison. Studies based on
this dataset can clearly reveal the strengths and limitations of
contrastive learning in anomaly detection tasks. They also lay
the foundation for future extensions to larger-scale and higher-
dimensional real-world cloud backend data. In summary, the
choice of this dataset is both representative and scientifically
sound.

4.2 Experimental Results
This paper first conducts a comparative experiment, and the

experimental results are shown in Table 1.

Table 1: Comparative experimental results
Method AUC ACC F1-Score Precision
MLP[9] 0.872 0.841 0.835 0.828

1DCNN[10] 0.896 0.859 0.849 0.843
LSTM[11] 0.911 0.872 0.861 0.855

Transformer[12] 0.928 0.884 0.874 0.869
Ours 0.957 0.913 0.902 0.896

From the results in Table 1, it can be observed that the
traditional MLP model performs the worst across all metrics.
The AUC, ACC, F1-Score, and Precision are 0.872, 0.841,
0.835, and 0.828, respectively. This indicates that relying only
on shallow fully connected layers cannot effectively capture the
complex nonlinear relationships and temporal dependencies in
cloud backend data. As a result, its performance in anomaly
detection tasks is clearly limited. The particularly low F1-Score
suggests that the model struggles to balance recall and
precision, making it difficult to maintain stable performance
under high-dimensional and diverse anomaly patterns.

With the increase in model complexity, both 1DCNN and
LSTM demonstrate stronger detection ability than MLP. The
1DCNN leverages convolution operations to extract local
patterns, leading to improvements in AUC and F1-Score. The
LSTM captures temporal dependencies through memory units,
which further improves ACC and Precision, reaching 0.872 and
0.855, respectively. These results highlight the importance of
temporal features for anomaly detection in cloud backends.
Static feature modeling alone cannot achieve optimal
performance.

The Transformer model outperforms LSTM in overall
performance, with consistently high results across all metrics.
The AUC reaches 0.928, and the F1-Score is 0.874. Its
advantage comes mainly from the multi-head self-attention



mechanism, which can model long-range dependencies and
capture both global and local features. For complex anomalies
that span different time ranges in cloud backends, the
Transformer demonstrates strong representational power.
However, although the results are superior to traditional
methods, there is still room for improvement, especially when
dealing with anomalies that have fuzzy boundaries.

In comparison, the proposed method achieves the best
performance across all metrics. The AUC increases to 0.957,
the ACC reaches 0.913, and the F1-Score and Precision rise to

0.902 and 0.896, respectively. Compared with the Transformer,
the proposed method improves detection ability by 2 to 3
percentage points. This advantage is attributed to the
introduction of contrastive learning, which brings normal
samples closer together in the representation space while
effectively distinguishing anomalies. This strengthens the
discriminative power of the features. The results confirm the
effectiveness of the contrastive learning-based anomaly
detection approach in handling complex data and imbalanced
scenarios. They also provide strong support for building more
intelligent and reliable cloud backend operation systems.

Figure 2. Comparison of the influence of the temperature parameter τ on experimental results

From the results in Figure 2, it can be seen that the
temperature parameter τ has a significant impact on model
performance. In terms of AUC, the model reaches its best level
when τ is set to 0.2, which is clearly better than other values.
This indicates that an appropriate temperature parameter can
enhance the separation between positive and negative samples
in contrastive learning. As a result, the model can more
effectively capture hidden anomaly patterns in cloud backend
data. When τ is too small or too large, the differences among
samples cannot be fully utilized, which leads to weaker
discrimination.

For ACC, a similar trend can be observed, with a peak at τ
= 0.2. This suggests that when the temperature parameter is set
to a moderate level, the model achieves the best overall
classification accuracy. It can better balance the discrimination
ability across different classes. Too low a τ value forces
features to be overly concentrated, making it difficult to cover
diverse anomaly patterns. Too high a τ value dilutes the
differences among features, resulting in blurred decision
boundaries. Therefore, a moderate temperature setting can

steadily improve detection performance in the complex
environment of cloud backends.

The trend of the F1-Score further confirms this observation,
with the highest value obtained at τ = 0.2. This means that at
this parameter value, the model achieves the best balance
between recall and precision. In cloud backend scenarios,
anomalies are often scarce and diverse. Maintaining high recall
while preserving precision is therefore critical. The
experimental results show that a reasonable temperature
parameter helps the model remain robust when facing sparse
anomaly samples. It also prevents performance degradation
caused by overfitting or underfitting.

The variation in Precision also shows a peak at τ = 0.2. This
demonstrates that at this temperature, the model not only
identifies anomalies effectively but also reduces false alarms.
This is especially important for practical cloud backend
operations. Both overly high and overly low τ values lead to a
drop in Precision, indicating that the model is prone to
misclassification in anomaly detection. Overall, the
experimental results verify the sensitivity and dependence of
the proposed method on the temperature parameter within the



contrastive learning framework. They also highlight the
importance of parameter selection for improving anomaly
detection performance in cloud backends.

This paper also provides a detailed analysis of the impact of
the learning rate on the experimental outcomes, with a
particular focus on how different values of this parameter
influence the stability and effectiveness of the training process.

The investigation highlights the role of the learning rate as a
crucial hyperparameter that directly affects the convergence
speed of the model and its ability to capture complex patterns
within the data. To clearly illustrate this aspect, the
corresponding results are systematically presented in Figure 3,
offering an intuitive representation of the relationship between
learning rate settings and the overall model behavior.

Figure 3. The impact of the learning rate on experimental results

From the results in Figure 3, it can be observed that the
learning rate has a clear impact on model performance. In
terms of AUC, the highest value is achieved when the learning
rate is 1×10⁻⁴. This indicates that under this setting, the model
can better separate normal and abnormal patterns. When the
learning rate is too small, such as 1×10⁻⁵, the model
converges slowly, leading to poor performance. When the
learning rate is too large, such as 1×10⁻³, the training process
becomes unstable and performance decreases. These findings
show that a proper learning rate is critical for contrastive
learning to achieve strong representation ability in cloud
backend anomaly detection.

For ACC, a similar trend is observed, with the best results
around 1×10⁻⁴. This further confirms the importance of a
moderate learning rate. Too low a learning rate results in very
small updates, making it difficult for the model to capture
complex anomaly patterns. Too high a learning rate causes
oscillations and reduces classification accuracy. In cloud
backend scenarios, higher ACC means that anomaly detection
systems can maintain strong discriminative ability more
consistently, with fewer false alarms and missed detections.

The trend of the F1-Score also shows that learning rate
selection affects the balance between precision and recall. At
1×10⁻⁴, the model reaches its peak F1-Score. This suggests
that this learning rate maintains high recall while avoiding a
drop in precision. This is critical in anomaly detection, since
anomalies in cloud backends are often rare. Low recall would
cause serious missed detections, while low precision would
result in many false alarms. A reasonable learning rate ensures
the best balance between the two.

The results for Precision further support this point. The
model achieves its highest Precision at 1×10⁻⁴, showing that
this learning rate reduces misclassification and improves the
reliability of detection. When the learning rate is too high or
too low, the Precision decreases significantly. This indicates
that parameter tuning is essential for the deployment of
anomaly detection models in cloud backends. A reasonable
learning rate not only improves performance but also enhances
robustness and usability in real complex environments.

This paper also presents a sensitivity experiment on the
negative sample ratio to F1-Score, and the experimental results
are shown in Figure 4.



Figure 4. Sensitivity experiment of the negative sample
ratio to F1-Score

From the results in Figure 4, it can be observed that the
ratio of negative samples has a clear effect on the F1-Score.
When the ratio of negative samples is 0.5, the F1-Score is
relatively low, around 0.889. This indicates that an insufficient
number of negative samples makes it difficult for the model to
learn the boundary between normal and abnormal data. In the
contrastive learning framework, too few negative samples
weaken the contrastive signal and reduce the overall anomaly
detection ability.

When the ratio of negative samples increases to 1.0, the F1-
Score rises significantly to 0.896, and the model's
discriminative ability improves. This change shows that an
appropriate increase in negative samples helps the model
capture the differences between normal and abnormal data
more effectively. It also improves the balance between recall
and precision. In complex cloud backend scenarios, diversity in
negative samples supports the detection of different types of
anomalies.

When the ratio of negative samples further increases to 2.0,
the F1-Score reaches its highest value of 0.902. At this point,
the model receives the strongest contrastive signal. The model
achieves the best trade-off between precision and recall, which
enhances overall detection performance. This suggests that
increasing the number of negative samples is beneficial up to a
certain point, but improvements do not continue beyond the
optimal ratio.

When the ratio continues to increase to 3.0 and 4.0, the F1-
Score begins to decline, dropping to 0.897 and 0.891,
respectively. This indicates that too many negative samples
introduce noise and weaken the effectiveness of contrastive
learning. As a result, the model's decision boundary becomes
blurred. For anomaly detection in cloud backends, this finding
highlights the importance of choosing an appropriate negative
sample ratio. A reasonable ratio can significantly improve the
effectiveness of contrastive learning models, while ratios that
are too high or too low will harm performance.

This paper also presents an experiment on the
environmental sensitivity of sampling frequency jitter to AUC,
and the experimental results are shown in Figure 5.

Figure 5. Experiment on the environmental sensitivity of
sampling frequency jitter to AUC

From the results in Figure 5, it can be seen that sampling
frequency jitter has a clear effect on the AUC performance of
the model. When the jitter is 0 percent, the AUC is 0.954,
which shows that the model can maintain high anomaly
detection ability in an interference-free environment. When the
jitter increases to 5 percent, the AUC rises to 0.956, showing a
slight improvement. This indicates that moderate sampling
disturbance can enhance the model's ability to adapt to
uncertainty and improve detection performance to some extent.

When the jitter increases further to 10 percent, the AUC
reaches a peak of 0.957, which is the best result in this
experiment. This shows that moderate environmental
disturbance does not weaken stability. Instead, it encourages
the model to learn more robust feature representations. This is
important for cloud backend scenarios, as system operation
often involves signal fluctuations and noise. A model that
performs better under moderate disturbance demonstrates
stronger adaptability in real applications.

However, when the jitter increases to 20 percent, the AUC
drops significantly to 0.953. This indicates that excessive
sampling jitter begins to distort the original data distribution,
making it harder for the model to distinguish between normal
and abnormal patterns. In complex cloud backend
environments, excessive fluctuations weaken the clarity of the
decision boundary, which leads to performance degradation.

When the jitter reaches 30 percent, the AUC decreases
further to 0.949. This shows that under high-intensity
disturbances, the model's detection ability is strongly affected.
The result verifies the vulnerability of the model under extreme
environmental disturbance and emphasizes the importance of
reasonable environmental modeling. Overall, the findings show
that moderate jitter can improve the robustness of contrastive
learning models, but excessive disturbance significantly
reduces performance. This reveals the key issue of balancing
robustness and sensitivity to noise in cloud backend anomaly
detection.

5. Conclusion
This study focuses on anomaly detection in cloud backends

and proposes a contrastive learning-based framework. The



effectiveness and robustness of the framework are verified
from different perspectives. The study first analyzes the
complexity and diversity of cloud backend systems and
highlights the limitations of traditional methods under high-
dimensional data, dynamic environments, and scarcity of
anomaly samples. By introducing contrastive learning, the
model can automatically learn discriminative feature
representations without relying on large labeled datasets, which
significantly improves anomaly detection performance. The
results show that the proposed method not only outperforms
traditional and mainstream approaches on overall metrics but
also demonstrates strong adaptability and stability under
different parameters and environmental disturbances.

The significance of this work lies not only at the
algorithmic level but also in its practical value. In critical
industries such as finance, healthcare, transportation, and
energy, the accuracy of backend anomaly detection directly
affects service quality and system security. The proposed
contrastive learning framework reduces false alarms and
missed detections and enhances system robustness in complex
environments. This means that in future intelligent operation
scenarios, the method has the potential to provide enterprises
with more reliable technical support, reduce risks, improve user
experience, and promote the healthy development of the cloud
computing industry.

At the same time, this study also reveals both the potential
and limitations of contrastive learning in anomaly detection
tasks. On one hand, the results show that proper parameter
settings and moderate environmental disturbances can further
improve robustness and discriminative ability. On the other
hand, the findings also indicate that excessive disturbances or
severe imbalance in sample ratios may still degrade model
performance. Therefore, how to adaptively adjust parameters
according to business requirements and how to construct more
diverse and high-quality datasets remain important challenges
for future work. These findings provide new directions for
further research and also lay the foundation for cross-domain
applications.

Looking ahead, the contributions of this study can be
extended to broader intelligent system operation scenarios. For
example, combining contrastive learning with federated
learning frameworks in large-scale distributed systems can
enable anomaly detection across data centers. Incorporating
graph neural networks and time series modeling techniques can

further enhance the model's ability to understand multi-source
heterogeneous data. In addition, integrating anomaly detection
with automated decision-making systems would allow not only
recognition of anomalies but also the triggering of intelligent
responses and optimization strategies. In summary, this study
advances the theoretical development of cloud backend
anomaly detection and provides practical support for real-world
applications, offering significant implications for future
intelligent operations and cloud computing security.
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