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Abstract: This paper addresses the complexity of anomaly detection in cloud service environments and proposes a detection
method based on a multi-scale Transformer. The method models features across temporal granularities and fuses contextual
information to capture both short-term fluctuations and long-term trends, avoiding feature loss and insufficient discrimination
under a single time scale. The model introduces multi-head attention and gating structures to achieve complementary modeling of
global and local features, thereby enhancing the recognition of diverse anomaly patterns in complex cloud environments. A
systematic analysis of parameter sensitivity and environmental sensitivity is conducted, revealing performance differences under
varying learning rates, numbers of attention heads, and load conditions, which verifies the robustness and adaptability of the
method across diverse scenarios. Experiments are carried out on publicly available datasets, evaluating key metrics including
Precision, Recall, F1-Score, and Detection Latency. The results show that the proposed method outperforms existing approaches
in both accuracy and response speed, effectively improving the reliability and real-time performance of cloud service monitoring.
Overall, the multi-scale Transformer anomaly detection method demonstrates strong detection capability and practical value in

cloud computing scenarios, providing a feasible solution for large-scale time-series modeling and anomaly identification.
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1. Introduction

The popularization of cloud computing has driven the
digital transformation of enterprises and organizations.
Distributed service architectures have become the core
foundation supporting modern information systems. In this
process, cloud service platforms undertake massive computing,
storage, and communication tasks. Their operational state
directly affects business continuity and user experience.
However, due to the dynamic, heterogeneous, and high-
concurrency nature of cloud services, various anomalies are
inevitable. These anomalies include performance bottlenecks,
resource contention, network fluctuations, and potential
security threats. They often present complex multidimensional
characteristics. Some are reflected in sudden short-term
fluctuations, while others are hidden in long-term cross-service
dependencies. Without effective detection and early warning
mechanisms, these anomalies may lead to resource waste,
degraded user experience, and large-scale service interruptions.
Therefore, achieving efficient, accurate, and scalable anomaly
detection in complex cloud environments has become a long-
term research focus in both academia and industry[1].

Traditional anomaly detection methods often rely on
statistical modeling and machine learning algorithms. They
focus on detecting deviations in single metrics or predefined
patterns. These methods achieved some success in early small-
scale cloud services. Yet they show clear limitations in today's
environments, where multidimensional indicators interact,
tenants switch dynamically, and service topologies evolve
rapidly. Detection mechanisms based on fixed thresholds or

single-dimensional features cannot adapt to distribution shifts
caused by dynamic resource allocation. In addition, traditional
machine learning methods lack sufficient expressive power
when faced with complex dependencies and nonlinear temporal
patterns. These shortcomings result in high false alarm and
miss rates, reducing the efficiency of resource scheduling and
risk management. Hence, new modeling paradigms are
required to overcome the constraints of traditional frameworks
and to enable in-depth mining and effective modeling of multi-
scale and multi-modal features in cloud services[2].

With the rise of deep learning, especially advances in
sequence modeling and attention mechanisms, Transformer
architectures have shown strong advantages in modeling
complex temporal data. Compared with recurrent or
convolutional networks, Transformers capture long-range
dependencies through global attention, avoiding gradient
vanishing and limited receptive fields. In cloud service
anomaly detection, this capability helps identify cross-window
anomaly patterns and hidden multivariate correlations. Yet
anomalies in cloud systems usually exhibit multi-scale
characteristics. Short-term fluctuations may signal imminent
failures, while long-term shifts may reflect systemic risks.
Relying on single-scale representations is insufficient to
capture such diversity and complexity. Combining multi-scale
modeling with Transformer structures has thus become a
promising direction to break current performance bottlenecks
in anomaly detection.

From an application perspective, introducing multi-scale
Transformers into cloud anomaly detection has not only
academic but also significant engineering value. Cloud service



operations require simultaneous attention to resource
optimization, task scheduling, and security protection.
Anomaly detection plays a key role in ensuring the timeliness
and accuracy of these decisions. Through the modeling power
of multi-scale Transformers, detection systems can capture
service behavior at multiple levels. At the micro level, they
detect sudden fluctuations. At the meso level, they identify
periodic patterns. At the macro level, they reveal long-term
trends. Such multi-level perception reduces false alarms and
misses and improves robustness and stability. It also provides
theoretical and methodological support for building intelligent
and adaptive cloud management systems, enabling more
reliable operations under complex conditions[3].

In summary, research on anomaly detection in cloud
services with multi-scale Transformers carries important
academic and practical significance. On the one hand, it
addresses the shortcomings of traditional methods in dynamic
and complex environments and pushes anomaly detection
toward multi-dimensional and multi-level modeling. On the
other hand, it meets the urgent demand of cloud platforms for
intelligent operations. It improves resource utilization, reduces
operational costs, and enhances system reliability. More
importantly, it contributes to the construction of future
intelligent cloud ecosystems. It plays a positive role in ensuring
service continuity, optimizing user experience, and
strengthening security protection. Therefore, exploring the use
of multi-scale Transformers in cloud anomaly detection is both
a natural extension of technological progress and a key path for
the sustainable evolution of cloud systems[4].

2. Related work

Anomaly detection is a critical component for ensuring
system stability and has been widely studied in cloud
computing environments. Early research mainly relied on
statistical methods and rule-based mechanisms. These
approaches identified anomalies by modeling metric
distributions or setting thresholds. They worked well in small-
scale systems where significant deviations could be detected
effectively. However, their performance declined when facing
multi-tenant sharing, heterogeneous resource coupling, and
high-concurrency tasks. With the expansion of cloud services,
research shifted toward machine learning-based anomaly
detection. Supervised and unsupervised models were developed
to reduce reliance on thresholds and improve adaptability. Yet
these methods often focused on single-dimensional features.
They struggled to model complex temporal patterns and cross-
service dependencies. As a result, false alarms and missed
detections remained a challenge in large-scale and dynamic
environments.

The introduction of deep learning has advanced cloud
service anomaly detection. Convolutional neural networks and
recurrent neural networks have been widely applied to model
service logs and performance metrics. They aimed to capture
local spatial features and temporal patterns[5]. These
approaches enhanced the representation of complex data and
provided the ability to learn nonlinear relationships and cross-
time dependencies. However, they showed limitations in
modeling long-range dependencies and multi-dimensional
interactions. Convolutional structures were constrained by

limited receptive fields. Recurrent structures suffered from
gradient vanishing and low computational efficiency. In
complex and dynamic cloud environments, these limitations
reduced detection effectiveness in high-dimensional and long-
term sequence analysis. They also limited the general
applicability of such models in large-scale deployments.

The emergence of the Transformer has offered new
opportunities for anomaly detection. Its self-attention
mechanism provides global modeling capabilities. It can
capture both short-term and long-term dependencies and model
interactions among multiple variables. This has shown
advantages in analyzing high-dimensional monitoring data of
cloud services. By allocating attention weights, the model can
dynamically focus on critical moments or important metrics.
This improves the accuracy of anomaly localization and
recognition. However, single-scale Transformer models remain
insufficient for diverse anomaly patterns in cloud services.
Real-world anomalies include sudden spikes as well as long-
term drifts. Relying only on single-scale representations makes
it difficult for models to balance patterns across different
temporal levels. This results in incomplete and unstable
detection performance[6].

Multi-scale modeling has therefore become an important
direction in anomaly detection. By constructing multi-scale
representations, models can capture anomaly features at
different temporal granularities. They can perceive short-term
bursts while also revealing long-term trends. When combined
with Transformer structures, this approach retains global
modeling capabilities and enhances the representation of multi-
level features. It better adapts to the complexity of cloud
environments. Recent studies have shown that integrating
multi-scale modeling with attention mechanisms reduces
detection errors and improves generalization under dynamic
distributions. Thus, methods that combine multi-scale
modeling with Transformers are emerging as a frontier in cloud
anomaly detection. They provide a solid theoretical and
methodological foundation for building more intelligent and
reliable operation and maintenance systems[7].

3. Method

This study introduces a cloud service anomaly detection
method that integrates multi-scale Transformers. The approach
leverages hierarchical feature modeling and the global
interaction capability of the self-attention mechanism to
efficiently represent and discriminate anomalies in
multidimensional monitoring data under complex cloud
environments. The overall idea is to first perform multi-scale
decomposition on raw time-series data of cloud services to
capture fluctuation patterns at different temporal granularities.
Then, the extracted multi-scale features are mapped and unified
into a shared representation space through embedding and
sequence modeling. Finally, a multi-scale attention mechanism
is incorporated into the Transformer to model dependencies
across time and metrics, with an anomaly scoring function used
to produce detection results. The method theoretically
addresses both short-term anomalies and long-term trends,
providing a new solution for intelligent anomaly detection in



cloud service environments. The model architecture is shown
in Figure 1.
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Figure 1. Multi-Scale Transformer Framework for Cloud Service Anomaly Detection

First, assume that the multi-dimensional monitoring
indicators of the cloud service at time step ! are represented

d
as a vector X, € R® , where d represents the feature

dimension. Through multi-scale convolution and temporal
pyramid structure, the original sequence can be mapped into a

M Zt(M)

p , where each scale

multi-scale feature set {Z ,Zt(z),...,

corresponds to a different time granularity. This process can be
formalized as:

z" = Conv'™ (x,_,,),m=12,...M @

Where Conv'™ represents the convolution operator of
the m thscale,and X, ,., represents the local segment within

the time window.

Subsequently, the multi-scale features are uniformly
projected into a shared representation space to be input into the
Transformer structure. The mapping process can be expressed
as:

(m) _ 15 (m) ¢ (m)
h™ = Linear'™ (z,"") )

Where Linear represents the linear transformation

corresponding to scale m . Finally, the features of all scales

(m)

are concatenated into the overall representation 7, .

During the Transformer encoding phase, a multi-head
self-attention mechanism is used to model cross-temporal and
cross-scale  dependencies. For the input sequence

H= {hl Ny by }, the attention calculation formula is:

T
Attention(Q, K, V') = Soft max( 0K

A o 0)

is the query, key, and value matrix

Where Q,K,V

respectively, and d, is the scaling factor.

The sequence representation /' obtained based on the
attention mechanism can be further transformed into a stable
context representation after residual connection and
normalization operations. The process can be expressed as:

u, = LayerNorm(h, + Attention(h,)) 4)

LayerNorm is used to maintain numerical stability and
accelerate convergence.

Finally, the anomaly scoring function is used to measure
the deviation between the current moment representation and
the normal mode of the system. Let the reference representation

be 7,,then the anomaly score can be expressed as:

2

. =, = 5)

”” , represents the binorm. A higher score indicates that

the service behavior at that moment is more likely to be
abnormal.

Through the above modeling process, this method, under
the synergistic effect of multi-scale feature decomposition and
global attention modeling, can effectively capture short-term
fluctuations and long-term trends in cloud service data, and
achieve more robust and accurate anomaly detection.

4. Experimental Results

4.1 Dataset

This study employs the Smart Manufacturing IoT-Cloud
Monitoring Dataset as the basis for validating the proposed
method. The dataset consists of multivariate time series
records that capture resource usage metrics and operational
states in cloud-based industrial IoT scenarios. It includes
diverse signals such as CPU utilization, memory consumption,
network throughput, sensor readings, and system alerts. These



data provide a realistic and rich representation of cloud service
behaviors under different conditions.

The dataset is highly aligned with the objectives of this
study. It has clear advantages in combining multidimensional
telemetry features with anomaly-related patterns, which match
well with the multi-scale modeling capability of the proposed
framework. Its temporal resolution and the diversity of
monitoring metrics enable the model to systematically capture
short-term fluctuations and long-term shifts in cloud service
performance. The data structure is well organized while also
containing dynamic variations. This supports hierarchical
feature extraction, cross-scale fusion, and anomaly scoring,
while avoiding unnecessary complexity unrelated to cloud
monitoring.

Applying the proposed method to this dataset makes it
possible to effectively evaluate the ability of the multi-scale
Transformer architecture to detect anomalies across different
temporal scales. The continuity of the dataset and the diversity
of signal types provide strong support for representation
learning in the embedding and fusion stages. They also allow
stable evaluation of reference memory updates and scoring
mechanisms. The dataset design ensures that the method is
validated under conditions close to real operational scenarios.
This offers meaningful evidence for assessing the robustness
and interpretability of the model.

4.2 Experimental Results

To validate the effectiveness of the proposed method, we
selected recent models that have shown strong performance in
representation robustness and anomaly-style evaluation as
baselines. These methods (USAD, TranAD, DARA,
iTransformer), although originally designed for time-series
anomaly detection, share commonalities with alignment
robustness tasks in their ability to model sensitivity to small
signal deviations and perturbations, and thus serve as suitable
reference methods in alignment scenarios. The comparison
results on the robustness benchmark are shown in Table 1.

Tablel: Comparative results on alignment robustness

benchmarks
Model .. Detection
fo;e)msmn Recall (%) f;}-)s core Latency
(] (1] (ms)

Anomaly-

Transformer|[8] 89.5 920 007 250
DGT-PF[9] 88.2 90.1 89.1 220
MAATI[10] 90.0 91.5 90.7 210
TiSAT[11] 87.8 89.3 88.5 230
Ours 91.2 93.0 92.1 200

The comparative experimental results show that the
proposed multi-scale Transformer method demonstrates
significant advantages in cloud service anomaly detection.
Compared with Anomaly-Transformer and TiSAT, Ours
achieves higher values in Precision. This indicates that the
method is more accurate in distinguishing normal behaviors
from anomaly patterns and can effectively reduce false
positives. This improvement aligns with the design of multi-
scale feature decomposition and cross-scale modeling. The

model can extract more fine-grained patterns at different
temporal granularities, which enhances the reliability of
anomaly discrimination.

For Recall, Ours also maintains a clear lead. Compared
with DGT-PF and MAAT, our method shows stronger
coverage in capturing anomalies. This means that it not only
identifies short-term burst anomalies but also effectively tracks
long-term evolving anomaly trends. The result reflects the
balanced ability of the multi-scale Transformer in global
modeling and local sensitivity. It ensures that systems can
comprehensively perceive potential risks in complex and
dynamic environments, which is crucial for maintaining the
continuity of cloud services.

F1-Score, as a combined measure of Precision and Recall,
also highlights the superior overall performance of Ours.
Compared with other models, our method achieves a better
balance between accuracy and coverage. This validates the
effectiveness of attention mechanisms and multi-scale feature
fusion. The results show that the method maintains detection
stability under high-dimensional and multi-source features
while suppressing noise and redundancy. This makes the model
more robust in dynamic cloud environments.

In terms of Detection Latency, Ours achieves the lowest
delay compared with other methods. This advantage is
particularly important in cloud service scenarios. Real-time
performance is a core requirement for anomaly detection
systems in practical deployment. Lower latency means that the
system can respond to potential risks more quickly. The
experimental results show that the proposed method balances
efficient parallelization and accurate modeling in its design. It
not only improves detection accuracy but also strengthens real-
time warning capabilities. This indicates that the multi-scale
Transformer model has higher usability and forward-looking
potential in real applications, providing stable and reliable
technical support for cloud service operations.

This paper also conducts comparative experiments on the
hyperparameter sensitivity of the multi-scale Transformer
model under different learning rates. The experimental results
are shown in Figure 2.
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Figure 2. Hyperparameter sensitivity experiments of multi-
scale Transformer models at different learning rates

The results under different learning rates show that
Precision first increases and then decreases, reaching its peak



around a moderate learning rate. This indicates that the multi-
scale Transformer model can more effectively capture key
features in cloud monitoring data within this parameter range.
When the learning rate is too low, insufficient updates limit the
expressive power of features. When it is too high, training
instability occurs, and anomaly discrimination becomes biased.
This is closely related to the sensitivity of feature modeling
required by complex signals in cloud environments.

Recall shows an overall upward trend and remains stable at
higher learning rates. This suggests that the method is more
adaptive in expanding anomaly coverage. Multi-scale feature
modeling and cross-temporal dependency capture allow the
model to comprehensively identify potential system anomalies
even with larger step sizes. Corresponding to the diversity of
anomaly distributions in cloud service environments, this trend
reflects the balanced ability of the method in global pattern
perception and local anomaly detection.

The trend of F1-Score is consistent with the changes of
Precision and Recall. It performs best in the medium-to-high
learning rate range. This shows that the model achieves a better
trade-off between accuracy and coverage. With the attention
interaction and fusion mechanisms of the multi-scale
Transformer, the model can suppress noise in high-dimensional
dynamic indicators while maintaining sensitivity to key signals.
This performance matches the high demands of cloud anomaly
detection for overall effectiveness and enables stable
discrimination under complex multi-source conditions.

The variation of Detection Latency shows that latency
decreases significantly as the learning rate increases and
reaches the lowest value in the moderate range. This indicates
that the method has advantages in parallel modeling and
efficient updates. In cloud anomaly detection scenarios where
real-time performance is critical, lower latency means the
system can issue alerts more quickly and prevent the spread of
potential risks. The sensitivity of latency to the learning rate
also reveals the importance of parameter tuning in performance
optimization, providing practical insights for model
deployment in cloud environments.

This paper also analyzes the impact of different numbers of
attention heads on the model anomaly detection performance.
The experimental results are shown in Figure 3.

Precision shows a trend of first increasing and then
decreasing with different numbers of attention heads. It rises
significantly from 1 to 4 heads, reaches the highest value at 8
heads, and declines at 12 heads. This indicates that at a
moderate scale, the model can better focus on key features and
reduce interference from irrelevant patterns, thus improving the
accuracy of anomaly recognition. When the number of heads is
too large, representations become overly dispersed. The model
struggles to maintain concentration on important features,
which reduces accuracy.

Recall increases overall as the number of heads grows and
peaks around 6 heads before slightly declining. This suggests
that with fewer heads, the model cannot cover diverse anomaly
patterns. A moderate number of heads allows more
comprehensive capture of both short-term fluctuations and
long-term trends. When the number of heads is too high,

attention distribution becomes scattered. The ability to detect
weak anomalies or marginal features decreases, leading to a
slight reduction in recall.
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Figure 3. The impact of different numbers of attention
heads on model anomaly detection performance

F1-Score remains high between 6 and 8 heads, reflecting a
good balance between accuracy and coverage. A moderate
number of attention heads ensures precision in detecting major
anomalies while also maintaining broad coverage. This leads to
optimal overall performance. When the number of heads
becomes too large, redundant attention emerges and the
balance is disrupted, resulting in a decline in overall
performance.

Detection Latency shows a trend of first decreasing and
then increasing as the number of heads rises, reaching its
lowest value at 6 heads. With fewer heads, parallelism is
limited, and inference speed is slower. As the number increases
efficiency in feature interaction and context aggregation
improves, which reduces latency. However, with further
increases, computation and resource consumption rise, causing
latency to rebound. For cloud service scenarios, this indicates
that a moderate number of attention heads can achieve a
balance between detection accuracy and real-time performance.

This paper also evaluates the impact of changing
environmental conditions on the detection latency and accuracy
of the multi-scale Transformer. The experimental results are

shown in Figure 4.
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Figure 4. Impact of Changing Environmental Conditions
on Multi-Scale Transformer Detection Latency and Accuracy

Precision shows clear variation under different conditions.
Mixed Load is the highest (0.91). Memory Pressure is next



(0.88). CPU Spike and Disk I/O Burst are in the middle (0.86
and 0.83). Network lJitter is the lowest (0.80). This indicates
that the multi-scale Transformer forms more discriminative
multi-granularity representations under composite loads. Cross-
scale fusion can extract stable anomaly features from
concurrent resource traces. In contrast, jitter-type network
disturbances amplify short-term noise and weaken the stability
of attention focus, which reduces precision. For cloud service
monitoring, composite metric linkage provides a richer context
for discrimination, while high-frequency random jitter poses
stronger demands on denoising and robust focusing ability.

Recall shows a complementary trend to Precision. Disk I/O
Burst is the highest (0.88). Network lJitter follows closely
(0.85). Mixed Load and CPU Spike remain at a medium-high
level (0.82 and 0.78-0.88). Memory Pressure is the lowest
(0.79). This suggests that under I/O loads with relatively
predictable rhythms, multi-scale temporal modeling more
easily captures anomaly windows. Cross-scale dependencies
allow the model to remain sensitive at longer time granularities.
For memory pressure and jitter scenarios, coverage depends on
the model's ability to switch focus between short and long
windows, which helps avoid missed detections.

F1-Score rises moderately with scene complexity, ranging
from 0.82 to 0.86. Mixed Load is the highest, followed by Disk
/O Burst and Memory Pressure. Network Jitter and CPU Spike
are lower. The steady improvement of the combined metric
shows that multi-scale encoding and gated fusion achieve a
transferable balance between suppressing redundancy and
maintaining coverage. When scenes provide richer cross-metric
cues, attention distribution between global and local levels
becomes more efficient. The model preserves critical sudden
signals while reducing false triggers.

Detection Latency is the lowest in Disk I/O Burst (0.22s).
Network Jitter is next (0.24s). Memory Pressure and Mixed
Load are in the middle (0.27s and 0.26s). CPU Spike is the
highest (0.29s). The differences reveal the sensitivity of multi-
scale aggregation paths to scenario characteristics. When
rhythms are clearer or local patterns are more stable, context
aggregation and gated decisions are faster. Extreme spikes
increase the demand for fine short-window resolution and
anomaly threshold control, which prolongs the inference chain.
For online alert deployment, this "scenario—latency—accuracy"
coupling suggests that short-window channels and gating
thresholds should be fine-tuned in high-spike and strong-jitter
cases to maintain both timeliness and discriminative power.

Next, this study analyzed the model's anomaly detection

capability and response time under different cloud service loads.

The experimental results are shown in Figure 5.

Precision shows clear differentiation across load types.
Mixed Load is the highest (0.91). Memory Bound and I/O
Intensive are slightly higher than the middle level (0.87 and
0.86). Light Load is at the middle (0.84). Network Burst and
CPU Bound are lower (0.81 and 0.79). This indicates that in
composite loads and storage or disk-dominated conditions,
multi-scale representations more easily form stable decision
boundaries. Synchronous fluctuations of multi-source signals
provide a richer context for cross-scale fusion. In contrast,
single CPU limitations or high-frequency network bursts

introduce more noise or local pattern drift, which weakens
feature focusing and threshold stability.
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Figure 5. Analysis of the model's anomaly detection
capabilities and response time under different cloud service
loads

Recall shows a complementary trend to Precision. Network
Burst and Mixed Load rank the highest (0.86 and 0.84).
Memory Bound and I/O Intensive follow at an upper level
(0.83 and 0.83). CPU Bound comes next (0.82). Light Load is
the lowest (0.76). This suggests that in scenarios with strong
boundaries or dense event cues, cross-temporal coverage is
stronger. The model can switch adaptively between short and
long windows to capture both bursts and trends. In contrast,
under smoother signals with a light load, anomalies are sparse
and weak in magnitude. Coverage is lower and relies more on
long-term accumulation of small deviations.

F1-Score rises steadily with load complexity, ranging from
0.80 to 0.88. Mixed Load reaches the highest level, followed by
I/O Intensive and Memory Bound. This trend indicates that
cross-scale fusion performs better in complex coupled
scenarios. It suppresses redundancy and accumulates evidence,
maintaining high Precision without sacrificing Recall. By
comparison, CPU-bound and Network Burst are limited by
single-dimensional bottlenecks and frequent disturbances.
These conditions require fine-grained short-window channels
and adjusted gating thresholds to improve global and local
attention allocation, thus enhancing overall discriminative

ability.

Detection Latency is the lowest under Network Burst
(0.22s). Mixed Load and I/O Intensive are slightly higher
(0.23-0.24s). Memory Bound and Light Load are in the middle
(0.26s and 0.25s). CPU Bound is the highest (0.28s). The
distribution indicates that when load patterns provide clear
discriminative cues, such as bursts or multi-source coupling,
multi-scale aggregation and decision convergence are faster. In
contrast, under computational constraints or gradual signal
changes, the model requires longer context integration and
more robust decision processes. For online alert deployment,
this "load type—accuracy—latency" correspondence suggests
that short and long window ratios and gating strategies should
be adjusted dynamically according to scenario characteristics to
ensure both detection performance and timeliness in complex
cloud environments.



5. Conclusion

This study proposes a multi-scale Transformer anomaly
detection method. By modeling features across temporal
granularities and fusing contextual information, it effectively
improves the accuracy and efficiency of anomaly identification
in cloud service environments. Experimental results show that
the method achieves high robustness and adaptability under
different loads and environmental conditions. It balances
detection accuracy and response speed at the same time. This is
of great significance for cloud computing scenarios with strict
real-time requirements. It not only reduces the risk of system
failures but also provides strong assurance for service
continuity and reliability. The introduction of this method
further demonstrates the potential of multi-scale feature
interaction in modeling complex time-series signals and offers
new insights for research in anomaly detection.

The method emphasizes the complementary role of cross-
scale features. It avoids missing local anomalies in a single
time window and overcomes the insensitivity of global
modeling to fine-grained fluctuations. By combining multi-
head attention with gating mechanisms, the model can more
precisely extract key patterns from multi-source data, thereby
improving the comprehensiveness and effectiveness of
anomaly detection. This modeling advantage is not only
applicable to cloud service monitoring but can also be
transferred to other domains that process large-scale time-series
data, such as industrial production, smart grids, and financial
systems. In these applications, the ability of multi-scale
modeling can also help identify potential risks and abnormal
patterns, providing support for business continuity and risk
control.

The results also reveal the important influence of parameter
sensitivity and environmental changes on model performance.
They indicate that fine-tuning is required during deployment
according to different load characteristics and system states. By
analyzing the performance under variations in learning rate,
number of attention heads, and environmental disturbances,
this study provides a practical reference for deployment and
optimization under resource-constrained conditions. Such
flexibility makes the method feasible in diverse scenarios and
helps achieve more efficient anomaly detection and alerting in
complex environments with multi-tenancy and parallel tasks on
cloud platforms.

Looking forward, the application of multi-scale
Transformers in cloud service anomaly detection still has room
for expansion. On one hand, self-supervised learning and

incremental learning strategies can be integrated to improve
adaptability in dynamic environments and reduce reliance on
labeled data. On the other hand, the model structure can be
combined with lightweight design and distributed inference
frameworks to support larger-scale real-time monitoring and
low-latency detection. In addition, fusion with cross-modal
data can be explored by integrating system logs, configuration
files, and performance metrics to build a more comprehensive
anomaly detection ecosystem. With the continuous
development of cloud services, the proposed method not only
enhances current system performance but also lays the
foundation for future intelligent and adaptive operation and
maintenance systems.
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