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Abstract: This paper focuses on the problem of database query execution time prediction and optimization. To address the
limitations of traditional methods that suffer from error accumulation and insufficient scheduling efficiency in complex query
scenarios, it proposes a comprehensive framework that integrates structured modeling with adaptive scheduling. First, a Plan-
Graph Guided Latency Modeling (PGLM) mechanism is designed, which explicitly incorporates structural features of query plans
to enhance the model's awareness of operator patterns and join topologies, thereby improving prediction accuracy and
generalization. Second, an Adaptive Query — Resource Orchestrator (AQRO) is constructed to dynamically match query demands
with system resources under a prediction — execution interaction mechanism, ensuring continuous satisfaction of service-level
objectives (SLOs) and maintaining system stability. The proposed method demonstrates strong robustness under different
hyperparameters, resource quotas, and query template diversity, achieving low prediction errors and reasonable uncertainty
calibration in dynamic environments. The results show that the framework performs well in both latency prediction and resource

optimization, providing a new technical path for database system performance improvement.
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1. Introduction

In today's data-intensive applications, the efficiency of
database query execution directly affects system service quality
and user experience. With the continuous growth of data
volume and the diversification of application requirements,
achieving accurate execution time prediction and efficient
resource scheduling in complex query plans has become a
critical problem in database optimization. Accurate latency
prediction not only helps avoid performance bottlenecks in
advance but also provides key support for resource allocation
and query optimization strategies, thereby improving overall
system stability and response speed. Therefore, research on
intelligent methods for query execution time prediction and
optimization strategies carries significant theoretical and
practical value[1].

However, existing methods still face many challenges in
complex query scenarios. Traditional cost models are unable to
adapt to the dynamic changes of data distribution and system
states, often leading to the accumulation of prediction errors.
Data-driven learning models improve prediction accuracy but
still suffer from limitations in generalization and robustness. In
particular, when facing diverse query templates and uncertain
runtime environments, the predictions often deviate from actual
performance. At the resource scheduling level, current
strategies lack fine-grained modeling of the coordination
between query requirements and system resources, leading to
uneven allocation and unstable system load, which negatively
affects the satisfaction of service-level objectives (SLOs)[2].

To address these problems, this study introduces a
comprehensive method that integrates query plan structural

information with resource scheduling mechanisms[3]. On one
hand, a plan-graph-based latency modeling mechanism is
constructed to enhance the model's structured perception of
query execution processes, enabling more accurate latency
estimation during prediction. On the other hand, an adaptive
query — resource orchestration strategy is incorporated to
achieve dynamic matching between query workloads and
system resources, improving prediction stability and
optimization performance in diverse scenarios. This
bidirectional integration aims to form positive feedback
between prediction and scheduling, driving overall
improvements in database performance optimization[4].

The contributions of this paper lie in two main aspects. First,
we propose Plan-Graph Guided Latency Modeling (PGLM),
which explicitly incorporates query plan structural features into
the prediction process. This enhances the model's ability to
represent and understand complex query topologies, thereby
improving prediction accuracy and generalization. Second, we
design an Adaptive Query — Resource Orchestrator (AQRO),
which achieves adaptive alignment between query demands
and system resources under a prediction — execution interaction
framework, balancing performance improvement with resource
utilization efficiency. Together, these two innovations construct
an end-to-end intelligent optimization framework that provides
a new solution for query prediction and optimization in
databases[5].



2. Related work

2.1 Query Execution Time Prediction: From Cost Models
to Data-Driven Learning

Traditional research has mainly focused on cost models
based on rules and parameterized assumptions. Query
execution time is decomposed into the sum of operator-level
CPU, /O, and network costs, fitted through cardinality
estimation, selectivity, and cost tables. In earlier single-node,
row-store  architectures, these methods offered good
interpretability and ease of implementation. However, modern
database systems introduce columnar compression, vectorized
execution, parallel pipelines, JIT compilation, compute-storage
separation, and acceleration hardware. Latency is no longer a
simple linear sum of independent operator costs[6]. Cache
penetration, memory grants, concurrency, and resource
governance strategies introduce strong nonlinearity and cross-
layer coupling. In distributed settings, data skew, shuffle,
retries, and fallback amplify the cascading effect of cardinality
errors, making static cost models prone to systematic bias
under mixed workloads, multi-tenant deployments, and elastic
resource environments[7].

In response to increasing complexity, data-driven learning-
based prediction has become an important direction. These
methods typically rely on execution logs and construct multi-
granularity features around query plans, data characteristics,
and system telemetry. The features include logical and physical
operator sequences, join graph density, predicate complexity,
deviations between estimated and observed -cardinalities,
pipeline depth, concurrency, memory grants, cache hit rate,
disk utilization, and network utilization[8]. One class of
methods performs operator-level or stage-level latency
regression and then combines results to obtain overall query
latency. Another class directly performs end-to-end prediction
using nonlinear models to capture how join order, selectivity,
and data skew amplify effects along the critical path. Compared
with traditional cost models, learning-based methods better
accommodate heterogeneous hardware and dynamic resource
strategies, and provide fine-grained signals for identifying
performance bottlenecks under different throttling and
scheduling policies[9].

To enhance the representation of query plan structures and
execution dependencies, recent studies emphasize structured
representation learning. Typical approaches treat query plans as
trees or directed acyclic graphs and use graph or sequence
encoders to capture operator-level data flow dependencies,
parallel or blocking relationships, and cross-stage interference.
Attention mechanisms are introduced to explicitly model
critical paths and bottleneck operators. Context encoders are
used to integrate static plans with runtime states, enabling
models to respond to transient resource fluctuations and plan
re-optimization. For long-term availability in production,
online updating, incremental learning, and concept drift
detection have been proposed. These are often combined with
uncertainty estimation and calibration techniques, which ensure
prediction accuracy while providing confidence intervals to
reduce risks from incorrect decisions[10,11].

Learning-based methods also face challenges in data quality
and generalization. Execution logs often contain missing values,

noise, and skewed distributions, while extreme tail latencies
significantly affect training and evaluation. Variations across
workloads, schemas, and workload evolution cause feature
distribution shifts. Cross-engine, cross-cluster, and cross-cloud
deployment requires models with domain adaptation and
parameter-efficient updating. Privacy and compliance
restrictions limit data aggregation across tenants, motivating
exploration of weakly supervised, semi-supervised, and
privacy-preserving learning. Mechanisms such as UDFs,
approximate queries, and materialized view selection introduce
unobservable or hard-to-quantify variables. In response,
research has proposed feature governance, robust losses,
resampling, and reweighting strategies. Hierarchical, multi-task,
and multi-objective models have also been introduced to jointly
capture both average and high-percentile latencies, thereby
providing a more stable predictive foundation for plan selection,
mid-query re-optimization, and resource orchestration[12].

2.2 Execution-Time Optimization Strategies: Adaptive
Query Processing and Resource Orchestration

Execution-time  optimization focuses on  runtime
coordination between query plans and resources. Its core lies in
the synergy of adaptive query processing and resource
orchestration. The former addresses uncertainty caused by
statistical drift, concurrency fluctuation, and data skew, aiming
to continuously correct false assumptions and converge to
better execution paths. The latter emphasizes elastic allocation
and global scheduling of compute, storage, and network
resources under multi-tenant and heterogeneous environments
with service-level objectives as constraints. A key prerequisite
for their joint effectiveness is the construction of observable
links across the plan, operator, and system layers. This requires
exposing feedback on estimation errors between logical and
physical plans, collecting fine-grained runtime metrics in the
execution engine, and providing delay-sensitive scheduling
interfaces and quota controls in resource management. These
mechanisms ensure that optimization can take effect in a
closed-loop and timely manner[13].

The research paradigm of adaptive query processing
focuses on in-flight correction. Typical approaches include
monitoring deviations in cardinality and selectivity during
execution and triggering phase re-optimization to adjust join
order and operator implementation. Multiple candidate
strategies can be preset for critical operators and switched with
lightweight overhead once thresholds are exceeded or
confidence levels updated[14]. Operator parallelism, batch size,
and buffer thresholds can be adjusted dynamically according to
memory and I/O pressure, suppressing blocking chains and
rollback amplification. In data skew scenarios, hot keys can be
resampled or avoided by splitting long-tail tasks into balanced
subtasks. Incremental indexes and materialized views can be
activated on demand to reduce memory and network overhead
along critical paths. Protection points can be placed in pipelines
that are sensitive to estimation errors, where lightweight
statistics and micro-reordering are inserted without breaking
pipeline parallelism, balancing robustness and throughput[15].

Resource orchestration adopts a global perspective to
coordinate multiple constraints. In cluster and multi-cloud
environments, queries are split into independently schedulable



stages or task groups. These are placed with affinity according
to data locality and network topology, reducing cross-switch
traffic and hotspot congestion. Admission control and throttling
strategies driven by service-level objectives and latency
budgets are introduced into queues and priority hierarchies,
ensuring reserved resources and priority for critical requests.
Quotas and isolation are applied to CPU, memory, storage, and
network resources, enhanced by NUMA awareness and
accelerator binding, improving utilization efficiency. For
hybrid transactional and analytical workloads, online workload
classification and shaping are used to prevent long analytical
tasks from starving interactive short queries. In distributed
execution, speculative execution and replica diversion alleviate
long-tail effects, while cache layers and staged prefetch reduce
cold-start and jitter amplification[16].

At the methodological level, more optimization strategies
incorporate predictive and learning signals to enhance
adaptiveness and foresight. At the query layer, joint prediction
of execution time and resource usage can be embedded into
cost evaluation, forming a prediction — decision — feedback
loop. At the system layer, scheduling and scaling can be
modeled as constrained sequential decision problems, updated
with historical telemetry and online observation. For multi-
objective trade-offs, delay, throughput, cost, and energy are
jointly optimized with robust regularization to prevent
overfitting on a single metric. For cross-environment
generalization, domain adaptation and parameter-efficient
updates allow strategies to transfer across engines, clusters, and
tenants. For engineering usability, uncertainty estimation, and
protective thresholds limit re-optimization frequency and
switching overhead, ensuring that optimization benefits exceed
control costs in high-concurrency environments. Fallback
mechanisms are also required to mitigate prediction errors and
strategy failures, providing safe recovery paths[17].

3. Method

This paper proposes an end-to-end closed-loop
framework for database query processing that follows the line
of prediction, decision, and feedback, covering both offline
modeling and online optimization, and incorporating two key
innovations. The first is Plan-Graph Guided Latency Modeling
(PGLM). This module abstracts logical and physical plans into
attributed directed acyclic graphs and integrates operator
sequences, pipeline boundaries, join structures, deviations
between estimated and observed cardinalities, concurrency,
and multi-source telemetry of memory, I/O, and network. It
constructs multi-granularity features with temporal context
encoding and outputs calibrated uncertainty distributions to
capture both mean and high-percentile latency characteristics,
while also providing interpretable cues for critical paths and
bottleneck operators. The second is the Adaptive Query —
Resource  Orchestrator (AQRO). This module uses
endogenous predictions and confidence information as priors
to coordinate plans and resources at runtime. It triggers join
reordering and operator switching, adjusts parallelism and
batch size according to load and pressure, mitigates data skew
through resampling and task splitting, and applies elastic
orchestration of CPU, memory, storage, and network with
quotas and affinity placement, while maintaining stability and
availability through constrained optimization and switching
cost control. The overall workflow consists of data collection
and feature governance, PGLM training and online inference,
AQRO policy generation and execution monitoring, which are
integrated into the optimizer and resource manager through
standardized interfaces to provide execution-time-aware
adaptive query processing and resource orchestration in
complex and dynamic multi-tenant, heterogeneous, and cloud-
native environments. The overall model framework diagram
mentioned is shown in Figure 1.
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Figure 1. Overall model architecture diagram



3.1 Plan-Graph Guided Latency Modeling

This study introduces a Plan-Graph Guided Latency
Modeling (PGLM) method. The core idea is to abstract logical
and physical database plans into attributed directed acyclic
graphs and then perform graph structure modeling and
temporal context encoding. By integrating operator types,
pipeline boundaries, cardinality estimation errors, concurrency,
and multi-source telemetry, PGLM captures critical paths and
bottleneck operators at the graph structure level. This enables
fine-grained and interpretable predictions of query execution
time. Unlike traditional static cost models, PGLM does not
rely on fixed parameters. Instead, it learns latent dependencies
and amplification effects automatically through a structured
graph representation, which makes it more adaptable to
complex runtime environments.

PGLM further transforms the prediction problem into
modeling conditional probability distributions rather than
single-point estimation. This distributional view characterizes
not only the mean execution time but also calibrated outputs
for high-percentile latencies such as P95 and P99, which are
critical in real systems. By incorporating uncertainty modeling,
PGLM produces joint representations that include mean,
variance, and confidence. This allows subsequent resource
orchestration and adaptive query processing to make decisions
based on confidence constraints instead of single-point
estimates, achieving a balance between stability and
performance. The framework of this innovation is illustrated
in Figure 2.
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Figure 2. PGLM module architecture

At the formula reasoning level, we first model the query
plan as a weighted graph. Let's assume the query plan is a
directed acyclic graph G =(V,E) , where V  represents

the operator nodes and F represents the dependency edges
between operators. For each node v €V, its representation
vector can be written as:

h=¢ x,, > wh,e,)

veN (v)
x, represents the operator characteristics (such as type,

selectivity, parallelism, etc.), e represents the edge

uv
attributes (such as partitioning method, blocking relationship),
and @ and (Y are learnable functions.

Based on the node representation, we represent the
potential execution time of the entire query as a graph-level
embedding Z :

z = READOUT ({h, |veV'})

Where READOUT (1)  represents a graph-level
aggregation operation, such as weighted averaging or attention
aggregation.

To characterize the uncertainty of execution time, we
model its conditional probability distribution:

p(y|1G)=N(y| u(z),0%(z))

Where ) represents the actual execution time, (/(Z)

and  0°(2)
respectively. The model outputs not only the expected value
but also the confidence interval, thus avoiding over-reliance
on a single estimate during optimization.

In the loss function design, we use negative log-
likelihood as the optimization target:

are the predicted mean and variance,

2
(y—u(2))
207(z)

This loss function constrains both the mean and variance
of the predictions, allowing the model to learn a stable and
calibrated probability distribution. To further focus on tail
delays, we introduce quantile regression loss:

L, =max(7(y-y),(r-D)(y-»))
Where p is the predicted T

7=0.95 or 0.99). The final loss function is a weighted
combination:

Ly, = %log 02(2) +

quantile (such as

L=Ly, +A > L
7€{0.95,0.99}

The role of the loss function in this part is to transform
execution time prediction into a joint optimization problem. It
requires not only an accurate mean prediction but also a
reliable characterization of tail latency. By constraining both
the distribution center and tail features, the model outputs
predictions that are representative and robust, providing a
solid probabilistic foundation for subsequent adaptive query
optimization and resource orchestration.

3.3 Adaptive Query — Resource Orchestrator



This study also introduces an Adaptive Query — Resource
Orchestrator (AQRO). Its main goal is to achieve dynamic
alignment between computing resources and query plans
during execution, thereby improving overall performance and
fairness in multi-tenant and heterogeneous environments.
Unlike traditional scheduling methods that rely on static rules,
AQRO makes adaptive decisions based on predicted execution
signals such as mean latency, tail latency, and confidence
intervals. It enables joint optimization at both the query and
resource levels. This coordination allows the system to
maintain stable resource utilization under high load and
latency-sensitive scenarios while effectively mitigating
performance fluctuations and tail latency amplification.

In addition, the design of AQRO emphasizes cross-layer
feedback by incorporating prediction uncertainty into resource
orchestration strategies. By combining structural features of
query plans with runtime resource states, AQRO can
dynamically adjust operator scheduling, parallelism allocation,
resource affinity, and batch granularity. Importantly, AQRO
considers not only average performance objectives but also
introduces percentile latency constraints into scheduling to
achieve proactive control of tail latency. This design provides
a unified control bus for resource scheduling and query
optimization, enabling the system to flexibly switch between
precise prediction and uncertainty defense. The framework of
this model is illustrated in Figure 3.
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Figure 3. AQRO module architecture

At the formula reasoning level, assume the system has a
query set Q= {%aqzﬂ'"’ qN}
R= {rl,rz,...rM} . The predicted latency of each query ¢,

and a resource set

is output by PGLM, including the mean (/; , variance O 1.2 ,

and quantile prediction )A/l.(r) . The resource allocation can be

represented as a matrix:
NxM
A=, ]efo1)
a; ; =1 Indicates that the query ¢, is assigned to a
resource 7.

Under this constraint, the execution latency of each query
is estimated to be:

T, =f(luiﬁai9j>i(r)ﬂ ,0(7']))

Where ,O(Vj) represents the load factor of the resource

Furthermore, the system objective function can be defined
as minimizing the weighted delay:

J(A)=3 wi
i=1

w, is the query priority weight, which is used to reflect

the differences between different tenants or different business
needs.

To prevent the tail delay from being too large, the quantile
constraint is introduced:

P <0,Vi

Where O is the maximum allowable threshold for tail
latency. This constraint ensures that the scheduling strategy
not only focuses on average performance but also takes high-
percentile latency control into account.

Finally, the loss function of AQRO is defined as
follows:

N
Ligro = p (T, =)' + A -Var (T)) + A, -max(0, 5 - 0)

i=1

The first term is the delay prediction error constraint, the
second term is the regularization of the prediction variance to
stabilize the scheduling, the third term is the tail delay penalty,

and /11 and /12 are trade-off coefficients.

The role of the loss function in AQRO is to transform
query scheduling and resource orchestration into a joint
optimization problem. It ensures average performance while
controlling prediction uncertainty and constraining tail latency
within a predefined threshold. In this way, the system can
dynamically adapt to the demands of different queries and the
load conditions of resources, achieving adaptive and robust



coordinated optimization that provides higher stability and
controllability for database query execution.

4. Experimental Results

4.1 Dataset

This study uses the public dataset named SPARQL
Queries Performance Prediction, which contains a large
number of instances designed for query latency prediction
tasks. It covers actual query plan structures together with their
execution latency labels. The dataset focuses on structural
features at the query plan level and their latency responses,
making it highly suitable for latency modeling and latency
distribution learning.

The dataset consists of several key components. It
includes SPARQL query texts and structural features extracted
from query plans, such as operator type sequences, differences
between estimated and actual cardinalities, and join topology
information. It also provides precise query execution times as
ground-truth labels. In addition, runtime context features are
included, such as concurrency level, cache hit rate, and I/O
latency metrics. Together, these components form a rich set of
data samples that support learning the mapping between graph
structural features and execution time.

One of the main advantages of this dataset is the diversity
and clarity of its features. It not only captures query plan
structural information but also aligns it with accurate
execution latencies, offering an end-to-end supervised learning
basis for latency modeling. Moreover, because the data
originates from real query environments rather than synthetic
settings, it provides higher representativeness and enhances
model generalization. Finally, the dataset is easy to access,
stored in standard formats, and organized, which facilitates the
construction of training and testing pipelines. This makes it
highly efficient and reproducible for researchers developing
latency prediction and optimization strategies.

4.2 Experimental setup

The experiments in this study were conducted in a high-
performance computing environment. The hardware
configuration included a 32-core CPU with a 2.6 GHz clock
speed, 256 GB of memory, and a multi-GPU cluster with 32
GB of memory per card. High-throughput NVMe SSD storage
and gigabit Ethernet were used to ensure stability and
scalability during query plan construction, latency prediction
modeling, and resource orchestration. This environment
provided sufficient computational support for complex graph
feature extraction and deep learning model training.

On the software side, the experiments ran on a Linux
operating system. Python 3.10 was used as the primary
programming language, and PyTorch served as the main deep
learning framework for model implementation and training.
To efficiently execute graph-related computations, DGL and
related parallel computing libraries were employed. Docker
containerization was used to ensure portability and stable
dependency management. In addition, CUDA 11.x and

cuDNN were used for GPU acceleration to fully exploit the
parallel computing capabilities of the hardware.

For hyperparameter settings, the Adam optimizer was
adopted with an initial learning rate of le-4. A cosine
annealing scheduler was used to dynamically adjust the
learning rate during training. The batch size was set to 128 to
balance GPU memory usage and training stability. The
gradient clipping threshold was set to 1.0 to avoid gradient
explosion. Loss function weights were determined through
grid search, and the L2 regularization coefficient was set to
le-5 to improve generalization performance. An early
stopping mechanism was applied in all experiments,
terminating training if validation metrics did not improve for
10 consecutive iterations, thus ensuring both efficiency and
stability.

4.3 Experimental Results
1) Comparative experimental results

This paper first conducts a comparative experiment, and the
experimental results are shown in Table 1.

Table 1: Comparative experimental results

P95 Abs.
Method MAE | RMSE | Error ECE |
!

Informer([18] 28.7 56.4 132.0 0.061
Autoformer[19] 26.9 53.1 124.0 0.055
FEDformer[20] 24.8 49.2 115.0 0.049

PatchTST[21] 22.6 45.7 108.0 0.043

ours
(PGLM+AQRO) 15.9 31.0 72.0 0.028

The results demonstrate consistent superiority. Across all
four metrics, ours (PGLM+AQRO) outperforms every baseline.
Compared with the best-performing baseline (PatchTST: MAE
22.6 ms, RMSE 45.7 ms, P95 108 ms, ECE 0.043), ours
reduces MAE to 15.9 ms (about 29.7 percent improvement),
RMSE to 31.0 ms (about 32.2 percent improvement), and P95
error to 72.0 ms (about 33.3 percent improvement), while also
lowering ECE to 0.028 (about 34.9 percent improvement). This
simultaneous reduction in error, tail latency, and calibration
shows that the model is more robust in overall accuracy,
extreme cases, and uncertainty characterization.

Mechanistically, the first advantage comes from the
structural awareness of PGLM. By abstracting logical and
physical plans into attributed plan graphs, the model explicitly
captures blocking relationships among operators, join orders,
selectivity amplification effects, and the influence of
parallelism on critical paths. Compared with baselines that treat
queries as time series or flat features, structured representation
reduces systematic error propagation caused by cardinality bias
and resource contention. This is directly reflected in the
simultaneous improvements of MAE and RMSE.

Second, the significant reduction in P95 absolute error
highlights the model's stronger ability to capture tail latency




and distributional characteristics. PGLM generates joint
predictions of mean and high percentiles and provides
confidence information. AQRO then leverages these
uncertainty signals to coordinate plans and resources, such as
adjusting parallelism and batch size, resampling hot keys,
applying affinity placement, and enforcing quota control. As a
result, the model maintains controllable tail errors even under
workloads dominated by long-tail latency. This targeted
treatment of tail distribution is one of the most practically
valuable improvements for query execution latency.

Finally, the reduction in ECE indicates better alignment
between predicted probabilities and observed distributions,
making confidence intervals more useful. This directly
enhances the reliability of subsequent decisions. In admission
control, priority scheduling, and elastic scaling, AQRO can use
credible confidence values to set thresholds and conservative

strategies, reducing the risks of over-provisioning and under-
provisioning. This allows the system to meet service-level
objectives while controlling resource costs. Overall, the
structural representation of PGLM and the uncertainty-aware
control of AQRO form a closed loop. More accurate prediction
and more stable orchestration reinforce each other, driving
query latency prediction and optimization strategies from static
to adaptive.

2) The environmental sensitivity of resource limits and
quota policies (CPU/Memory/I/0O) to SLO satisfaction rates

This paper further studies the environmental sensitivity of
resource limits and quota policies (CPU/Memory/I/O) to SLO
satisfaction rates. The experimental results are shown in
Figure 4.
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Figure 4. The environmental sensitivity of resource limits and quota policies (CPU/Memory/I/O) to SLO satisfaction rates

In this set of experiments, the error metrics of latency
prediction show clear differences under different quota
strategies. When the system is constrained by CPU or memory
quotas, the MAE rises to 17.5 ms and 18.2 ms, respectively.
Under I/O quota constraints, it is even higher at 19.6 ms,
indicating that I/O limits have the greatest impact on prediction
accuracy. In contrast, under balanced resource allocation, the
MAE is the lowest at 15.9 ms, showing that the model can
better capture the correspondence between query plan features
and execution latency when resources are sufficient and
properly allocated.

Further observation of RMSE shows a trend consistent with
MAE. Under CPU and memory quotas, RMSE reaches 33.9 ms
and 35.1 ms, respectively. Under I/O quotas, it increases to
37.8 ms, while in the balanced quotas scenario, it drops to 31.0

ms, showing a clear advantage. Since RMSE is more sensitive
to large deviations, this indicates that in balanced scenarios, the
model not only achieves lower average error but also provides
more stable predictions under large fluctuations. This verifies
the robustness of PGLM's graph-structured representation in
multi-resource scheduling scenarios.

For tail latency error (P95 absolute error), I/O quotas
remain the main bottleneck. The error rises from 78 ms under
CPU quotas to 86 ms, while in the balanced resource setting, it
decreases significantly to 72 ms. In the aggressive quotas
scenario, P95 error soars to 104 ms, highlighting the
amplification of tail latency risk under extreme resource
constraints. This shows that although AQRO's dynamic
orchestration strategy can partially mitigate instability caused



by resource shortages, it is still difficult to fully suppress long-
tail effects when resources are overly restricted.

Finally, looking at the ECE metric, the lowest value of
0.028 is achieved in the balanced scenario, indicating the best
alignment between predicted and actual probability
distributions. Under CPU and memory quotas, ECE values rise
to 0.030 and 0.031, while under I/O quotas, they reach 0.034.
In the aggressive quotas scenario, it further worsens to 0.040.
This indicates that when system resources are excessively
constrained, the effectiveness of uncertainty modeling
decreases, reducing the reliability of prediction confidence.

Overall, the results demonstrate that PGLM+AQRO achieves
superior prediction accuracy and calibration in balanced
resource environments, while extreme quota constraints reveal
the limits of model adaptability.

3) Sensitivity of query template diversity (operator pattern
and connection topology changes) to prediction generalization

This paper also studies the sensitivity of query template
diversity (operator pattern and connection topology changes)
to prediction generalization. The experimental results are
shown in Figure 5.

Sensitivity to Query Template Diversity (ours: PGLM+AQRO)
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Figure 5.Sensitivity of query template diversity (operator pattern and connection topology changes) to prediction generalization

The experimental results show that the latency prediction
ability of PGLM+AQRO varies significantly under different
levels of query template diversity. MAE remains low under
low and medium diversity conditions but rises notably when
operator numbers and join relationships become more complex.
This indicates that the model is more sensitive to average error
in complex topologies. The observation highlights the
influence of query template structure on the baseline error
distribution of the model.

The trend of RMSE shows a clearer monotonic increase
compared with MAE. In scenarios with high operator diversity
and mixed complexity, the fluctuations in prediction error
become much larger. This means that when handling complex
queries, the dispersion of the error distribution increases, and
extreme values exert a stronger influence on overall error. The
continuous rise of RMSE demonstrates that robustness under
complex operator patterns remains a challenge for the system.

The P95 absolute error peaks under high-diversity
conditions and then slightly decreases in extreme mixed
scenarios. This shows that tail latency prediction is heavily

affected by extreme structural complexity but is partly
alleviated after internal adjustment of the model. The trend
highlights the stabilizing effect of AQRO's adaptive scheduling
and resource orchestration under high-pressure conditions,
which helps suppress extreme latency.

The ECE results first decrease and then increase, eventually
stabilizing at a moderate level in extreme scenarios. This trend
indicates that under moderate query diversity, the model
provides more reliable uncertainty estimates. However, in
extremely complex cases, deviations arise between confidence
intervals and actual errors. This suggests that PGLM needs
further improvement in uncertainty calibration to enhance the
consistency of prediction confidence when facing high
structural diversity.

4) Hyperparameter sensitivity of learning rate and batch
size to delayed prediction stability

This paper further proposes a hyperparameter sensitivity

test focusing on the learning rate and batch size, aiming to

explore their influence on the overall stability of delayed



prediction within the proposed framework. The motivation
behind this test lies in the fact that hyperparameters play a
decisive role in balancing convergence speed, optimization
stability, and generalization ability, particularly in scenarios
where prediction outcomes are affected by temporal
dependencies or delayed responses. By systematically
adjusting the values of learning rate and batch size, the study
seeks to analyze how subtle changes in these parameters
impact the robustness of the model against fluctuations, as
Learning Rate Sensitivity
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well as its ability to maintain consistent performance across
different training phases. Such sensitivity analysis provides
not only a deeper understanding of the training dynamics but
also practical guidance for selecting more reliable
hyperparameter configurations when applying the method to
real-world tasks. The overall design of this experiment is
summarized in Figure 6, which illustrates the relationship
between these critical hyperparameters and the stability of
delayed prediction.
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Figure 6. Hyperparameter sensitivity of learning rate and batch size to delayed prediction stability

The experimental results show that MAE exhibits a typical
U-shaped curve concerning learning rate settings. When the
learning rate is too small, model updates are slow, and the error
remains high. As the learning rate increases, MAE decreases
significantly and reaches its optimal value in the middle range,
indicating that the model captures the relationship between plan
graphs and latency more efficiently. However, when the
learning rate continues to increase, MAE rises again, reflecting
instability caused by overly rapid parameter updates. This trend
reveals the sensitivity of latency prediction models to
parameter tuning and highlights the importance of a reasonable
learning rate range for prediction accuracy.

The trend of RMSE shows an overall increase with small
fluctuations. At low learning rates, RMSE is relatively low,
suggesting that the prediction distribution is more concentrated.
As the learning rate gradually increases, RMSE continues to
rise with stronger fluctuations, indicating that aggressive
update rates amplify errors in some complex query plans. This
phenomenon suggests the risk of uncertainty introduced by
high learning rates and further emphasizes the importance of
stability in latency prediction.

In the batch size experiments, the P95 absolute error first
decreases significantly as batch size increases, reaching its
optimal level at medium scale (such as 128), and then rises

again. This indicates that moderate batch sizes effectively
balance the trade-off between generalization and convergence,
making tail latency prediction more stable. However, when the
batch size becomes too large, the model loses fine-grained
optimization capacity during gradient updates, leading to
amplified tail errors and reduced accuracy in extreme
conditions.

The ECE results demonstrate the sensitivity of model
calibration. As batch size increases, ECE gradually decreases
from a higher level, showing that the model achieves better
consistency between predicted confidence and actual errors at
medium scales. When batch size continues to grow, ECE rises
again, indicating that overly large batches introduce estimation
bias and reduce the alignment between predicted probabilities
and true errors. This phenomenon shows that batch size not
only affects error convergence speed but also directly impacts
the reliability of uncertainty estimation, which is crucial for
ensuring prediction stability.

5. Conclusion

This study focuses on query execution time prediction and
optimization in databases and proposes an integrated
framework that combines structured modeling with adaptive
orchestration. By introducing a plan-graph-guided latency



modeling  mechanism, the model captures internal
dependencies and execution features of query plans, which
leads to higher accuracy and robustness in prediction. At the
same time, the design of the adaptive query — resource
orchestrator provides more flexible strategies for resource
scheduling, enabling the system to balance performance and
efficiency under diverse workload conditions. These
contributions not only enrich the theoretical path of query
optimization but also provide practical directions for the
intelligent evolution of database systems.

From the perspective of experiments and methodology, the
proposed approach effectively alleviates the limitations of
traditional cost models and purely data-driven methods. It
shows stronger adaptability when dealing with diverse query
templates and dynamic system resources. By combining
structural features with a prediction — scheduling interaction
mechanism, the system achieves robust performance under
different resource quotas, batch sizes, and learning rates. This
cross-layer optimization approach demonstrates the value of
bidirectional feedback between prediction and scheduling and
provides methodological insights for future research.

At the application level, the proposed framework has
important significance for large-scale database systems, real-
time analytics platforms, and cloud computing environments.
As enterprise-level data processing scenarios place stricter
demands on service-level objectives (SLOs), accurate query
latency prediction and dynamic resource optimization become
essential for ensuring system performance and user experience.
The proposed method not only improves prediction accuracy
but also guarantees the efficiency of high-priority tasks under
limited resources. This enhances the scalability and reliability
of the entire system. For practical applications, it offers feasible
optimization ideas for high-concurrency, high-throughput, and
low-latency scenarios.

Future work can be carried out from several directions. One
direction is to extend latency modeling to cover more execution
features, such as parallelism, cache utilization, and storage
hierarchy, to improve generalization in complex execution
environments. Another direction is to enhance the optimization
strategies of the adaptive orchestrator by incorporating
reinforcement learning or multi-agent decision mechanisms to
achieve more fine-grained dynamic resource allocation. In
addition, applying the proposed framework to emerging
scenarios such as distributed computing, edge computing, and
federated databases will help validate its adaptability and
scalability. These directions will not only advance the
theoretical development of query optimization but also have a
profound impact on the construction of future intelligent data
management systems.
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