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Abstract: This paper proposes DP-LoRA, an instruction tuning algorithm that combines differential privacy with low-rank
adaptation to address the challenges of privacy risks and performance retention in large-scale language models for instruction-
following tasks. The method embeds low-rank adaptation modules on top of a frozen pretrained backbone and integrates
differential privacy through gradient clipping and noise injection to strictly control the privacy budget while ensuring effective
model updates. A systematic analysis is conducted from three perspectives: hyperparameter sensitivity, environmental sensitivity,
and data sensitivity.  The study examines the impact of privacy budgets on various aspects, including perplexity, membership
inference attack success rates, and instruction adherence. It also investigates the performance changes during communication
rounds and bandwidth constraints. Additionally, the study explores the effects of instruction diversity and task mixture on privacy
consumption and performance. Experimental results show that DP-LoRA reduces perplexity, improves instruction adherence, and
mitigates privacy risks while maintaining robustness under distributed and multi-task conditions. This research not only achieves
a unified balance between privacy protection and performance but also demonstrates strong adaptability in multidimensional
sensitivity experiments, providing systematic validation and empirical evidence for the application of differential privacy in

instruction tuning for large models.
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1. Introduction

In the rapid development of artificial intelligence, large-
scale language models have gradually become the core driving
force for progress in natural language processing. With the
exponential growth of model parameters, they have shown
unprecedented performance in text generation, knowledge
question answering, and task planning. However, the
continuous improvement of model capacity brings not only
higher computation and storage costs but also stricter
requirements for data security and privacy protection. In the
context of cross-domain applications and multi-source data
collaboration, achieving efficient adaptation and fine-tuning of
large models without exposing sensitive information has
become a critical challenge. This issue is especially severe in
high-risk domains such as healthcare, finance, education, and
government, where data is highly sensitive and subject to strict
compliance requirements. Without proper privacy-preserving
mechanisms, the deployment of large models will face serious
limitations[1,2].

Against this background, privacy-preserving instruction
tuning has emerged as a research focus. Instruction tuning
strengthens the ability of models to understand and follow
instructions, allowing them to adapt to specific task
requirements on top of general pretraining. Yet traditional
instruction tuning often relies on large-scale datasets,
sometimes with sensitive labels, and is typically performed
under centralized training paradigms. This process poses a high
risk of privacy leakage. At the same time, with the growing
emphasis on data protection regulations and compliance

frameworks, approaches that depend only on centralized data
processing and parameter updates can no longer meet practical
demands. Balancing privacy security with the need to preserve
instruction-following and semantic generalization has become
a prominent tension at both theoretical and practical levels[3].

On the other hand, full-parameter fine-tuning can provide
significant improvements in task adaptation but comes with
high computation and storage costs. This makes its deployment
in privacy-sensitive environments difficult. Parameter-efficient
fine-tuning methods provide a promising alternative. By
injecting low-rank structured updates into model weights, they
achieve efficient task adaptation while keeping most
parameters frozen[4]. This greatly reduces training costs and
storage requirements. However, combining parameter-efficient
fine-tuning with privacy-preserving mechanisms is not
straightforward. Parameter updates themselves may carry
sensitive information, and without differential protection,
adversaries could extract hidden data features from gradients.
In addition, low-rank structures involve a delicate balance
between compression and generalization. How to achieve
accuracy, efficiency, and security at the same time remains an
open problem.

In this context, differential privacy offers a solid theoretical
foundation for instruction tuning under privacy constraints. By
injecting random noise into parameter updates or gradient
propagation, differential privacy reduces the influence of
individual samples on the final model. This effectively lowers
the risk of privacy leakage. Yet directly applying differential
privacy to large-scale language models is challenging. Gradient



perturbation can weaken model representation, privacy budget
allocation may become unbalanced, and conflicts between
privacy and performance often arise across tasks. Designing
optimization strategies that maintain task effectiveness while
enforcing differential privacy constraints is, therefore a key to
advancing this field[5].

The integration of privacy protection with parameter-
efficient instruction tuning has both theoretical and practical
significance. It provides a feasible path for deploying large-
scale language models securely in sensitive domains,
responding to real-world demands for compliance and privacy.
At the same time, it enables efficient, safe, and scalable
instruction adaptation under resource constraints through
structured parameter updates and privacy budget regulation.
More importantly, this direction fosters deeper integration
between privacy-preserving methods and large model training
techniques. It also lays the technical foundation for building
trustworthy and generalizable artificial intelligence systems in
the future[6].

2. Related work

The rapid expansion of large-scale language models has
driven the development of natural language processing, but it
has also increased the complexity of task adaptation. After
general pretraining, enabling models to effectively understand
and execute diverse natural language instructions has become a
key challenge. Instruction tuning emerged as a solution by
using structured task instruction data, which allows models to
generalize more effectively under zero-shot and few-shot
conditions. Compared with traditional full-parameter updates,
instruction tuning emphasizes the transferability and
consistency of language tasks, helping large models maintain
stable performance across scenarios. However, as application
domains expand, centralized collection and processing of
instruction data have revealed serious privacy and compliance
risks. Achieving high-quality instruction adaptation while
ensuring data security has therefore become an urgent
challenge[7].

The importance of privacy protection in large model
training and fine-tuning is increasing. This is particularly
critical in sensitive domains such as personal information,
medical records, financial transactions, and educational
archives, where data leakage can cause severe consequences.
Differential privacy, with its clear theoretical definition and
measurable guarantees, has become one of the most
representative protection methods in model training. By
injecting noise into gradients or parameter updates, differential
privacy reduces the identifiability of individual data in the final
model, thus providing institutional and technical safeguards for
secure applications of large models[8]. However, applying
differential privacy directly to large-scale language models is
not simple. Excessive noise can weaken the model's ability to
capture semantic information. At the same time, privacy budget
allocation and management remain difficult to balance. This
makes it necessary to combine differential privacy with
efficient optimization methods in instruction tuning to ensure
both privacy and performance[9].

Meanwhile, parameter-efficient fine-tuning has become a
major research focus in recent years. For language models with
tens of billions of parameters, full-parameter fine-tuning
consumes enormous computational resources and creates heavy
storage and transfer burdens. Parameter-efficient methods
introduce lightweight structured modules while keeping the
main weights frozen. This enables rapid task-specific
adaptation at much lower training and deployment costs. Such
methods improve responsiveness to new tasks under limited
resources and show good scalability in cross-task transfer,
model compression, and downstream applications. However,
most existing parameter-efficient fine-tuning methods mainly
address the trade-off between performance and efficiency.
They pay limited attention to privacy concerns, which is
inadequate for compliance and sensitive data scenarios[10].

The integration of differential privacy with parameter-
efficient fine-tuning is emerging as a key direction for
advancing privacy-preserving large models. Differential
privacy provides a strong security boundary, while parameter-
efficient fine-tuning ensures efficiency and scalability[11].
Their combination allows better performance preservation
under limited privacy budgets and makes model adaptation
more flexible and cost-effective. This integration is valuable
for real-world applications. In cross-institutional collaboration,
cross-domain data sharing, and multi-task parallel settings, it
ensures that sensitive data remains protected while maintaining
the ability of models to understand and execute diverse
instructions. Therefore, combining privacy protection with
parameter-efficient methods not only addresses the demand for
compliance and trustworthiness in large models but also
provides a technical pathway for the sustainable development
of intelligent systems[12].

3. Method

This study introduces an instruction tuning method that
integrates differential privacy with low-rank adaptation to
address the challenges of task adaptation and privacy protection
for large-scale language models in sensitive data scenarios. The
core idea is to keep the main model parameters frozen while
updating only specific low-rank matrices, and to inject
differential privacy noise during parameter optimization. This
mechanism enables efficient, secure, and scalable model tuning.
It establishes a controllable balance between instruction-
following capability and privacy protection, allowing the model
to demonstrate greater robustness and trustworthiness in
complex application environments. The model architecture is
shown in Figure 1.

In mathematical modeling, we first assume that the weight
matrix of the pre-trained language model is:

W c Rdxk

Where d is the input dimension and k is the output
dimension. In efficient parameter fine-tuning, we introduce
low-rank decomposition to approximate the update matrix:

AW = AB”



Where A€ R, BeR™ , rank r<<min(d,k) .
Therefore, the fine-tuned parameters can be expressed as:
W'=W+AW =W + AB”

During the training process, let the input instruction
sequence be X and the target output be ) . The conditional

probability distribution of the model output is:
P(y|x;W") = Soft max(f (x;W"))

Where f(-) represents the forward propagation function

of the neural network. The optimization goal is to minimize the
cross-entropy loss:

L=- > logP(y|x;W")
(x,y)eD

To ensure privacy during training, this study introduces a
differential privacy mechanism during the gradient update

phase. For each parameter update, the gradient g, is first
clipped:
~ . C
8 =&, 'mll’l(l, )
.
Where is the clipping threshold. Gaussian noise is

then added to achieve differential privacy:
g, =8 +N(0,0°C*I)

Where O  controls the noise amplitude and [
identity matrix. Finally, the parameter update rule is:

is the

A< A-ng!, B« B-ng/

Where 77 is the learning rate, gr;’ and gf represent
the privatized gradients of the corresponding sub-matrices.

To measure the strength of differential privacy protection,
this study follows the definition of differential privacy (&,0).

Under 1" consecutive iterations, the overall privacy budget
satisfies:
7C?
(85 5) = 2 5
20

Where & represents the upper bound of privacy leakage,
and O

properly controlling the clipping threshold C and the noise
coefficient O , we can achieve strict privacy protection for
user data while maintaining model performance.

In summary, this method establishes a unified
optimization framework between low-rank parameter updates
and differential privacy constraints, which not only ensures the
task adaptability of large-scale language models but also
significantly reduces the risk of privacy leakage, providing a
feasible path for model fine-tuning in privacy-sensitive
scenarios.
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Figure 1. Framework of Differentially Private LoRA for
Instruction-Tuned Large Language Models
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4. Experimental Results

4.1 Dataset

This study uses the No Robots SFT dataset as the basis
for method validation. The dataset contains a collection of
high-quality instruction — example pairs designed to support
supervised fine-tuning of language models in instruction-
following scenarios. Each entry consists of a natural language
instruction and its corresponding demonstration, providing a
solid training foundation for understanding instructions and
generating responses.

Within the proposed framework, No Robots SFT
provides sensitive instruction — response pairs for privatized
fine-tuning under differential privacy constraints. The
instruction part defines the target task for model adaptation,
while the demonstration part provides rich semantic context.
This helps the model achieve precise alignment with
instruction semantics under limited parameter updates. Such a
structured design not only supports the model's instruction-
following ability but also ensures privacy protection under the
DP-LoRA optimization mechanism.

In addition, No Robots SFT plays an important role in
evaluating the generalization ability of the model. The dataset
covers diverse instruction types and response structures,
creating test conditions for different task scenarios. This
allows assessment of the model's adaptability under the dual
constraints of low-rank adaptation and privacy protection.
Validation on this dataset ensures that the proposed method
can maintain robust instruction-following performance in
complex instruction environments.

4.2 Experimental Results
This paper first conducts a comparative experiment, and the
experimental results are shown in Table 1.

Tablel: Comparative experimental results

Model Perplexity | MIA- Instruction | Privacy
AUC | Adherence | Budget
(%) 1 (e) |
LoRA[13] 18.5 0.80 74.2 1.00
DoRA[14] 17.3 0.77 75.6 0.90




LoRA-Leak[15] 17.6 0.76 75.0 0.80

DP-

DyLoRA[16] 17.1 0.72 76.3 0.70

Ours (DP-

LoRA) 16.2 0.65 78.1 0.50
These experimental results clearly demonstrate the

performance differences in privacy-preserving instruction
tuning tasks. First, in terms of the Perplexity metric, traditional
LoRA already shows good modeling ability in generation
quality. However, with the introduction of weight
decomposition in DoRA and dynamic low-rank adaptation in
DP-DyLoRA, perplexity further decreases. This indicates that
parameter structure optimization can indeed improve efficiency
and accuracy in language modeling. In contrast, the proposed
DP-LoRA achieves the best perplexity value while maintaining
low-rank updates with differential privacy. This proves that the
method ensures privacy constraints while enhancing stability in
instruction-following scenarios.

Second, the MIA-AUC metric highlights the effectiveness
of privacy protection. LoRA and its variants perform well in
efficiency and expressiveness, but still show a high success rate
of attacks in privacy risk evaluation. The results of LoRA-Leak
especially reveal the vulnerability of low-rank adaptation
methods when facing membership inference attacks. DP-
DyLoRA reduces MIA-AUC significantly by applying
differential privacy, showing the necessity of privatization. The
proposed DP-LoRA further lowers this metric to the minimum,
demonstrating its advantage in mitigating leakage risks even
under strict differential privacy constraints.

For Instruction Adherence, all methods maintain relatively
high levels, but differences remain in instruction understanding
and execution ability. LoRA shows some limitations in this
metric. DORA and LoRA-Leak improve performance with the
help of local optimization strategies. DP-DyLoRA benefits
from differential privacy, achieving stronger instruction-
following ability while preserving privacy. Finally, the
proposed DP-LoRA achieves the highest score, proving that its
design ensures privacy while maintaining and even
strengthening precise instruction adherence. This reflects the
balance between privacy protection and task adaptability.

Lastly, from the perspective of the Privacy Budget ( £ ), the
results show the trade-off between differential privacy and
model effectiveness. Traditional LoRA and DoRA do not focus
on privacy, leading to high &  values and insufficient
protection. In contrast, DP-DyLoRA achieves convergence in
£ , indicating a balance between protection and performance
under differential privacy. The proposed DP-LoRA further
optimizes & , reaching the lowest value and providing the
strongest privacy guarantee under theoretical definitions.
Overall, the results demonstrate that DP-LoRA achieves the
best balance across generation quality, privacy security, and
task adaptability. This verifies its practical value and theoretical
significance in privacy-preserving instruction tuning.

This paper also conducts comparative experiments on the
hyperparameter sensitivity of the privacy budget £ to the DP-
LoRA instruction fine-tuning performance and leakage risk.
The experimental results are shown in Figure 2.
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Figure 2. Hyperparameter Sensitivity Evaluation of Privacy Budget £ on DP-LoRA Instruction Fine-tuning Performance and
Leakage Risk

From the variation of Perplexity, it can be observed that
under different privacy budgets, the generation quality of the
model remains within a relatively stable range. As the privacy
budget increases, the Perplexity value shows a slight downward
trend. This indicates that when the differential privacy
constraint is gradually relaxed, the performance of DP-LoRA
in language modeling can be slightly optimized. The trend

shows that the interference of differential privacy on generation
ability is controllable. It also demonstrates that DP-LoRA
maintains strong instruction modeling capacity while ensuring
privacy protection.

For the MIA-AUC metric, it is clear that the value
gradually increases as € grows. This means that with a larger
privacy budget, the success rate of attackers retrieving sensitive



information through membership inference attacks becomes
higher, which increases privacy risks. Closely related to the
theme of this work, DP-LoRA significantly suppresses MIA-
AUC under small & . This shows that the differential privacy
mechanism plays a central role in privacy protection in small
budget settings. The result emphasizes the key influence of
privacy budget as a hyperparameter on model security.

The trend of Instruction Adherence shows that as &
increases, the ability of the model to follow instructions
steadily improves. When privacy constraints are too strict, the
model is limited in capturing semantics and executing
instructions. With a moderately relaxed privacy budget, DP-
LoRA achieves a better balance between privacy and
effectiveness, resulting in higher instruction adherence. This
clearly reveals the trade-off between privacy strength and task
adaptability.

17.0

The privacy budget itself, introduced as a metric, directly
reflects the level of constraint imposed by the differential
privacy mechanism during training. Different & values
represent different trade-off points between privacy and
performance. The results show that with a smaller & , the
model sacrifices some performance but gains stronger privacy
protection. Larger & provides advantages in instruction
adherence and modeling quality but increases privacy risks.
The experimental findings confirm the sensitivity of the
proposed method across multiple metrics and highlight the
ability of DP-LoRA to flexibly adjust the balance between
privacy and performance in practical applications.

This paper also analyzes the sensitivity of the privatization
sampling rate to cumulative privacy loss in training rounds.
The experimental results are shown in Figure 3.
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Figure 3. Study on the sensitivity of privatization sampling rate and cumulative privacy loss of training rounds

For the Perplexity metric, the values show a continuous
downward trend as training epochs increase. This indicates that
under differential privacy constraints, the language modeling
ability of DP-LoRA is not severely weakened. On the contrary,
with more training epochs and higher sampling rates, the model
adapts better to the distribution of instruction data. This results
in lower perplexity and demonstrates that the method retains
robust instruction modeling ability under privacy protection.

For the MIA-AUC metric, the values gradually rise with
more training epochs, which means that the success rate of
membership inference attacks increases. This phenomenon
shows that as cumulative privacy consumption grows, the
privacy risk of the model also rises. This aligns with the
intuition of differential privacy theory, where a higher privacy
budget can improve performance but at the cost of greater
leakage risk. The results of DP-LoRA confirm that under
different epochs and sampling rates, the tension between
privacy and performance persists.

For the Instruction Adherence metric, the values steadily
increase, showing that the ability of the model to follow

instructions improves as training progresses and ¢ is relaxed.
This means that DP-LoRA can gradually enhance instruction-
following ability while maintaining privacy constraints. The
improvement is especially notable in later epochs, indicating
that differential privacy does not suppress the ability of the
model to capture semantic meaning. Instead, with moderate
budget adjustment, it finds a balance between privacy
protection and model effectiveness.

For the Privacy Budget ( £ ) metric, the values increase
steadily with the accumulation of training epochs and sampling
rates. This means that as the training scale expands, privacy
consumption also accumulates. This verifies the basic principle
that differential privacy budgets are gradually consumed during
training. Combined with the other metrics, this result shows
that the privacy—performance curve of DP-LoRA has a clear
dynamic pattern. As budget consumption increases,
performance metrics also improve, but privacy risks grow at
the same time. This highlights the core trade-off that privacy-
preserving instruction tuning must address in real applications.



This paper also evaluates the environmental sensitivity of
distributed/federated communication rounds and bandwidth
limitations to differential privacy accounting and model
performance. The experimental results are shown in Figure 4.
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Figure 4. Analysis of the environmental sensitivity of
distributed/federated communication rounds and bandwidth
limitations to differential privacy accounting and model
performance

For the relationship between communication rounds and
Perplexity, it can be seen that as the number of rounds
increases, perplexity decreases from a higher level to a lower
value. This shows that in distributed environments, DP-LoRA
reduces the uncertainty of language modeling through more
iterative communications. The decline is significant, indicating
that under differential privacy constraints, additional
communication rounds help the model adapt better to
distributed data distributions, thereby improving overall
generation quality.

For the relationship between communication rounds and
privacy budget, the cumulative & continues to rise as the
number of iterations increases, and the growth rate accelerates
significantly. This reveals that in distributed and federated
learning settings, privacy budgets are consumed rapidly when
communication frequency increases. For DP-LoRA, this result
highlights that improving performance comes at the cost of
higher privacy consumption. It also stresses the need to
reasonably constrain communication frequency in practice.

For the relationship between bandwidth and MIA-AUC, it
is observed that as bandwidth increases, the success rate of
membership inference attacks decreases significantly. This
indicates that higher bandwidth allows the model to transmit
more complete privacy-preserving updates in each round,
which improves resistance to attacks. This trend has important
implications for differential privacy accounting, as system
resources not only enhance training efficiency but also directly
strengthen privacy protection.

For the relationship between bandwidth and Instruction
Adherence, as bandwidth increases from a low level, the
adherence rate rises markedly, and under high bandwidth, it
approaches an ideal level. This shows that DP-LoRA is more
constrained under limited communication, while under higher
bandwidth, it can better leverage the advantages of differential
privacy fine-tuning. This achieves a balance between privacy
protection and performance. The result highlights the
sensitivity of differential privacy methods to environmental
conditions and confirms the practical impact of bandwidth
limitations on instruction modeling ability.

Finally, this study evaluated the data sensitivity of DP-
LoRA to the diversity of instruction types and the ratio of task
mix. The experimental results are shown in Figure 5.
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Figure 5.Evaluation of DP-LoRA's Data Sensitivity Based
on Instruction Type Diversity and Task Mix Ratio

As instruction type diversity increases, Perplexity shows a
continuous downward trend. This indicates that DP-LoRA can
better learn instruction execution patterns when the data
distribution becomes richer, thereby reducing generation
uncertainty. The improvement is especially clear when
instruction types shift from low to high diversity. The results
demonstrate the positive effect of diverse instructions on
enhancing the generalization ability of the model.

In terms of privacy attack risks, MIA-AUC decreases as
instruction types and task proportions are optimized. This trend
shows that DP-LoRA has stronger resistance in more complex
data environments. Instruction diversity effectively alleviates
the privacy leakage caused by overfitting. It also allows the
differential privacy mechanism to play a stronger role under
these conditions, ensuring the security of private data during
fine-tuning.

Instruction Adherence improves significantly with the
increase of instruction diversity, and the improvement is more
obvious when task proportions are balanced. This demonstrates
that DP-LoRA can better follow input instructions when the
data is richer and the task distribution is more reasonable,
leading to stronger instruction response ability. The trend
highlights the importance of instruction diversity and task
mixture for learning semantic consistency. It also shows that
these factors are key to maintaining high performance under
privacy protection.

For privacy budget consumption, & increases slightly
with higher instruction diversity and more balanced task
proportions. This indicates that more complex data conditions
require higher privacy budgets to support learning. However,
the overall growth remains controllable. The result emphasizes
that DP-LoRA can balance effectiveness and privacy protection
under complex task conditions. It improves performance while
keeping privacy costs at a reasonable level.

5. Conclusion

This study provides a systematic investigation of the DP-
LoRA algorithm for privacy-preserving instruction tuning. The



goal is to address the challenges of privacy leakage and
performance retention in large models for instruction-following
tasks. By introducing differential privacy into the model
structure and combining it with parameter-efficient low-rank
adaptation, the proposed method establishes a theoretical
balance between privacy budgets and performance. It also
demonstrates feasibility in maintaining strong privacy
protection and high effectiveness across multiple dimensions.
The results show that the method can reduce perplexity and
improve instruction adherence while significantly mitigating
privacy threats such as membership inference attacks. This
provides solid support for applying large models in security-
sensitive domains.

In experimental design and sensitivity analysis, this study
reveals the robustness of DP-LoRA to hyperparameters,
environmental factors, and data characteristics. Results under
different communication rounds and bandwidth conditions
show that the method adapts well to the resource constraints of
distributed and federated environments, while maintaining
strong performance under complex tasks. Data sensitivity
experiments further confirm the significant impact of
instruction diversity and task mixture on privacy and
performance. They also show that proper data construction and
allocation can relieve the pressure of privacy consumption.
These analyses not only demonstrate the scalability of the
method but also provide actionable guidance for deploying
differential privacy fine-tuning in diverse application scenarios.

From an application perspective, DP-LoRA has potential
value across multiple industries and tasks. In fields such as
financial risk control, healthcare, and intelligent customer
service, where data security is critical, the method addresses
legal and ethical risks of privacy leakage while ensuring stable
instruction-following and generation performance. In addition,
in cross-institution or multi-party collaboration settings, it can
serve as a standardized solution that enables knowledge
transfer and model enhancement without sharing raw data. This
extends the application boundaries of large models in privacy-
sensitive environments.

Future research can proceed in several directions. One
important question is how to further improve model
performance under stricter privacy budget constraints. Another
direction is to explore more efficient parameter adaptation
strategies and privacy-preserving mechanisms combined with
federated learning, which will support the broader deployment
of large models. Moreover, applying DP-LoRA to cross-modal
instructions, personalized instruction recommendation, and
autonomous agent systems will further validate its generality
and adaptability in diverse scenarios. With continued

exploration and optimization, the proposed method has the
potential to provide a stronger technical foundation for secure
and trustworthy applications of large models and to drive
progress in related fields.
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