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Abstract: This paper proposes an unsupervised anomaly detection method based on contrastive learning to address challenges
in cloud computing environments, such as high data dimensionality, complex structure, and lack of labels. The method segments
raw time series monitoring data into subsequences using a sliding window mechanism and applies various data augmentation
strategies to construct positive and negative sample pairs, guiding the model to learn discriminative embeddings without
supervision. A temporal attention mechanism is integrated to capture key dynamic features in the sequence, enhancing the model's
ability to represent long-term dependencies and local fluctuations. Anomaly scores are calculated by measuring similarities in the
embedding space, enabling an efficient detection process without the need for labels. The method is evaluated on a cloud
monitoring dataset across different augmentation strategies, parameter settings, and temporal modeling configurations.
Experimental results show that it outperforms several recently published unsupervised models in F1 Score, AUC, and KS Score,
demonstrating its effectiveness and engineering adaptability in handling high-dimensional dynamic data within cloud platform
scenarios.
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1. Introduction
In today's data-driven technological ecosystem, cloud

computing has become the foundation for supporting complex
applications and large-scale data processing tasks. As
enterprises increasingly pursue digital and intelligent
transformation, the workloads on cloud platforms continue to
grow. System structures are becoming more complex, and the
runtime environment is becoming more dynamic. This high
degree of virtualization and distribution brings not only higher
demands for scalability and flexibility but also exposes the
platform to more potential security and stability risks.
Abnormal events such as performance bottlenecks, network
attacks, and resource misallocations can significantly impact
service quality and even lead to business interruptions.
Therefore, efficiently identifying and locating anomalies in
large-scale and dynamic environments has become a core issue
in ensuring the stable operation of cloud platforms.

However, anomaly detection in cloud computing presents
significant challenges[1]. First, the monitored data is high-
dimensional and originates from multiple sources, including
logs, metrics, and tracing data, resulting in strong heterogeneity
and high dimensionality. Second, due to frequent system
evolution and rapid component updates, the boundary between
normal and abnormal states is often unclear, and abnormal
patterns are difficult to define in advance. Additionally, a large
portion of the data lacks labeled annotations, making traditional
supervised detection methods less applicable. Against this
background, it is crucial to find a method that can extract
essential features and identify hidden anomaly patterns without
relying on labels[2].

In recent years, unsupervised learning methods have
attracted considerable attention in the field of anomaly
detection. Their main advantage lies in the ability to discover
structural features and behavioral patterns from data without
the need for manual labeling. Among them, contrastive
learning, as a representative unsupervised representation
learning strategy, guides the model to learn discriminative
feature representations by constructing positive and negative
sample pairs. It demonstrates strong feature extraction
capabilities and broad transferability. Contrastive learning
enhances the model's sensitivity to structural or semantic
differences, thereby improving its ability to distinguish
abnormal states. Applying this approach to unsupervised
anomaly detection in cloud environments shows great potential
in addressing challenges such as high dimensionality and label
scarcity.

Moreover, data in cloud computing scenarios exhibit clear
temporal properties and dynamic evolution. System
performance metrics, network traffic, and user behavior traces
often contain complex temporal dependencies and local
fluctuation patterns. Effectively modeling these temporal
structures has a direct impact on anomaly detection
performance. Integrating contrastive learning with temporal
modeling strategies may enhance the ability to capture anomaly
trends, fluctuation signals, and periodic changes. This can
improve the model's robustness and generalization in dynamic
environments[3]. Therefore, contrastive learning strategies that
incorporate both temporal awareness and structural
discrimination are a promising direction for anomaly detection
in cloud computing.



In summary, there is an urgent need for an efficient
algorithmic framework that can perform unsupervised
modeling while extracting key features from high-dimensional,
multimodal, and temporal data. Unsupervised anomaly
detection methods based on contrastive learning have emerged
in response to this demand. These methods align with the
current data-driven paradigm and provide new technical
support for improving intelligent monitoring and operational
security of cloud platforms. Their development is of great
significance for ensuring the reliability, stability, and service
quality of cloud computing systems[4].

2. Related work
With the continuous advancement of cloud computing

technologies, more enterprises and organizations are migrating
their core services to the cloud. This shift helps them respond
to rapidly changing market demands and increasing data
processing pressure. Cloud platforms offer elastic scalability,
automated resource scheduling, and multi-tenant shared
architectures, which significantly improve computing
efficiency and operational flexibility[5]. However, these
advantages also introduce greater system complexity and
runtime uncertainty. Frequent data interactions and dynamic
changes among heterogeneous components make the platform
more vulnerable to various abnormal events. In high-
concurrency and high-traffic production environments, sudden
performance degradation, service failures, and attack behaviors
pose serious threats to system stability. Therefore, building
efficient and accurate anomaly detection mechanisms in cloud
environments is crucial for ensuring business continuity and
data security. It also serves as a fundamental support for
enhancing resource utilization and service quality.

Monitoring systems in cloud platforms typically collect
large volumes of multi-dimensional time series data, such as
CPU usage, memory consumption, network traffic, and service
call chains[6]. This data is generated continuously densely and
dynamically. In such environments, anomalies often appear as
rare and subtle shifts or sudden state changes, lacking clear
boundaries from normal patterns and easily overwhelmed by
noise. Additionally, the types of anomalies are highly diverse
and may result from misconfigurations, external attacks,

workload surges, or hardware failures. These factors introduce
high uncertainty. Traditional rule-based methods or supervised
learning models face significant limitations in practice. In
particular, when data labeling is expensive and abnormal
samples are scarce, building classifiers or regressors that rely
on labeled data becomes impractical. Under conditions without
labels and weak structure, automatically discovering potential
anomaly signals from raw data becomes a core challenge in
current research.

In recent years, unsupervised learning has emerged as a key
approach to address these issues. Among them, contrastive
learning, which learns discriminative features by modeling
relationships between samples, has shown strong adaptability
and representational power in anomaly detection tasks. By
designing appropriate mechanisms to construct positive and
negative sample pairs, contrastive learning can guide models to
capture semantic similarity and difference without requiring
label supervision. This leads to more effective embedding
representations. In cloud environments, where data often
contains periodic fluctuations, local noise, and structural
redundancy, contrastive learning helps identify atypical
patterns hidden in dynamic complexity by emphasizing
structural consistency and distribution boundaries. More
importantly, this method offers good scalability and
transferability[7]. It can adapt to different platform
architectures and data characteristics, improving both stability
and reliability in real-world applications while maintaining
algorithm generalizability[8].

3. Architectural Approach
The network architecture illustrates an unsupervised

anomaly detection method based on contrastive learning. The
process includes sliding window segmentation, data
augmentation, and embedding learning through an encoder. A
dual-branch structure constructs positive and negative sample
pairs to guide the model in learning discriminative
representations without labels. A temporal attention mechanism
is introduced to capture key dynamic information within the
sequences. Finally, anomaly scores are estimated through
similarity computation, aligning with the method proposed in
the paper. The model architecture is shown in Figure 1.

Figure 1. Contrastive Learning for Unsupervised Detection in Cloud Anomalies



This paper proposes an unsupervised anomaly detection
method based on contrastive learning, which aims to
automatically learn discriminative representations from high-
dimensional, multi-source, and time-series cloud computing
monitoring data to achieve effective identification of abnormal
behaviors. First, let the input raw monitoring data be
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Among them, ),( sim represents the cosine similarity
function, and r is the temperature parameter, which controls
the sensitivity of the similarity distribution.

In the encoder structure design, a time-sensitive neural
network module is used to model the dynamic evolution
characteristics within the subsequence. Considering the
periodicity and local disturbance characteristics of cloud
computing monitoring data, the model introduces a time-
sequence attention mechanism in the embedding space learning
to emphasize the key time points. Suppose the input
subsequence is embedded as ],...,,[ 21 thhhH  , and each

mt Rh  , then the context is calculated through the attention
mechanism as:
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Where q is a learnable query vector, t represents the
importance weight of the t th time point, and finally z
aggregates the key dynamic information in the temporal
structure.

After completing the contrastive learning training, the
model obtains the potential representation ability of the input
sequence distribution structure. In order to perform anomaly
scoring, this paper defines anomaly measurement functions
based on reconstruction error and embedding similarity. Given
a subsequence iS to be detected, which is represented by

iz , and looking for the closest reference representation rz
in the training set, its anomaly score is defined as:
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This score measures the degree of deviation of the current

sample from the normal mode in the embedding space, thereby
achieving label-free anomaly detection. The entire method
framework forms a closed-loop structure between data
enhancement, feature learning, and anomaly measurement,
with good adaptability and robustness, and is suitable for
complex, high-dimensional, and dynamic anomaly detection
needs in cloud platform environments.

4. Dataset & Experimental Analysis
4.1 Dataset

This study uses the AWS CloudWatch Dataset, which is
widely adopted in real-world cloud computing environments,
as the experimental data source. The dataset consists of
multiple monitoring metrics, including CPU utilization,
network traffic, and disk read/write rates. It covers the
operational states of virtual machines, containers, and service
layers. The data exhibits high dynamism and multi-
dimensional characteristics, effectively reflecting complex
behavioral patterns in cloud platforms.

The dataset is sampled at the minute level and spans
system operation data over various periods. It shows clear
temporal structures and periodic fluctuations. Several
synthetic anomalies are injected into the data, such as service
congestion, resource exhaustion, and network interruption.
These are suitable for validating the model's ability to
distinguish between normal and abnormal patterns using
contrastive learning.

Considering the real application scenarios of cloud
platform data, this dataset does not rely heavily on labels,
which aligns well with the objectives of unsupervised anomaly
detection tasks. Its high dimensionality, heterogeneity, multi-
scale properties, and dynamic evolution are closely matched
with the design of the proposed model in terms of input
structure, augmentation strategy, and temporal modeling. This



provides a strong foundation for evaluating the method's
applicability in real systems.

4.2 Experimental Results
This paper first conducts a comparative experiment, and the

experimental results are shown in Table 1.

Table1: Comparative experimental results
Model F1

Score
Precision Recall AUC KS Score

TimeConAD
(Ours) 0.872 0.891 0.854 0.938 0.682

Anomaly
Transformer[9
]

0.841 0.859 0.826 0.915 0.641

DONUT+[10] 0.773 0.799 0.748 0.875 0.578
GDN[11] 0.802 0.813 0.791 0.891 0.605
MO-
GAAL[12] 0.741 0.782 0.708 0.862 0.561

The experimental results show that the proposed
TimeConAD model outperforms other baseline methods across
multiple evaluation metrics. In particular, it achieves
significantly higher scores in F1 Score, Precision, and Recall,
which are core indicators for measuring detection accuracy and
coverage. This demonstrates that the method offers stronger
discrimination and robustness when dealing with the challenges
of dynamic changes, missing labels, and complex anomaly
types in cloud computing scenarios. By introducing a
contrastive learning mechanism, TimeConAD can effectively
learn the underlying structural differences between normal and
abnormal patterns under unsupervised conditions, leading to
superior anomaly detection performance.

Compared with mainstream methods such as Anomaly
Transformer and GDN, TimeConAD achieves more notable
improvements in AUC and KS Score. AUC reflects the model's
global detection ability, while KS Score measures the
distributional difference between normal and abnormal samples.
Both are critical in anomaly detection tasks. TimeConAD
constructs subsequences using a sliding window, generates
multi-view inputs through data augmentation, and applies
temporal attention to extract key sequential features. This
enables the model to capture subtle disturbances and local
shifts in anomaly patterns, significantly enhancing overall
detection effectiveness.

For structure-aware models such as GDN and MO-GAAL,
although they show advantages in structural learning, their
generalization ability is limited when applied to high-
dimensional time series data without labels. TimeConAD
addresses this issue by integrating representation alignment and
anomaly distribution modeling through unsupervised
contrastive learning. It learns high-quality sequence
embeddings without relying on labeled data. This mechanism is
particularly suitable for monitoring data in cloud platforms that
are frequently updated and lack accurate annotations, showing
strong adaptability to real-world scenarios.

This paper also experiments on the sensitivity of data
enhancement strength to contrastive learning effects. The
experimental results are shown in Figure 2.

Figure 2. Sensitivity analysis of data augmentation intensity on
contrastive learning effects

The experimental results show that data augmentation
strategies with varying strengths have a significant impact on
the performance of contrastive learning in anomaly detection
tasks. As the augmentation strength increases from weak to
strong, the model's performance in the F1 Score, AUC, and KS
Score initially improves and then slightly declines. This
suggests that moderate perturbations help the model learn more
discriminative features between normal and abnormal states. In
particular, the model performs best when the augmentation
strength is set to “Strong,” with all evaluation metrics reaching
their highest levels. This indicates that the positive sample
views generated at this stage effectively guide the embedding
space to learn more distinguishable representations.

The improvements in AUC and KS Score indicate that
augmentation not only increases the distance between different
classes in the representation space but also enhances the
model's sensitivity to anomaly boundaries. This is especially
important in cloud platform monitoring data, where normal
fluctuations occur frequently. Proper augmentation helps the
model distinguish between noisy normal samples and mildly
abnormal ones, thereby improving detection accuracy and
robustness. In contrast, overly strong augmentation may distort
key features of the original sequence, resulting in
representation shifts and a slight drop in detection performance.

The changes in the KS Score reveal that augmentation
strength directly affects the separability of positive and
negative sample distributions. Stronger augmentation
reinforces the consistency among positive samples and
increases the distribution gap from negative samples. This
improves the model's discriminative power during distribution
learning. However, when the augmentation exceeds a
reasonable threshold, it may disrupt the original temporal
structure and weaken the ability of contrastive loss to enforce
semantic boundaries. This can reduce the precision of anomaly
detection.

This paper also conducts comparative experiments on the
impact of sample view generation strategies on robustness. The
experimental results are shown in Figure 3.



Figure 3. Analysis of the impact of sample view generation
strategy on robustness

The experimental results indicate that different sample view
generation strategies have a significant impact on model
robustness in unsupervised contrastive learning. Among these
strategies, Masking and Combined augmentation achieve the
best performance, especially in the F1 Score and KS Score,
which reflect anomaly detection accuracy and sample
distribution separability. This suggests that masking local
temporal segments or applying multiple perturbations helps the
model better capture subtle differences between normal and
abnormal states, enhancing generalization in high-dimensional
time series data.

The improvement in AUC shows that the Masking strategy
guides the model to focus on key structures and long-term
dependencies. It increases the diversity of positive samples
while preserving their semantic integrity. This is especially
important for monitoring data in cloud platforms, which often
contain periodic fluctuations and local anomalies. In contrast,
strategies such as Cropping and Permutation introduce heavy
disturbances to temporal structures. This may cause the loss of
feature information and weaken the model's ability to identify
boundary cases, reducing overall robustness.

Jittering achieves moderate performance in the F1 Score
and AUC, but its KS Score is relatively low. This indicates that
although it enhances input diversity, it has a limited ability to
increase the distribution gap between positive and negative
samples. As a result, it struggles to form clear anomaly
boundaries. Permutation, which disrupts the original time order,
introduces strong perturbations but breaks causal relationships
in the sequence. This leads to weaker representation quality in
the embedding space and degrades performance in time-
dependent anomaly detection tasks.

This paper also analyzes the impact of the number of
temporal attention layers on sequence modeling capabilities.
The experimental results are shown in Figure 4.

Figure 4. Attention Layer Depth Evaluation

The experimental results show that the number of temporal
attention layers has a clear impact on the model's ability to
capture sequential patterns. When the attention mechanism is
set to three layers, the model achieves the best performance in
F1 Score, AUC, and KS Score. This indicates that a moderate
increase in attention depth enhances the model's perception of
complex temporal structures. It allows the model to better
capture long-term dependencies and subtle fluctuations in
monitoring data, improving its ability to distinguish abnormal
behaviors. In cloud platform environments, system states often
show nonlinear dynamics. Three layers of attention strike a
good balance between representation capacity and the risk of
overfitting.

When the number of attention layers is small, such as only
one layer, the model's ability to capture temporal dependencies
is limited. It cannot fully model multi-scale time patterns,
resulting in overall lower performance. In particular, the KS
Score reveals the model's difficulty in establishing clear
boundaries between normal and abnormal sample distributions.
This can lead to uncertain anomaly judgments in high-
frequency cloud scenarios, reducing the system's
responsiveness to potential risks.

As the number of layers increases to four and five, model
performance begins to decline. Although deeper attention
structures can theoretically learn more complex representations,
the lack of supervision in unsupervised tasks may cause
training instability. This increases the risk of overfitting. In
anomaly detection without labels, deeper attention stacking
may cause the model to focus more on local noise rather than
key patterns. This harms the quality of representations and
reduces generalization.

The overall trend shows that temporal attention
mechanisms play an important role in modeling dynamic
sequences. However, the number of layers should be carefully
balanced based on the task characteristics. For high-
dimensional, dynamic, and weakly structured monitoring data
in cloud computing, using three attention layers provides a
good trade-off between expressive power and training stability.
This supports more robust semantic learning within the
contrastive learning framework.



Finally, this study investigates the effect of learning rate
settings on the stability of the training process, as shown in
Figure 5.

Figure 5.The impact of learning rate setting on the stability
of the training process

The experimental results show that the learning rate has a
significant impact on both training stability and final model
performance. When the learning rate is set to 0.001, the model
achieves peak values in F1 Score, AUC, and KS Score. This
indicates that this setting allows effective gradient propagation
while avoiding oscillation or failed convergence caused by
large step sizes. These results confirm that a moderate learning
rate helps the embedding space form gradually in an
unsupervised contrastive learning framework, which enhances
the model's ability to distinguish anomalies.

When the learning rate is too low, such as 0.0001, the
model remains stable but converges slowly. This results in
weak discriminative power of the learned embeddings. In high-
dimensional and dynamic monitoring data, a low learning rate
may fail to capture subtle anomaly patterns in time, leading to
poor boundary construction. This effect is especially visible in
the KS Score, which suggests the model cannot effectively
separate the distribution of positive and negative samples.

In contrast, a high learning rate, such as 0.01, speeds up
early training but often causes instability in the loss landscape.
This makes the optimization path unstable. In contrastive
learning, such instability can blur the representations of
positive and negative samples, disrupting the structure of the
embedding space. As a result, the model's ability to detect
abnormal sequences declines. Both the F1 Score and AUC
show a downward trend in the experiments, confirming that an
excessively high learning rate damages the model's robustness
and weakens its applicability to real-world cloud data.

Performance analysis under different learning rate settings
reveals that the learning rate directly influences how the
embedding space is shaped during training. For high-frequency,
sparse-distribution monitoring data in cloud environments,
choosing a learning rate that ensures both training stability and
effective contrastive feature extraction is key to achieving
efficient convergence and accurate unsupervised anomaly
detection.

5. Conclusion
This study addresses key challenges in anomaly detection

within cloud computing environments by proposing an
unsupervised method based on contrastive learning. The
approach integrates sliding window segmentation, diversified
data augmentation, and a temporal attention encoding module.
It effectively handles the modeling of high-dimensional,
heterogeneous, and unlabeled monitoring data. By constructing
positive and negative sample pairs to guide feature learning, the
model can automatically acquire discriminative representations
under unsupervised conditions, enabling accurate detection of
complex anomalous behaviors. Experimental results
demonstrate strong performance across multiple key metrics,
confirming the practicality and robustness of the proposed
framework in real-world cloud scenarios.

Starting from the goal of ensuring system stability, the
study designs an anomaly detection framework with structural
generalization and temporal modeling capabilities. It performs
well in environments with frequent changes and limited labeled
data. The model does not rely on predefined rules or manual
feature extraction, making it applicable to various types of
monitoring data, including service metrics, resource usage, and
network conditions. This provides a practical technical path for
intelligent alerting and anomaly diagnosis in real operations.
The introduction of contrastive learning further enhances the
model's transferability, supporting cross-platform and cross-
scenario deployment. This adds flexibility and efficiency to the
development and scaling of anomaly detection algorithms.

The proposed method has broad application potential in the
cloud computing domain. It can support resource scheduling at
the infrastructure level and extend to behavior modeling,
security analysis, and performance bottleneck identification in
microservice architectures. In emerging architectures such as
edge computing, container orchestration, and serverless
computing, system behaviors are more complex, and anomaly
patterns are more diverse. The contrastive learning model
proposed here shows strong structural compatibility and data
adaptability. It provides theoretical support and engineering
foundations for building future autonomous operations and
intelligent monitoring systems.

Future research may further explore the method's scalability
in federated environments, multi-source platforms, and online
learning scenarios. For example, integrating incremental
representation updates, graph-structured information, or multi-
task learning modules could improve adaptability and multi-
objective recognition. Incorporating semantic modeling
techniques such as large language models into the anomaly
detection pipeline may enhance the model's ability to
understand complex system behaviors. This could promote the
evolution from static anomaly detection to causal analysis and
intelligent decision-making, supporting the continued
development of cloud computing and intelligent operations.
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