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Abstract: Artificial Intelligence (Al) is fundamentally reshaping Intelligent Transportation Systems (ITS) by enabling real-time
perception, prediction, and decision-making for connected and autonomous mobility networks. The convergence of deep learning,
reinforcement learning, and computer vision with advanced sensing and communication technologies empowers vehicles and
infrastructure to collaboratively manage traffic, improve safety, and reduce environmental impact. Al-driven methods have
demonstrated superiority over traditional rule-based approaches in traffic forecasting, route optimization, and autonomous vehicle
control, while edge computing and 5G/6G connectivity are making large-scale deployment increasingly feasible. However,
challenges remain in data heterogeneity, model interpretability, safety validation, cybersecurity, and regulatory compliance. This
survey provides a comprehensive review of Al methodologies applied to ITS, covering traffic prediction, perception for
autonomous driving, multi-agent control, and smart infrastructure optimization. We analyze the current state of deployment,
highlight open challenges such as privacy-preserving learning and robust decision-making under uncertainty, and propose future
research directions including Al-enabled digital twins, federated learning for vehicular networks, and scalable edge intelligence.
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1. Introduction

The global transportation ecosystem is undergoing a
profound transformation as Artificial Intelligence (Al) becomes
the central enabler of Intelligent Transportation Systems (ITS).
Traditional traffic management relied on static models and
human-designed control strategies, which cannot effectively
handle the explosive growth of real-time traffic data from
connected vehicles, roadside sensors, smartphones, and Internet
of Things (IoT) devices [1]. In contrast, Al-powered systems
leverage large-scale datasets and advanced algorithms to enable
perception, prediction, and decision-making that adapt
dynamically to evolving traffic conditions. These systems aim
to achieve four fundamental goals: improving safety by
reducing accidents and human error, optimizing traffic
efficiency by alleviating congestion, enhancing sustainability
by reducing energy consumption and emissions, and enabling
user-centric mobility services such as personalized routing and
shared autonomous fleets [2].

The proliferation of Connected and Autonomous Vehicles
(CAVs), coupled with next-generation wireless networks
(5G/6G) and Edge Computing, has created an environment
where vehicles, roadside infrastructure, and cloud services
collaborate seamlessly. For example, connected vehicles can
share sensor data to collectively detect obstacles, while smart
traffic lights can adapt signal timing based on Al-driven
predictions of congestion [3]. Deep neural networks have
advanced perception tasks such as object detection, lane
boundary recognition, and pedestrian intention prediction,
enabling autonomous vehicles to navigate complex urban
environments [4]. At the same time, Deep Reinforcement

Learning (DRL) has shown strong potential in optimizing
signal control, cooperative driving, and platooning by learning
adaptive strategies from real-world traffic patterns [5].

Despite rapid advances, deploying Al in large-scale ITS
faces critical challenges. Data collected across heterogeneous
fleets is often noisy, incomplete, and biased, limiting the
generalization of Al models. The black-box nature of deep
learning complicates safety certification and explainability,
raising concerns for regulators and the public [6]. Adversarial
attacks can manipulate sensor inputs, threatening the reliability
of perception systems [7]. In addition, privacy regulations such
as GDPR and CCPA constrain centralized data sharing,
motivating research into federated learning and privacy-
preserving analytics [8]. Scalability is another barrier: Al
models must run efficiently on resource-constrained edge
devices and deliver real-time decisions under low-latency
requirements [9].

The integration of Al with ITS is now expanding beyond
perception and control to include system-level intelligence.
Digital twins are emerging as virtual replicas of transportation
networks, enabling predictive simulation and policy testing
before real-world deployment. Federated learning allows
distributed model training across vehicles and roadside units
(RSUs) without exposing raw data, addressing privacy and
bandwidth concerns. Edge-cloud collaborative architectures are
redefining how Al inference and training are distributed
between vehicles, infrastructure, and centralized servers [10].
These innovations are expected to accelerate the transition
toward fully autonomous, resilient, and adaptive mobility
ecosystems.



This survey provides a holistic and forward-looking
review of Al-driven ITS. Unlike earlier works focusing
narrowly on individual tasks such as traffic forecasting or
single-vehicle autonomy, we examine the entire technology
stack, including perception, prediction, control, communication,
and infrastructure intelligence. We synthesize advances across
deep learning, reinforcement learning, graph neural networks
(GNNs), digital twins, and federated Al, and analyze their
potential to revolutionize transportation. Furthermore, we
discuss the deployment challenges in scalability, safety,
privacy, and interoperability, providing guidance for both
researchers and practitioners seeking to design robust and
trustworthy Al-enabled transportation systems.

2. Related Work and Current Landscape

Research on applying artificial intelligence to Intelligent
Transportation Systems (ITS) has evolved over multiple
decades, transitioning from early rule-based models to modern
data-driven deep learning approaches. Early surveys primarily
focused on traffic flow prediction using statistical methods
such as autoregressive integrated moving average (ARIMA) or
Kalman filtering, which were limited in handling nonlinearity
and spatiotemporal complexity. Lv et al. [9] pioneered a deep
learning perspective by reviewing how stacked autoencoders
and recurrent neural networks (RNNs) can model complex
traffic dynamics, outperforming traditional time-series models.
However, their work did not consider the emergence of graph
neural networks (GNNs) that now dominate traffic forecasting
by capturing both spatial road network topology and temporal
dependencies. Zhang et al. [10] later provided a broad review
of deep learning for traffic prediction, but their focus was
primarily on algorithmic accuracy, with little discussion of
real-time deployment challenges in edge and vehicular
networks.

Another major body of literature centers on traffic signal
control and adaptive routing. Khamis and Gomaa [11] surveyed
reinforcement learning (RL)-based traffic light control,
emphasizing Q-learning and deep Q-networks (DQN) to
optimize signal phases. Feng et al. [12] extended this by
considering multi-agent reinforcement learning (MARL),
which is critical in large urban networks with numerous
interacting intersections. However, most of these reviews fail to
address the scalability of MARL in highly dynamic, partially
observable environments or the role of V2X communication in
enhancing learning efficiency. More recent works highlight
how graph reinforcement learning (GRL) integrates traffic
topology into policy learning, but systematic reviews remain
scarce.

In the autonomous driving domain, Grigorescu et al. [13]
examined deep learning for perception tasks such as object
detection, semantic segmentation, and sensor fusion, but their
analysis predates the widespread adoption of transformer-based
architectures that now dominate perception benchmarks. Kuutti
et al. [14] surveyed deep reinforcement learning for vehicle
control and decision-making, focusing on continuous control
policies but neglecting hybrid architectures that combine
safety-critical rule-based planners with neural network policies
to meet reliability standards. Similarly, recent reviews of multi-
sensor fusion in autonomous driving, such as those by Feng et

al. [15], provide insights into LiDAR-camera fusion and radar
perception but lack discussion of end-to-end differentiable
sensor fusion pipelines and their real-time deployment
constraints on embedded platforms.

Other emerging areas such as connected autonomous
vehicles (CAVs) and vehicular edge intelligence have received
limited integrated treatment. Molina-Masegosa et al. [16]
surveyed vehicular communication standards (V2V, V21, V2X)
but did not consider how federated learning (FL) and edge Al
enable distributed model training and inference while
preserving privacy. Habibzadeh et al. [17] explored loT-based
smart cities, mentioning Al-driven transportation management
but failing to examine the synergy between Al and digital twin
technology for predictive infrastructure planning and real-time
network simulation. Similarly, early works on cloud-based ITS
architectures (e.g., Zhang et al. [18]) focused on offloading
computation to centralized servers but did not anticipate the
rapid rise of edge-cloud collaborative architectures where
inference is distributed for low-latency applications.

More recently, several reviews attempt to unify these
perspectives but remain fragmented. Zhou et al. [19] provided
an overview of deep reinforcement learning in transportation
but focused narrowly on traffic control without discussing
autonomous vehicles or digital twin integration. Min et al. [20]
introduced Al-powered digital twins for traffic simulation and
planning but lacked discussion on the communication and
security challenges that arise when integrating Al with large-
scale connected vehicles. Xu et al. [21] surveyed federated
learning in vehicular networks, outlining privacy benefits but
offering limited analysis on model aggregation under
intermittent connectivity and adversarial participants.

The contribution of this survey is to bridge these
fragmented perspectives into a single, cohesive analysis. We
examine Al-driven ITS as a multi-layered ecosystem that spans
from perception (object detection, semantic mapping) to
prediction (traffic flow, trajectory forecasting), control
(reinforcement learning for signal timing and cooperative
driving), and system-level intelligence (digital twins, federated
learning, and edge-cloud collaboration). We integrate lessons
from both academic research and industrial deployment to
highlight what is technically feasible today and what challenges
remain unsolved for real-world scalability and safety. By doing
so, this survey moves beyond algorithmic performance and
provides a systems-oriented, forward-looking roadmap for Al
in transportation.

3. Al Methodologies for
Transportation Systems

Intelligent

Artificial Intelligence (AI) methods in Intelligent
Transportation Systems (ITS) can be organized into several
core dimensions that collectively enable perception, prediction,
control, and system-level optimization. These methodologies
include deep learning for perception and understanding, graph-
based and sequence models for traffic prediction, reinforcement
learning for decision-making and control, and system-level
intelligence frameworks such as federated learning, edge
computing, and digital twins. Together, they form the
foundation of modern Al-enabled transportation ecosystems



capable of handling dynamic, data-rich, and safety-critical
environments.

3.1 Deep Learning for Perception and Understanding.

Perception is the cornerstone of Al-driven ITS, allowing
vehicles and infrastructure to interpret complex road
environments. Early approaches relied on classical computer
vision techniques such as handcrafted feature extraction (HOG,
SIFT) for object detection and lane recognition, but these
methods struggled in unstructured and highly variable urban
scenes. The rise of deep learning, especially convolutional
neural networks (CNNs), transformed perception by enabling
end-to-end feature learning from large-scale annotated datasets.
Models such as Faster R-CNN and YOLO have been widely
adopted for real-time object detection of vehicles, pedestrians,
and traffic signs [22]. For semantic segmentation and scene
understanding, architectures such as SegNet, DeepLab, and
more recently transformer-based models like DETR and
BEVFormer provide high-resolution environment mapping
crucial for autonomous navigation [23]. Multi-sensor fusion
has become standard: LiDAR provides accurate 3D structure,
while cameras offer rich semantic context; fusion frameworks
combine them to improve robustness under adverse weather or
lighting conditions. Beyond vehicles, smart infrastructure
employs similar perception systems to monitor intersections,
detect accidents, and support adaptive traffic management.

3.2 Graph and Sequence Models for Traffic Prediction.

Traffic flow forecasting and trajectory prediction are
essential for proactive control and congestion mitigation. While
recurrent neural networks (RNNs) and long short-term memory
(LSTM) networks have been widely applied to capture
temporal dynamics, they are limited in modeling the complex
spatial relationships in road networks. Graph Neural Networks
(GNNs) have emerged as a powerful solution by representing
transportation networks as graphs, where nodes correspond to
road segments or intersections and edges capture connectivity
or vehicle flow [24]. Spatio-temporal GNNs, such as ST-GCN
and DCRNN, integrate graph convolution with recurrent
structures to model both spatial and temporal dependencies.
Transformer-based models are increasingly used for long-range
temporal prediction due to their self-attention mechanism [25].
These models enable accurate short-term and long-term traffic
forecasting, supporting real-time congestion avoidance,
dynamic routing, and incident response. Some works also
incorporate external data sources such as weather, events, and
social media to enhance predictive accuracy, reflecting the
trend toward context-aware ITS analytics.

3.3 Reinforcement Learning for Decision-Making and
Control.

Reinforcement Learning (RL) provides a natural
framework for learning control policies in dynamic and
uncertain transportation environments. Single-agent RL
approaches, such as Deep Q-Networks (DQN), were initially
applied to optimize individual traffic signals. However, traffic
networks are inherently —multi-agent systems where
intersections, vehicles, and roadside units must coordinate.
Multi-Agent Reinforcement Learning (MARL) has become a
major research trend, enabling distributed agents to learn

cooperative strategies that improve global traffic flow while
adapting to local observations [26]. Policy gradient methods,
actor-critic architectures, and graph-based MARL have been
proposed to improve scalability. For autonomous driving, RL
enables decision-making in complex scenarios such as merging,
overtaking, and lane changing. Hybrid approaches combine RL
with rule-based safety constraints or formal verification to
ensure compliance with traffic regulations and avoid unsafe
exploration [27]. Cooperative Adaptive Cruise Control (CACC)
and platooning strategies based on RL further enhance highway
throughput and energy efficiency.

3.4 Federated Learning and Privacy-Preserving Al.

Data privacy is a critical barrier for Al deployment in
transportation, as vehicle and user data often contain sensitive
location and behavioral information. Federated Learning (FL)
has emerged as a promising paradigm by allowing models to be
trained across distributed edge devices — such as vehicles or
roadside units — without sharing raw data [28]. Aggregation
algorithms such as FedAvg enable the construction of global
models while keeping local data private. In vehicular networks,
FL can be integrated with V2X communication, enabling
collaborative model updates while coping with intermittent
connectivity and heterogeneous hardware. To address
adversarial participants and poisoning attacks, secure
aggregation, Byzantine-resilient optimization, and blockchain-
based auditing mechanisms have been proposed [29].
Combining FL with differential privacy and homomorphic
encryption further enhances confidentiality, enabling
compliance with regulations such as GDPR and CCPA while
maintaining model performance.

3.5 Edge Computing and Real-Time Al Deployment.

ITS applications require ultra-low latency and high
reliability, making centralized cloud-only architectures
insufficient. Edge computing brings Al computation closer to
data sources by deploying models on vehicles, roadside units
(RSUs), and base stations. This reduces communication delay
and enables real-time decision-making critical for safety
applications such as collision avoidance and emergency
braking [30]. Adaptive model compression techniques —
including pruning, quantization, and knowledge distillation —
allow deep models to run efficiently on resource-constrained
edge devices. Hierarchical edge-cloud architectures distribute
tasks: the edge handles time-critical inference, while the cloud
performs large-scale model training and long-term planning.
With the advent of 5G/6G, high-bandwidth and low-latency
networks further enhance the viability of edge Al for vehicular
systems. Emerging split learning approaches partition deep
networks between edge and cloud to balance performance and
resource usage.

3.6 Digital Twins and System-Level Intelligence.

Digital twin technology is revolutionizing transportation
planning by creating high-fidelity virtual replicas of physical
mobility systems. Powered by real-time data streams from IoT
sensors, connected vehicles, and infrastructure, digital twins
enable simulation, prediction, and optimization of traffic
scenarios before deployment in the real world [31]. Al
enhances digital twins by providing predictive models for



congestion, safety incidents, and infrastructure degradation.
Reinforcement learning agents trained within digital twins can
test control strategies safely and transfer them to real-world
systems. This closed-loop integration accelerates the
deployment of adaptive traffic management and autonomous
driving policies. Furthermore, digital twins support scenario-
based testing and validation for safety-critical Al, which is
essential for regulatory approval and public trust.

By integrating these methodologies — from perception
and prediction to control and system-level intelligence — Al-
driven ITS is evolving into a highly adaptive, data-centric
mobility ecosystem. However, deploying these technologies in
real-world large-scale networks introduces substantial technical
and socio-economic challenges, which are discussed next.

4. Challenges and Open Research Directions

Although Artificial Intelligence (AI) has enabled major
advances in Intelligent Transportation Systems (ITS), large-
scale deployment remains hindered by a complex set of
technical, safety, regulatory, and societal challenges. These
obstacles arise from the dynamic and safety-critical nature of
transportation networks, the heterogeneity of data sources, the
computational constraints of edge devices, and the lack of
standardized governance for Al-driven mobility. Addressing
these barriers is essential to realize the full promise of
autonomous and intelligent transportation.

4.1 Data Quality, Heterogeneity, and Bias.

Modern ITS depends on massive, diverse data streams
collected from vehicles, roadside sensors, mobile devices, and
infrastructure cameras. These data are often noisy, incomplete,
and inconsistent due to sensor failures, occlusions, adverse
weather, and uneven geographical coverage [32]. Learning
robust Al models under such conditions remains challenging,
particularly when domain shifts occur between training
environments and deployment locations. For instance, a
perception model trained in one city may fail in another with
different traffic patterns or weather conditions. Data bias can
lead to unfair or unsafe decisions, such as misclassifying
pedestrians of certain demographics or failing to detect bicycles
in underrepresented regions. Future research must explore
domain adaptation, self-supervised learning, and continual
learning to create models that generalize across diverse
environments while maintaining fairness and safety.

4.2 Safety, Explainability, and Certification.

Al-driven ITS, especially autonomous vehicles, operates
in safety-critical contexts where failures can cause accidents
and fatalities. Deep neural networks often function as black
boxes, making it difficult for engineers and regulators to
understand their decision-making process. This opacity hinders
safety certification and public acceptance [33]. Explainable Al
(XAI) methods, such as attention visualization, counterfactual
reasoning, and causal analysis, are emerging but remain
immature for real-time control. Moreover, regulators require
formal guarantees of safety under all operational conditions,
yet verifying complex neural policies remains unsolved. Future
systems may combine formal methods with learning-based
models, such as integrating rule-based safety constraints or

using runtime monitors to detect and override unsafe behaviors.
Scenario-based simulation and digital twin validation
frameworks will also be critical for large-scale testing of Al-
driven vehicles before deployment.

4.3 Cybersecurity and Adversarial Robustness.

Transportation systems are vulnerable to a wide range of
cyberattacks. Adversarial examples can fool perception models
by introducing subtle perturbations to sensor inputs, such as
slightly altered stop signs that cause misclassification [34].
Sensor spoofing and V2X message injection attacks can
mislead vehicles and traffic controllers, creating dangerous
situations. Federated learning and connected vehicle networks
are susceptible to model poisoning, where malicious
participants manipulate model updates to degrade global
performance. Addressing these threats requires robust Al
training methods, adversarial detection mechanisms, secure
communication protocols, and hardware-based trust anchors.
Blockchain-enabled audit trails and secure multi-party
computation could support trustworthy model aggregation, but
scalability and latency remain concerns. Future work should
integrate robust learning, cryptographic protection, and runtime
intrusion detection to safeguard Al-driven ITS.

4.4 Scalability,
Deployment.

Real-Time Performance, and Edge

Al models for perception and control are increasingly
large and computationally intensive, conflicting with the
latency and resource constraints of edge devices such as
roadside units and vehicle control units. Real-time collision
avoidance and traffic control require inference delays under 50
milliseconds, yet many state-of-the-art deep learning models
exceed this budget when running on embedded platforms [35].
Research on model compression, quantization, neural
architecture search (NAS), and hardware-software co-design is
crucial to achieve low-latency inference. Hierarchical edge-
cloud collaboration is a promising paradigm, where safety-
critical tasks run on local devices while less urgent or
computationally heavy processing is offloaded to the cloud.
However, optimizing this division dynamically under varying
network conditions remains a challenge. Additionally,
managing large fleets of heterogeneous vehicles and roadside
devices calls for scalable orchestration and remote model
updates without disrupting safety-critical operations.

4.5 Privacy, Regulation, and Federated Intelligence.

Transportation data often contain sensitive information
such as driver identities, routes, and behavior patterns.
Centralized Al training conflicts with regulations like GDPR
and CCPA that restrict the sharing of personal or location data
[36]. Federated Learning (FL) and other privacy-preserving
techniques (e.g., differential privacy, homomorphic encryption)
offer solutions but introduce new challenges: communication
overhead, vulnerability to poisoning attacks, and difficulties in
aggregating models under intermittent connectivity. Regulatory
frameworks for Al in ITS are still evolving and vary across
regions, complicating deployment for global automotive
manufacturers. Future research should pursue regulation-aware
Al systems that integrate privacy guarantees, auditable decision
logs, and compliance with regional data governance laws while



maintaining model performance. Standardized protocols for
secure FL aggregation and vehicular communication will be
critical.

4.6 Interoperability and System Integration.

Modern  transportation  systems  are  inherently
heterogeneous, spanning multiple vehicle manufacturers,
infrastructure vendors, and software platforms. Al solutions
developed in isolation often struggle to interoperate in mixed
environments. The lack of common data standards and model
deployment interfaces leads to fragmentation, limiting
scalability and innovation. Cross-vendor communication
protocols and standardized digital twin interfaces are needed to
create a unified mobility ecosystem. In connected vehicle
networks, ensuring secure and verifiable interoperation
between different vehicle brands and infrastructure is critical.
The development of open-source reference platforms, similar
to AUTOSAR for automotive electronics, could accelerate
interoperability for Al models and datasets.

4.7 Sustainability and Energy Efficiency.

Training and deploying large-scale Al models consume
substantial energy, conflicting with global sustainability goals.
Autonomous vehicle fleets and smart infrastructure require
continuous model updates, which can be carbon-intensive if
conducted in centralized data centers. PoS-based blockchain for
secure federated learning aggregation offers energy savings
compared to Proof of Work, but consensus overhead may still
be significant in vehicular contexts. Future ITS must integrate
green Al strategies, such as energy-aware model adaptation,
lightweight learning algorithms, and renewable-powered edge
infrastructure. Life-cycle assessments of Al-enabled ITS
should be conducted to guide sustainable design and policy
decisions.

4.8 Emerging Opportunities: Digital Twins, 6G, and Al-
Augmented Governance.

Looking ahead, several technological trends offer
pathways to overcome current barriers. Digital twins provide a
safe environment for training and validating Al models under
diverse scenarios, enabling robust policy learning and
certification. With the advent of 6G networks, ultra-reliable
low-latency communication will allow real-time coordination
between vehicles, infrastructure, and cloud AIl. Furthermore,
Al-driven mobility governance systems may automate policy
enforcement, congestion pricing, and infrastructure planning by
analyzing city-wide mobility data. However, these advances
will require rigorous safeguards for accountability, fairness,
and explainability to maintain public trust and regulatory
compliance [37]. Collaborative research among Al scientists,
transportation engineers, policymakers, and ethicists will be
essential to balance innovation with safety and societal
acceptance.

In summary, future ITS will need holistic Al frameworks
that are robust, interpretable, privacy-preserving, and energy-
efficient while operating in highly dynamic, safety-critical
environments. The convergence of Al with federated learning,
edge-cloud architectures, blockchain security, and digital twin-
based simulation is likely to define the next decade of research.
Achieving this vision will require both technical breakthroughs

and coordinated efforts to develop standards and governance
models suitable for global deployment.

5. Conclusion

Artificial Intelligence (AI) is rapidly redefining the
landscape of Intelligent Transportation Systems (ITS) by
transforming how vehicles, infrastructure, and city-scale
mobility networks perceive their environment, predict future
states, and make adaptive decisions. From early rule-based
algorithms to modern deep learning and reinforcement learning,
Al technologies have progressed to support complex tasks such
as object detection, trajectory prediction, dynamic signal
control, and cooperative driving among connected and
autonomous vehicles (CAVs). Meanwhile, the rise of federated
learning, edge-cloud collaborative architectures, and digital
twins has extended Al from vehicle-level autonomy to system-
wide intelligence capable of managing entire transportation
ecosystems in real time. Our survey integrates these diverse
research threads into a wunified perspective, covering
methodologies from perception and prediction to control and
infrastructure intelligence, and examining how Al innovations
are reshaping urban mobility toward safer, more efficient, and
sustainable futures.

A key insight from this survey is that the methodological
diversity of Al in ITS is both a strength and a source of
integration challenges. On one hand, deep neural networks and
graph-based models have revolutionized perception and
prediction, while deep reinforcement learning and multi-agent
coordination enable complex decision-making under
uncertainty. On the other hand, these models often operate as
isolated silos, optimized for individual subsystems such as
traffic lights or wvehicle control, without system-level
coordination or standardized interfaces. To move toward truly
adaptive and interoperable mobility ecosystems, future research
must emphasize holistic design principles that connect
perception, prediction, and control into unified, explainable,
and verifiable frameworks.

Another important conclusion is the urgent need for
robustness, safety, and accountability in  Al-driven
transportation. Unlike other Al domains, ITS operates in highly
safety-critical contexts where unexpected model failures or
adversarial attacks can cause life-threatening consequences. As
we discussed, emerging solutions include explainable Al (XAI),
runtime safety monitors, adversarially robust training, and
formal verification of neural policies. However, these
techniques are still early in their maturity and must be scaled to
the complexity of real-world transportation networks.
Regulators, industry, and academia must collaborate to create
standards for Al safety certification that balance innovation
with public trust.

Scalability and deployment efficiency remain another
decisive frontier. ITS increasingly depends on real-time Al
inference under strict latency and energy constraints, often
running on resource-limited edge devices such as roadside units
and embedded vehicle controllers. Future systems will need to
combine model compression, quantization, and adaptive
resource allocation with next-generation communication
infrastructures like 5G and 6G to achieve real-time



performance without sacrificing accuracy. Hierarchical edge-
cloud orchestration, in which safety-critical inference runs
locally while complex training and policy optimization occur in
the cloud or digital twins, represents a promising architecture
but requires further research on dynamic task allocation and
secure model updating.

Privacy and data governance will shape the trajectory of
Al in ITS over the coming decade. As mobility systems collect
sensitive user and vehicle data, compliance with regulations
such as GDPR and CCPA becomes essential. Federated
learning (FL) and privacy-preserving analytics allow
distributed intelligence without centralizing raw data, but these
techniques introduce new challenges in communication
overhead, adversarial robustness, and model aggregation under
intermittent connectivity. We anticipate the rise of privacy-by-
design ITS architectures that integrate secure multi-party
computation, differential privacy, and blockchain-based
auditing to create transparent yet privacy-preserving mobility
platforms trusted by both users and regulators.

Finally, the future of Al-enabled transportation will be
shaped by emerging paradigms such as digital twins, 6G
networks, and Al-augmented governance. Digital twins allow
safe and scalable testing of Al models under countless
simulated scenarios, accelerating innovation while reducing
real-world risk. Ultra-reliable low-latency communication in
6G networks will enable instantaneous coordination between
vehicles, infrastructure, and cloud AIl. Meanwhile, Al-driven
policy engines could automate traffic governance, congestion
pricing, and infrastructure optimization, enabling cities to
transition from reactive to proactive mobility management.
However, these opportunities come with challenges in ethics,
fairness, accountability, and sustainability, requiring
interdisciplinary  collaboration among Al researchers,
transportation engineers, policymakers, and social scientists.

In conclusion, realizing the vision of safe, scalable, and
sustainable Al-powered transportation systems requires more
than isolated algorithmic advances; it demands an integrated,
systems-level approach that blends cutting-edge Al methods
with rigorous safety engineering, privacy protection, and
governance. The field is moving from proof-of-concept
demonstrations to mission-critical deployment, making it
essential to develop robust Al models that are explainable,
auditable, and  interoperable = across  heterogeneous
transportation infrastructures. We expect that the convergence
of deep learning, reinforcement learning, federated and edge
intelligence, privacy-preserving technologies, and digital twin-
based validation will define the next decade of ITS research
and deployment, ultimately enabling cities and nations to build
intelligent, adaptive, and trustworthy transportation ecosystems.
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