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Abstract: Accurate image-based flower species recognition has gained increasing attention due to its applications in
biodiversity monitoring, agricultural management, and educational tools. Traditional computer vision approaches rely on
handcrafted features and shallow classifiers but fail to generalize across diverse species and complex real-world conditions. With
the advent of deep learning, convolutional neural networks (CNNs) and transformer-based models have significantly improved
image recognition accuracy. This paper proposes a hybrid deep learning architecture for flower classification that combines a
CNN backbone with attention-based feature refinement and transfer learning from large-scale natural image datasets. To address
limited labeled data, we integrate data augmentation and knowledge distillation to reduce overfitting and computational cost.
Extensive experiments on the Oxford 102 Flowers and FGVC datasets demonstrate that our approach outperforms conventional
CNN baselines and achieves competitive results compared to recent vision transformers. Furthermore, we analyze model
interpretability using Grad-CAM visualizations to highlight discriminative regions in flower images. This study provides a
practical and efficient solution for real-world flower recognition, with potential applications in smartphone-based plant
identification and smart agriculture.
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demonstrated the power of self-attention to capture global
image context.

1. Introduction

Image recognition is one of the most successful

applications of computer vision and has rapidly evolved with Despite these advances, flower recognition faces three

the advancement of deep learning. Within this field, automatic
flower species classification represents an important yet
challenging problem. Flowers exhibit high intra-class
variability due to differences in lighting, viewpoint, blooming
stage, and environmental background, while also having subtle
inter-class differences where species share similar colors and
petal shapes [1]. Accurate flower recognition can benefit a
wide range of applications, including biodiversity conservation,
where scientists need to monitor plant populations at scale [2];
precision agriculture, where automatic detection of plant
species supports crop management [3]; and educational or
citizen science apps such as Google Lens or PlantSnap,
enabling users to identify plant species using smartphones.

Traditional flower recognition approaches relied on
handcrafted features such as color histograms, shape
descriptors, and local binary patterns (LBP), combined with
classifiers such as support vector machines (SVMs) [4].
However, these methods are sensitive to illumination and
background noise, limiting their robustness in real-world
scenarios. The introduction of deep convolutional neural
networks (CNNs), such as AlexNet and VGGNet [5],
revolutionized image classification by enabling end-to-end
feature learning from raw pixels. Subsequent advances in
architectures such as ResNet [6], DenseNet [7], and
EfficientNet [8] have further improved accuracy and
computational efficiency, while Vision Transformers (ViTs) [9]

main challenges: Data scarcity - labeled flower datasets such as
the Oxford 102 Flowers contain relatively few samples per
class compared to ImageNet, making deep models prone to
overfitting; Fine-grained classification difficulty - many species
differ only in subtle petal textures or shapes; Deployment
constraints - real-time identification on mobile devices requires
models to be lightweight and efficient.

To address these challenges, this paper proposes a hybrid
architecture combining CNN-based feature extraction with
attention-based refinement to enhance the discriminative ability
for fine-grained flower species recognition. We leverage
transfer learning from large-scale datasets such as ImageNet to
overcome limited labeled data and employ knowledge
distillation to create lightweight student models for deployment.
Furthermore, we explore interpretability tools such as Grad-
CAM to provide visual explanations

2. Related Work

The task of flower image recognition lies at the
intersection of fine-grained visual classification (FGVC) and
deep image recognition. Over the last two decades, research
has evolved from classical hand-crafted feature extraction to
deep learning architectures capable of end-to-end feature
learning and representation.



2.1 Traditional Approaches.

Before deep learning became dominant, researchers relied
on handcrafted visual descriptors to classify flower images.
Features such as color histograms, Gabor filters, scale-invariant
feature transform (SIFT), and local binary patterns (LBP) were
used to capture petal color distributions and textural properties
[1], [2]. Classifiers such as support vector machines (SVMs),
random forests, and k-nearest neighbors (k-NN) were then
trained on these features. For example, Nilsback and Zisserman
[3] introduced the well-known Oxford 102 Flowers dataset and
built a pipeline combining SIFT descriptors with multiple
kernel learning to achieve moderate accuracy. However, these
methods suffered from poor generalization in uncontrolled
environments, as they struggled with background clutter,
lighting variation, and intra-class diversity.

2.2 Deep Learning and Convolutional Neural Networks.

The breakthrough of deep convolutional neural networks
(CNNs) transformed flower classification and computer vision
in general. AlexNet [4] and VGGNet [5] demonstrated that
large-scale supervised training can learn robust hierarchical
visual features, while ResNet [6] introduced skip connections
to alleviate vanishing gradients, enabling very deep networks.
Researchers  quickly applied CNNs to fine-grained
classification tasks, including flowers. Cui et al. [7] proposed
bilinear CNN models that combine feature maps from two
networks to better capture subtle differences in flower species.
Other works leveraged transfer learning from models
pretrained on ImageNet to overcome the scarcity of labeled
flower images. For instance, Zhang et al. [8] used fine-tuned
Inception-V3 models on Oxford 102 Flowers to achieve
substantial accuracy improvements without needing to train
from scratch.

2.3 Attention Mechanisms and Vision Transformers.

While CNNs excel at local feature extraction, they often
struggle to model global context - a limitation in fine-grained
recognition where spatial relationships between petals or color
patterns are critical. Attention mechanisms have been
introduced to address this issue. Hu et al. [9] proposed
Squeeze-and-Excitation Networks (SENet) to recalibrate
channel-wise feature responses, while CBAM [10] added both
spatial and channel attention. More recently, Vision
Transformers (ViT) [11] replaced convolutions with self-
attention to capture long-range dependencies, showing
competitive performance even on moderate-sized datasets
through pretraining. However, ViTs require large datasets to
avoid overfitting, limiting their direct use for flower
recognition where data is scarce.

2.4 Lightweight Models and Deployment.

Another line of work focuses on creating efficient models
suitable for mobile and embedded applications. Architectures
such as MobileNet [12], EfficientNet [13], and ShuffleNet [14]
achieve competitive accuracy with fewer parameters and lower
computational cost. Knowledge distillation - where a smaller

“student” model learns from a larger “teacher” network
- has been adopted to compress high-performing but heavy
models for on-device flower recognition [15]. Such approaches
are particularly relevant for smartphone-based plant

identification apps, where latency and energy consumption are
critical.

2.5 Interpretability in Fine-Grained Classification.

Interpretability is increasingly important for user trust and
scientific understanding in biological applications. Techniques
like Grad-CAM and Layer-wise Relevance Propagation (LRP)
visualize which image regions contribute to predictions [16].
For flower recognition, these methods help confirm that the
model focuses on biologically relevant structures such as petal
edges or color patterns rather than background noise. Few
works, however, systematically integrate interpretability with
model training to improve fine-grained recognition.

3. Proposed Method

The proposed flower image recognition system is
designed as an end-to-end deep learning framework that
integrates transfer learning, attention-based feature refinement,
and model compression to achieve both high accuracy and
computational efficiency. The overall architecture is illustrated
in Figure 1, where the system begins with an input module that
receives flower images of varying resolutions and pre-
processes them through resizing, color normalization, and data
augmentation. The processed images are fed into a
convolutional neural network backbone pretrained on large-
scale datasets such as ImageNet to leverage generic visual
features, followed by an attention refinement module that
enhances class-discriminative patterns crucial for fine-grained
flower species -classification. The final classification is
performed by a fully connected prediction head optimized
using a cross-entropy loss function. In parallel, a knowledge
distillation process transfers knowledge from a large, high-
performing teacher model to a lightweight student model,
enabling deployment on resource-constrained devices.

The system begins with a feature extractor
foparameterized by weights 6, which maps an input flower
image x € R"W3 {9 a feature representation h € R&H*W'

h = fg(ﬂ?)

The base architecture can adopt modern CNNs such as
ResNet50 or EfficientNet-B3 to capture low- to mid-level
patterns, including petal edges, color gradients, and venation
structures. However, conventional CNN backbones often fail
to highlight subtle discriminative cues among visually similar
species. To address this, we introduce an attention refinement
module A(- ) applied to the extracted feature maps:

W = A(h) = o(W, - 5(W; - GAP(1)))

This approach allows the student model to retain much of
the accuracy of the teacher while being significantly lighter and
faster.

Figure 1 conceptually illustrates the architecture: an input
pre-processing pipeline feeds images into a CNN backbone; its
feature maps pass through an attention refinement module; the
outputs are then pooled and classified; meanwhile, a teacher
network supervises the student network through distillation.
Such a design ensures competitive accuracy on challenging



fine-grained flower datasets while maintaining efficiency
suitable for mobile deployment.
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Figure 1. Architecture of the proposed CAD-Net.

In addition to architectural innovations, we incorporate
advanced data augmentation strategies such as random
cropping, color jittering, mixup, and CutMix to improve
generalization under limited labeled data. Pretraining on large
natural image corpora mitigates the data scarcity problem,
while the attention module and knowledge distillation jointly
tackle the fine-grained classification difficulty and deployment
constraints. This integrated methodology strikes a balance
between accuracy, interpretability, and efficiency, meeting the
practical requirements of real-world flower recognition
applications.

4. Experiments and Results

To validate the effectiveness of the proposed deep
learning architecture for flower species recognition, we
conducted a series of experiments on publicly available
benchmark datasets and compared our approach against state-
of-the-art convolutional neural networks (CNNs) and
transformer-based models. This section describes the datasets,
experimental setup, evaluation metrics, baseline models, and
presents both quantitative and qualitative results, including
interpretability analysis and computational efficiency.

The Oxford 102 Flowers dataset was selected as the
primary benchmark due to its widespread use in flower
recognition research. It contains 8189 images across 102
categories of flowers, with significant intra-class variation in
shape and color. Images vary in scale, viewpoint, and
background clutter, making the dataset challenging for fine-
grained classification. Additionally, we evaluated our model on
the FGVC iNaturalist subset focusing on flowering plant
species to test robustness in real-world conditions where
images are crowd-sourced and vary in quality. The Oxford
dataset was split into 10% for validation, 20% for testing, and
the rest for training, following common practice. The
iNaturalist subset used its official training and validation split.

4.1 Experimental Setup.
All experiments were conducted using PyTorch with an
NVIDIA RTX 3090 GPU. Input images were resized to 299 X

299 pixels and normalized using ImageNet statistics. Data

augmentation included random rotation, horizontal flipping,
color jittering, and mixup to enhance generalization. We used
the Adam optimizer with an initial learning rate of le-4,
decayed using cosine annealing. Training was performed for
100 epochs with a batch size of 32. Our backbone CNN was
initialized with ImageNet-pretrained weights. The attention
module was inserted after the last convolutional block.
Knowledge distillation was performed using a teacher model
based on ResNetl0l and a student model based on
EfficientNet-B0O, with a temperature T=4 and a distillation
weight a=0.7

We adopted standard classification metrics: Top-1
accuracy, Top-5 accuracy, and Fl-score to evaluate predictive
performance. Computational efficiency was assessed by
measuring the number of parameters (in millions), floating-
point operations per second (FLOPs), and inference latency on
a single NVIDIA Jetson Nano edge device. Interpretability was
evaluated using Grad-CAM visualizations, which show the
image regions most responsible for the classification decision.

4.2 Baselines.

We compared our approach against widely used models,
including VGG16 [5], ResNet50 [6], Inception-V3 [8],
EfficientNet-BO [13], MobileNetV2 [12], and the Vision
Transformer (ViT) [11]. For fairness, all models were fine-
tuned on the Oxford dataset with the same augmentation
strategies and training parameters.

Table 1 summarizes the classification accuracy and model
efficiency across different approaches. Our proposed CNN-
Attention-Distillation (CAD-Net) outperformed all CNN
baselines and was competitive with ViT while maintaining
much lower computational cost. Compared with the plain
ResNet50, our model achieved a Top-1 accuracy improvement
of 3.2% while reducing latency by 28% when deployed on the
Jetson Nano.

Table 1: Performance comparison on Oxford 102 Flowers.

Top- | Top-
1 5 F1- | Params | FLOPs | Latency
Model Acc | Acc | score (M) G) (ms)

%) | %)
VGG16[5] 853 | 96.4 | 0.842 138 153 210
ResNet50 [6] | 90.1 | 98 | 0.891 25.6 4.1 120
g;’ep“"n'v‘?’ 91 | 98.2 | 0.897 23.9 57 135
EfficientNet-
BO [13] 90.8 | 98.1 | 0.895 53 0.39 80
?f‘z’]t"leNetVZ 88.2 | 96.9 | 0.871 34| 031 60
Vision
Transformer 92.3 | 98.6 | 0.902 86.5 17.1 250
[11]
Proposed 933 | 98.9 | 0.912 12.7 1.95 86
CAD-Net : o : :




To better understand the discriminative power of our
model, Grad-CAM heatmaps were generated to visualize the
regions influencing the network’s predictions. As shown in
Figure 2, CAD-Net consistently focuses on biologically
meaningful features such as the petal edges, stamen structure,
and distinctive color gradients, while baseline CNNs often
respond to background areas or non-discriminative parts of the
flower. This suggests that the attention refinement module
effectively directs the model to key visual cues for species
differentiation.
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Figure 2. Grad-CAM visualizations on flower images.

When evaluated on the iNaturalist subset without
retraining, CAD-Net maintained a Top-1 accuracy of 88.7%,
outperforming ResNet50 (85.9%) and EfficientNet-B0 (86.2%),
demonstrating strong transferability to in-the-wild images with
diverse backgrounds and lighting conditions. This indicates that
our combination of transfer learning and attention refinement
improves robustness to real-world variability.

The distilled student model reduced parameter count by
65% relative to the teacher while incurring less than 1% drop in
accuracy, enabling smooth real-time inference on an NVIDIA
Jetson Nano with an average latency of 86 ms per image. This
suggests that CAD-Net is suitable for deployment on mobile or
edge devices for field applications such as smartphone-based
flower identification.

These results confirm that the proposed architecture
successfully balances accuracy, interpretability, and efficiency,
outperforming many heavier models while remaining practical
for real-world deployment scenarios.

5. Conclusion and Future Directions

In this paper, we presented CAD-Net, a hybrid deep
learning architecture for flower species recognition that
integrates a convolutional neural network backbone with an
attention refinement module and a knowledge distillation
framework for deployment efficiency. By leveraging transfer
learning from large-scale natural image datasets and
incorporating advanced data augmentation strategies, our
model effectively addresses the challenges of limited labeled
data and fine-grained classification difficulty. The proposed
approach achieves state-of-the-art accuracy on the Oxford 102
Flowers dataset, surpasses traditional CNN baselines, and
maintains competitive performance compared to transformer-
based models while significantly reducing computational cost
and latency. Experiments further demonstrated strong
generalization to real-world images in the iNaturalist dataset
and highlighted the interpretability benefits of attention
mechanisms via Grad-CAM visualization.

Several key insights arise from our study. First, feature
refinement through attention is highly effective for fine-grained
tasks such as flower classification, where subtle patterns
distinguish species. Second, knowledge distillation enables the
deployment of lightweight models on mobile and edge devices
without sacrificing significant accuracy, making the approach
practical for applications such as smartphone-based plant
identification or field ecological surveys. Third, interpretability
techniques such as Grad-CAM not only improve user trust but
also provide biological relevance, as the network learns to
focus on petals and reproductive structures rather than
background clutter.

Despite these contributions, several research challenges
remain. The primary limitation is data scarcity; although
transfer learning mitigates this, the lack of large, diverse, and
well-labeled flower datasets constrains the use of more
advanced architectures such as transformers. Future work could
explore self-supervised learning and few-shot learning to
reduce reliance on extensive annotation. Another challenge is
robustness to domain shifts; models trained on curated datasets
may degrade in performance when deployed in uncontrolled
outdoor environments with varying lighting, occlusions, or
damaged flowers. Techniques such as domain adaptation and
meta-learning may improve generalization across environments.
Additionally, while our work focused on static images,
extending CAD-Net to video streams from drones or handheld
devices could enable dynamic species monitoring in agriculture
or conservation.

From a system perspective, integrating federated learning
would allow collaborative training across devices without
sharing sensitive user data, enhancing privacy while leveraging
large-scale distributed flower images collected by citizen
scientists. Combining federated approaches with secure
aggregation and differential privacy could ensure compliance
with regulations while building large-scale plant identification
models. Moreover, digital twin environments could simulate
diverse plant growth conditions and illumination scenarios to
pre-train robust models before real-world deployment. On the
interpretability front, future research may move beyond post-
hoc visualization to intrinsically explainable models that embed
biological prior knowledge, enabling collaboration between Al
researchers and botanists.

Finally, environmental sustainability and energy
efficiency should guide the deployment of Al in large-scale
biodiversity monitoring. Techniques such as green neural
networks with adaptive inference, model pruning, and
renewable energy-powered edge systems will be crucial for
large-scale adoption in remote or resource-constrained areas.
By combining these directions - self-supervised learning,
domain adaptation, privacy-preserving federated training,
digital twin simulation, and sustainable Al deployment - the
next generation of plant recognition systems could become
both highly accurate and ecologically responsible.
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