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Abstract: This study proposes a multimodal feature fusion method that combines a Transformer and a convolutional neural
network (CNN) for ICU patient outcome prediction. The method effectively integrates two complementary types of information:
physiological waveforms and structured clinical data. It first uses a convolutional structure to extract local temporal patterns from
waveform data, and then applies a Transformer encoder to capture long-range dependencies, thereby obtaining a more
comprehensive dynamic feature representation. The structured clinical data are then mapped into a unified feature space and fused
with waveform features through weighted integration, forming a combined representation that contains both global and local
information. To validate the effectiveness of the model, systematic experiments are conducted on an ICU dataset containing
multiple waveform signals and clinical records. The model's performance is evaluated under different regularization coefficients,
dropout rates, convolution kernel sizes, pooling strategies, sequence lengths, sliding step sizes, and label noise levels.
Experimental results show that the proposed method outperforms several existing approaches in accuracy, AUC, and F1-Score,
and maintains strong robustness under various data perturbations and hyperparameter changes. Furthermore, comparative analysis
and sensitivity experiments reveal how different design parameters in multimodal feature fusion affect performance, providing
useful insights for model construction and optimization in similar tasks. The findings indicate that combining deep temporal
modeling with multimodal feature fusion can achieve higher accuracy and stability in complex medical prediction tasks, offering a
practical technical pathway for ICU clinical decision support systems.
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1. Introduction

The Intensive Care Unit (ICU) is a specialized hospital
department that provides continuous monitoring and treatment
for critically ill patients. These patients often present with
complex and rapidly changing conditions, accompanied by
high mortality and complication risks[1]. Due to the frequent
and unpredictable fluctuations in their physiological states,
accurately assessing the progression and outcome of a patient's
condition at an early stage is crucial for developing appropriate
treatment plans, optimizing resource allocation, and reducing
mortality. With advances in modern medical technology, the
ICU can collect real-time physiological waveform signals such
as electrocardiograms (ECGs), arterial blood pressure, and
respiratory signals. It can also record detailed clinical data,
including demographic information, medical history, laboratory
test results, and medication records. These multimodal data
together depict the dynamic health status of patients and
provide a rich foundation for building precise outcome
prediction models.

Traditional ICU outcome prediction models often rely on a
single type of data, such as structured clinical information
alone, for risk assessment[2]. However, single-modality data
cannot fully capture the complex pathological states of patients.

Physiological waveform signals contain continuous features
that  reflect = dynamic changes in the cardiac,
electrophysiological, circulatory, and respiratory systems,
allowing for the detection of subtle physiological variations on
a millisecond-to-second scale[3]. In contrast, structured clinical
data includes long-term medical history, laboratory tests, and
medication use, offering static or low-frequency information
that reflects background conditions and long-term trends. These
two types of information are naturally complementary.
Integrating them enables a more comprehensive view of the
patient's condition and improves the ability to identify potential
critical events in advance[4].

With the advancement of medical informatics and artificial
intelligence, multimodal data fusion has become an important
direction for clinical prediction models[5]. Compared with
single-modality approaches, multimodal fusion can leverage
correlations between different modalities and maintain stability
and robustness when one modality is missing or noisy. In the
ICU setting, combining the high temporal resolution of
physiological waveforms with the global health status
information from clinical data allows for both macro- and
micro-level condition assessment. This improves the accuracy
and timeliness of outcome prediction. Such complementarity at
the data level provides a solid foundation for developing



intelligent and efficient decision-support systems for critical
care.

In recent years, deep learning has shown significant
advantages in modeling medical data. It is particularly effective
for high-dimensional, nonlinear, and spatiotemporally
dependent medical data[6]. Deep models can automatically
extract multi-level, semantically rich features from raw data,
reducing the reliance on manual feature engineering. In
multimodal settings, different deep learning architectures can
be optimized for the characteristics of each modality. For
example, convolutional neural networks (CNNs) excel at
capturing local spatiotemporal patterns and morphological
features, while Transformer architectures, with their self-
attention mechanism, are effective in modeling long-range
dependencies and sequence features. These technological
developments offer new ways to deeply integrate physiological
waveform data with clinical data to enhance predictive
capabilities[7].

Accurate prediction of patient outcomes in the ICU has
important clinical value and supports the development of
intelligent and personalized critical care. Fully leveraging the
multimodal nature of physiological waveforms and clinical

data enables a panoramic depiction of the patient's health status.

This helps identify potential risks in advance and provides
targeted intervention recommendations for medical staff. Such
predictive capability not only improves patient survival
outcomes but also optimizes the allocation and use of medical
resources, alleviating the burden on healthcare systems and
reducing overall medical costs. Therefore, exploring advanced
multimodal fusion methods to integrate the strengths of
different modalities has become a key research direction in
medical artificial intelligence for supporting the treatment of
critically ill patients.

Beyond physiological waveforms and structured clinical
data, imaging modalities such as chest X-rays or ultrasound
also contain rich spatial information that reflects organ
morphology and pathological changes. Incorporating these
image-based modalities into the fusion framework can further
enhance the completeness of patient profiling and improve the
accuracy of ICU outcome prediction

2. Proposed Approach

In the multimodal ICU outcome prediction task, the input
data consists of two components: a variable-length
physiological waveform sequence and low-dimensional
structured clinical data. Let the physiological waveform of the
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i-th patient be a time series X" € R"™ | where T,

represents the waveform length and d,  represents the
number of waveform feature channels; the structured clinical
data be a vector X'” € R% , where d, represents the

clinical feature dimension. First, a set of one-dimensional
convolution and pooling operations is performed on the
waveform input to extract local temporal patterns, resulting in

an intermediate representation i(w) :

H,‘(W) = POOI(U(XI‘(W) * I/Vconv + bconv))

Among them, * represents the convolution operation,
o(-) is the nonlinear activation function, and Pool(-)
represents the pooling operation in the time dimension. Here,
the overall architecture of the model is further given as shown

in Figure 1.
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Figure 1. Overall model architecture

To capture the dependencies of physiological waveforms
over long periods, the features extracted by convolution are fed
into the Transformer encoder. Let the convolution output be a

sequence {/,,h,,...,h,} , and its multi-head self-attention
mechanism is calculated as follows:

: OK"
Attention(Q, K, V') = softmax(=—)V
v d
Q — H(W)WQ,Q — H(W)WK,V — H(W)WV
Where d,
wewrw’
mechanism can dynamically aggregate information at global

time points, thereby forming the ability to model long-term
dependencies.

is the dimension of the key vector, and

is the trainable weight matrix. This

The structured clinical data is mapped to the same feature
space as the waveform features through the fully connected
layer for subsequent fusion. The mapping process is as follows:

HE = oW X +b)
Where W, e RY% s the mapping matrix, and d, is

the feature dimension after mapping. Then, the waveform

feature Zi(w) (Transformer encoding output) and clinical

feature H i(c) are fused at the feature level using weighted

concatenation:
— (w) (c)
F=a-Z"®(-a) H,
Where @ represents vector concatenation and
a €[0,1] is a learnable weight used to balance the

importance of the two modalities.



The fused feature F,

; 1s processed through several fully
connected layers and normalized before being input into the

classifier to predict the category or risk value of the ICU
patient outcome. Assuming the prediction function is f,(*)

and the output is the category probability distribution fl. , the

cross-entropy loss is defined as:
1 N C
L= __Z z ik logj}ik
N oo
Where N is the number of samples in a batch, C is the
number of categories, ), is the one-hot encoding of the true

label, and y,, is the predicted probability. This optimization

objective ensures that the model learns discriminative features
that can distinguish different outcome patterns under the
condition of multimodal fusion.

3. Performance Evaluation
3.1 Dataset

The multimodal dataset used in this study is derived from
the 2012 PhysioNet Computing in Cardiology Challenge. The
data were collected from the clinical monitoring and medical
record systems of patients in the Intensive Care Unit (ICU).
This dataset contains continuously recorded physiological
waveform signals, including electrocardiograms (ECQG),
arterial blood pressure waveforms, and respiratory signals.
The sampling frequency is high, enabling real-time reflection
of the patients' physiological status during hospitalization. In
addition, the dataset contains structured clinical information
such as demographic characteristics, admission diagnoses,
medication records, and laboratory test results, providing a
rich source of input features for multimodal prediction tasks.

The length of waveform recordings for each patient
varies, ranging from several hours to several days of
continuous monitoring, covering different stages of disease
progression. The clinical data are collected at various time
points after patient admission. They include fixed attributes
such as gender and age, as well as dynamically updated
medical test results such as blood gas analysis, electrolyte
levels, and hematological indicators. This temporally aligned
multimodal structure allows waveform features and clinical
features to be jointly modeled within the same prediction
window, enabling early ICU outcome prediction and risk
stratification analysis.

During data preprocessing, all waveform signals were
resampled to a unified sampling rate, processed for outliers,
and normalized to reduce variability caused by different
devices and monitoring conditions. Clinical data were
processed with missing value imputation, categorical variable
encoding, and numerical standardization to ensure consistent
feature scales across modalities. This dataset is representative
in multimodal medical prediction research. It reflects the
highly dynamic nature of ICU scenarios and provides deep

learning models with sufficient opportunities for integrating
temporal and static information.

3.2 Experimental Results

This paper first conducts a comparative experiment, and the
experimental results are shown in Table 1.

Tablel: Comparative experimental results

Model ACC AUC F1-Score
BERTSurv|[8] 0.842 0.889 0.831
X-MMP[9] 0.857 0.901 0.846
XMI-ICUJ[10] 0.865 0.913 0.854
ISeeU[11] 0.872 0.921 0.862
Ours 0.896 0.948 0.889

From the results in Table 1, it can be seen that different
models show clear differences in performance on the ICU
patient outcome prediction task. The traditional language
model-based BERTSurv can extract certain features from
clinical text and structured information. However, when facing
highly dynamic and multimodal ICU data, its performance in
ACC, AUC, and F1-Score is the lowest. This indicates that
single-feature modeling is insufficient to fully capture the
complex patterns of disease progression.

The X-MMP and XMI-ICU models, which incorporate
multimodal fusion mechanisms, achieve improvements over
BERTSurv across all three metrics, with a particularly notable
increase in AUC. This suggests that using multimodal
information in ICU scenarios can significantly enhance a
prediction model's ability to distinguish between different
outcome categories. The improvement mainly benefits from the
complementary nature of structured data and temporal features,
which increases model robustness when facing sample
diversity and noise.

The ISeeU model shows further gains in ACC, AUC, and
F1-Score, indicating deeper optimization in multimodal feature
extraction and fusion strategies. It can capture both the
temporal dependencies of physiological waveforms and the
global health status information from clinical data more
comprehensively. However, despite its overall superior
performance compared to other baseline models, its feature
fusion still has limitations, especially in capturing dependencies
across different temporal scales.

The proposed model in this study achieves the highest
scores across all three metrics, with an ACC of 0.896, an AUC
0f 0.948, and an F1-Score of 0.889. Compared with the second-
best ISeeU model, it demonstrates significant advantages in
both prediction accuracy and discrimination ability. These
results show that the multimodal feature fusion framework
combining Transformer and CNN can fully leverage the
complementary strengths of local temporal patterns and global
dependencies in waveform data, while effectively integrating
key information from structured clinical data. As a result, it
delivers more accurate and stable predictions for ICU patient
outcomes.

This paper also gives the influence of convolution kernel
size and pooling strategy on waveform feature extraction, and
the experimental results are shown in Figure 2.
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Figure 2. The impact of convolution kernel size and
pooling strategy on waveform feature extraction

From the results in Figure 2, it can be observed that
different convolution kernel sizes and pooling strategies lead to

certain differences in waveform feature extraction performance.

Under the same kernel size, MaxPool and AvgPool show
slightly different results, with MaxPool often achieving higher
AUC and overall prediction scores. This suggests that in this
task, MaxPool is more effective at preserving salient waveform
features and provides stronger discriminative power in
subsequent multimodal fusion.

When the convolution kernel size increases from 3 to 5,
ACC, AUC, and FI1-Score all show improvements, with the
gains being more pronounced under the MaxPool strategy. This
improvement may be due to the larger kernel capturing
waveform patterns over a longer time range, providing the
Transformer encoder with more complete temporal feature
representations. A larger receptive field may also help reduce
the impact of high-frequency noise, resulting in more stable
feature extraction.

When the kernel size increases further from 5 to 7,
performance tends to plateau, and some metrics even show a
slight decline. This may be because an excessively large kernel
smooths local feature details, which can weaken the model's
ability to capture rapid dynamic changes. For physiological
waveform data in ICU scenarios, overly large kernels may
sacrifice certain critical short-term features, thus affecting the
final prediction performance.

Overall, the configuration with a kernel size of 5 and the
MaxPool strategy achieves the best results. This matches the
model's need to balance local feature capture with global
dependency modeling. Such a configuration can effectively
extract the core patterns of the waveform and form stronger
complementarity with structured clinical data during
multimodal fusion, leading to higher accuracy and stability in
ICU patient outcome prediction.

This paper presents a robustness experiment on label noise
level, and the experimental results are shown in Figure 3.
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Figure 3. Robustness experiments on label noise levels

From the results in Figure 3, it can be seen that as the
proportion of label noise increases, the model's performance in
ACC, AUC, and F1-Score decreases. However, the overall
decline is relatively gradual, indicating that the proposed
multimodal fusion method maintains strong robustness to some
extent. Within the “operational range” of 0%—15%, the AUC
remains above 0.94, and both ACC and F1 stay at relatively
high levels, showing that the model can retain good predictive
performance under mild label errors.

In the low-noise range (0%—10%), the performance drop is
small, especially for the AUC curve, which decreases most
slowly. This suggests that the model's discriminative ability in
distinguishing different outcome categories is less affected.
This result is related to the multimodal feature fusion strategy,
where the complementary information between waveform and
clinical data helps offset the interference caused by label errors,
thus maintaining stable classification boundaries.

When the label noise proportion exceeds 15%, the decline
in performance becomes more pronounced, with ACC and F1
showing larger drops. This indicates that in high-noise
environments, the model's ability to discriminate between
classes and classify samples accurately is more severely
impacted. The main reason is that label errors directly guide the
model to learn decision boundaries that deviate from the true
distribution in the feature space, reducing the effectiveness of
multimodal information fusion.

Overall, the proposed method can maintain stable
performance under low to moderate levels of label noise, which
is important in ICU scenarios where label errors are difficult to
completely avoid in real clinical data. Although performance
decreases under high noise, the method still maintains a
relatively leading AUC performance, reflecting the advantages
of the multimodal fusion architecture in information
redundancy and feature complementarity, and providing a solid
foundation for further improving robustness.

This paper presents a sensitivity analysis of sequence length
and time window sliding step size, and the experimental results
are shown in Figure 4.
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Figure 4. Sensitivity analysis of sequence length and time
window sliding step

From the results in Figure 4, it can be seen that different
sequence lengths and sliding step sizes of the time window
have a clear impact on model performance. In general,
moderate sequence lengths and step sizes achieve more
balanced results across the three metrics, while overly short or
long sequences lead to decreases in ACC, AUC, and F1-Score.
This indicates that in multimodal ICU outcome prediction tasks,
the time coverage of the input sequence needs to balance
capturing sufficient temporal information and avoiding
redundant noise.

With a short sequence length (L=256), the model shows
relatively low ACC and F1 performance. The main reason is
that the time coverage of the sequence is limited, making it
difficult to capture long-range dependencies in the progression
of the patient's condition, which restricts feature representation
capability. Although AUC remains at a relatively high level,
the overall discriminative ability is slightly lower than the best
configuration. This suggests that in this task, relying solely on
short time segments is insufficient to support high-precision
multimodal fusion prediction.

When the sequence length increases to a medium level
(L=512) combined with a smaller sliding step size (S=32), all
three metrics reach their best values, with AUC approaching
0.95. This configuration can fully utilize the temporal details of
waveforms while sampling more densely along the time axis
through the sliding window, enabling more comprehensive and
fine-grained feature capture. It achieves a good balance
between information richness and computational cost, which is
beneficial for improving the model's generalization ability and
stability.

When the sequence length further increases to L=768, AUC
remains high, but ACC and F1 show slight declines. This may
be due to the introduction of more redundant information and
noise, which can dilute the discriminative power of key
features. In addition, the larger period increases modeling
complexity and computational cost, which may be less efficient
for real-time prediction scenarios. Therefore, from the
perspective of both predictive performance and computational
efficiency, a medium sequence length combined with a
moderate sliding step size is the optimal choice for this task.

Finally, this paper also gives a robustness evaluation of the
regularization coefficient and dropout ratio, and the
experimental results are shown in Figure 5.
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Figure 5. Robustness evaluation of the regularization
coefficient and dropout ratio

From the results in Figure 5, it can be seen that changes in
the regularization coefficient and dropout rate have a clear
impact on the model's ACC, AUC, and F1-Score. Within a
small regularization coefficient range (A < 0.001) and a
moderate dropout rate range (0.2—0.3), the model maintains
high performance across all three metrics. In particular, when A
= 0.001 and dropout = 0.3, the model achieves its best
performance. This indicates that moderate regularization and
dropout can effectively suppress overfitting while preserving
sufficient feature representation ability, thereby improving
stability in ICU outcome prediction tasks.

When the regularization coefficient increases further (A >
0.005) or the dropout rate exceeds 0.4, model performance
declines significantly, especially in ACC and F1. This may be
because strong regularization reduces the model's ability to
learn important features, while an excessively high dropout rate
leads to overly sparse feature representations, weakening the
modeling of temporal dependencies. In multimodal data fusion
scenarios, this loss is particularly pronounced during the joint
modeling of waveform and clinical features.

The AUC curve remains generally higher than the other
metrics and shows a smaller decline during parameter changes.
This suggests that the model can maintain strong class
discrimination ability under different regularization and
dropout configurations. This stability is closely related to the
redundancy of multimodal information and  the
complementarity between global and local feature capture in
the Transformer-CNN architecture, which gives the model a
certain level of robustness when adjusting regularization
strategies.

Overall, setting the regularization coefficient and dropout
rate appropriately is critical to enhancing the model's
generalization ability and resistance to overfitting. For this task,
a moderate parameter range can balance suppressing noise and
preserving key information, ensuring high predictive accuracy
while maintaining good stability and transferability for real
clinical deployment.

4. Conclusion

This study proposes a multimodal feature fusion method
that combines a Transformer and a CNN for ICU patient
outcome prediction. The method effectively integrates the



temporal patterns of physiological waveforms with the global
information from structured clinical data. Across multiple
comparative experiments and sensitivity analyses, the model
demonstrates excellent performance in metrics such as ACC,
AUC, and F1-Score, and shows strong robustness under
different  hyperparameters,  data  distributions, and
environmental conditions. These results verify the effectiveness
of the proposed architecture in capturing complex multimodal
relationships and provide a feasible technical solution for early
risk identification and decision support in ICU scenarios.

From a methodological perspective, this study investigates
the impact of key factors, including convolution kernel size,
pooling strategy, sequence length, sliding step size,
regularization coefficient, and dropout rate, on model
performance. It also systematically evaluates the model under
data perturbations such as label noise and sampling rate
changes. The results show that reasonable structural and
parameter configurations can improve the model's
generalization ability and stability while maintaining high
accuracy. This systematic analysis offers optimization insights
for multimodal temporal modeling and establishes a
reproducible experimental paradigm for similar clinical
prediction tasks, promoting refined development in model
design and deployment in related fields.

From an application perspective, the proposed method can
provide real-time and stable prediction support in high-risk and
high-complexity clinical environments such as the ICU. It can
assist medical staff in identifying potential critical conditions in
advance, thereby optimizing intervention strategies and
resource allocation. Integrated with existing medical
information systems, the model can be seamlessly connected to
patient monitoring and electronic medical record systems to
achieve a closed-loop process from data collection to risk
warning. This not only improves the scientific basis and
timeliness of clinical decisions but also helps reduce patient
mortality and complication rates, offering broad prospects for
promotion in public health management and smart healthcare
development.

Future research can be expanded in several directions. One
direction is to incorporate more types of modalities, such as
imaging data, temporal laboratory test results, or genomic data,
to further enrich the feature space and improve prediction
accuracy and interpretability. Another direction is to explore
more efficient model compression and inference acceleration
techniques to meet the needs of real-time applications in edge
computing or resource-constrained environments. In addition,
the proposed method can be applied to other time-critical and
multimodal-dependent domains, such as emergency triage,
remote medical monitoring, and industrial process safety
monitoring. This would extend the technical achievements of
this study to broader application scenarios and further unlock
its potential in critical task prediction and intelligent decision
support.

In addition to waveform and structured data, future
extensions can consider integrating medical images such as
radiographs or CT scans. These imaging modalities provide
complementary spatial and morphological cues that are often
critical for ICU decision-making, and their fusion with
temporal and structured features may further improve
robustness and interpretability of outcome prediction models.
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