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Abstract: The rise of autonomous driving technologies has prompted intensive research into intelligent decision-making
systems capable of operating reliably under real-world conditions. This paper proposes a robust decision-making framework that
integrates sensor fusion with deep reinforcement learning (DRL) to improve the performance of autonomous vehicles in complex
urban environments. The system processes data from LiDAR, radar, and camera sensors to construct a unified environmental
representation, which is then fed into a deep Q-network (DQN) to determine optimal driving actions. Experiments in a high-
fidelity simulation environment demonstrate the effectiveness of the proposed framework in reducing collision rates, improving
route efficiency, and maintaining real-time responsiveness, outperforming rule-based and unimodal DRL baselines. Our findings
highlight the critical importance of multi-modal perception integration in conjunction with learning-based policy optimization for
safe and intelligent autonomous navigation.
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1. Introduction

The development of autonomous vehicles (AVs) has
emerged as one of the most transformative technologies of the
21st century, promising to revolutionize transportation by
reducing accidents, alleviating traffic congestion, and
improving mobility for the elderly and disabled. Central to
achieving reliable autonomy is the vehicle’ s decision-making
capability—how it processes sensory input and selects actions
to safely navigate its environment. Traditional rule-based
decision systems, while interpretable and efficient in simple
environments, often lack the adaptability required to handle
complex, dynamic, and uncertain real-world scenarios. These
methods struggle to generalize beyond their designed
conditions and cannot effectively respond to unpredictable
behaviors from other road users.

To address these limitations, deep reinforcement learning
(DRL) has been introduced as a powerful method for learning
optimal policies through trial and error, guided by reward
signals. DRL has shown success in various control tasks,
including lane following, obstacle avoidance, and intersection
negotiation. However, many DRL-based systems in AVs rely
on raw camera data or limited sensor modalities, which makes
them vulnerable to sensor-specific failure modes such as
occlusion, poor lighting, or radar noise. This raises a key
question: how can we build a decision-making framework that
not only learns from interaction but also benefits from the
reliability and redundancy of sensor fusion?

This paper proposes a hybrid system that integrates multi-
modal sensor fusion with DRL to achieve robust and intelligent
decision-making in urban driving scenarios. Our approach
fuses LiDAR point clouds, camera imagery, and radar readings

into a unified state representation using a lightweight
perception module. This fused input is then processed by a
deep Q-network (DQN), which learns to select discrete driving
actions based on rewards that reflect safety, efficiency, and
comfort. The key contributions of this paper include: (1) a
novel sensor fusion pipeline for consistent spatial-semantic
mapping, (2) a DRL-based policy module trained on diverse
traffic scenarios, and (3) a comprehensive evaluation
demonstrating significant gains over conventional and
unimodal baselines.

2. Related Work

Research on autonomous vehicle (AV) decision-making
has increasingly focused on integrating deep reinforcement
learning (DRL) with advanced perception and data fusion
techniques to address the complexities of real-world urban
driving. Early DRL approaches such as Deep Q-Networks
(DQN) and Advantage Actor-Critic (A3C) have demonstrated
promising capabilities in sequential decision tasks and robust
policy optimization across diverse applications[1-5]. These
reinforcement learning methods are widely adopted not only in
traditional control scenarios, but also in areas such as large
model fine-tuning, resource allocation, and handling data
imbalance, highlighting their versatility and optimization
power in high-dimensional, dynamic environments.

Complementary to decision policy research, advances in
multi-modal perception, feature fusion, and edge computing
have driven the progress of real-time, robust AV systems.
Recent studies leverage cross-scale attention, multi-layer
feature fusion, and efficient network architectures to integrate
diverse sensor data—including LiDAR, radar, and cameras—



into unified, high-quality representations for downstream
decision modules. Such sensor fusion and compression
strategies are critical for improving accuracy and enabling
deployment on resource-constrained platforms[6-10].

Another important direction relates to anomaly detection,
graph-based modeling, and temporal representation learning.
Techniques from graph neural networks, probabilistic
modeling, and sequential analysis have been shown to enhance
the detection of rare events and better model evolving user or
traffic behaviors. These methodologies provide strong
foundations for safety-critical AV applications, where
capturing temporal dependencies and complex data
relationships is essential for robust generalization[11-15].

Collectively, these advances underscore the necessity of
combining deep reinforcement learning, multi-modal fusion,
and advanced representation learning for developing safe,
adaptive, and high-performing autonomous driving systems.

3. Proposed Framework

To improve decision-making under complex urban
conditions, we propose a unified framework that integrates
multi-sensor perception and deep reinforcement learning. The
architecture comprises two core modules: (1) a sensor fusion
perception system that transforms heterogeneous sensor inputs
into a spatially consistent representation, and (2) a DQN-based
learning agent that maps fused environmental states to high-
level driving actions. Raw input data are collected from
LiDAR, radar, and RGB cameras. LiDAR point clouds are
voxelized with a resolution of 0.1 meters and projected onto a
128%128 bird’s-eye-view (BEV) occupancy grid. Radar
signals are filtered using a Kalman filter to eliminate clutter
and then transformed to the BEV frame to represent moving
objects and their velocities. RGB images are processed using a
DeepLabv3+ semantic segmentation model pretrained on the
Cityscapes dataset, generating semantic masks for lane
markings, vehicles, pedestrians, and traffic lights. These
masks are reprojected to BEV coordinates using camera
calibration parameters. The outputs from all three sensors are
then concatenated along the channel axis to form a unified
BEV tensor Ifusion € R12#12C_ where C represents the number
of channels after stacking LiDAR reflectance, radar velocity,
and semantic categories. This fused tensor is passed through a
five-layer convolutional encoder with ReLU activations and
batch normalization, followed by global average pooling to
produce a compact latent state vector s, € R?%°, which serves as
input to the policy network.

The decision-making agent is based on the Deep Q-
Network (DQN) algorithm, which learns to approximate the
optimal action-value function using the Bellman update rule:

Q(st,a) = re + ymaxy Q(se+1,0a'),

where s is the state vector at time t, a; is the selected
action, r; is the immediate reward, and y=0.99 is the discount
factor. The action space is discrete and includes maneuvers

such as maintaining lane, lane changes, braking, and turning.
The reward function is designed to balance safety, efficiency,
and passenger comfort, and is defined as:

Tt = —A1 - Leollision + A2 - Ady — A3 - Ji,

where Ieoiision 1S an indicator function for collisions, Ad: is
the forward progress toward the navigation goal, and j; denotes
the jerk, computed as the time derivative of acceleration to
penalize abrupt control actions. The hyperparameters are
empirically set to A1=10.0, A2=1.0, and A3=0.5.

Training is conducted using the CARLA simulator
(v0.9.14), where diverse urban environments such as Town05
and Town10 are configured with randomized traffic actors and
weather patterns to ensure robustness. The agent is trained
over 500,000 simulation steps with an experience replay
buffer of size 100,000 and a batch size of 64. The target
network is updated every 500 iterations, and g -greedy
exploration is used to balance exploitation and exploration.
The control interface maps each high-level action selected by
the policy to trajectory waypoints, which are tracked using a
PID-based low-level controller. This integration of fused
perception and DRL-based policy optimization enables
autonomous vehicles to make real-time, context-aware, and
robust decisions across diverse scenarios.

4. Experiments and Results

To validate the effectiveness of the proposed sensor
fusion and deep reinforcement learning (DRL) framework, we
conducted comprehensive experiments using the CARLA
simulator (v0.9.14), a high-fidelity urban driving environment
capable of modeling complex traffic scenarios. The testing
was performed on TownO5 and TownlO, which feature
multilane roads, intersections, occlusions, and varying
pedestrian density. The autonomous vehicle (AV) was
equipped with simulated LiDAR, radar, and camera sensors
operating at 10 Hz. All modules were deployed on a machine
with an NVIDIA RTX 3090 GPU and 64 GB RAM, ensuring
inference time was measured under realistic compute
conditions.

During training, the DQN agent interacted with the
environment over 500,000 simulation steps using an g-greedy
exploration strategy. The replay buffer size was set to 100,000
transitions, the target network was updated every 500 steps,
and the batch size was fixed at 64. A discount factor y=0.99
was applied to balance short-term and long-term rewards. To
evaluate our system, we compared the proposed Fusion-DQN
model with three baseline methods: a rule-based planner using
finite state machines, an image-only DQN using RGB frames
as input, and a LIDAR-only DQN using BEV occupancy grids.
All models were tested on identical scenarios under both
normal and adverse conditions (e.g., rain, reduced lighting).

Quantitative results are summarized in Table 1. The
Fusion-DQN model achieved the highest task completion rate
(89.4%) and lowest collision rate (6.5%), outperforming the



image-only and LiDAR-only agents by 12.6% and 9.3%,
respectively. Furthermore, the proposed model demonstrated
superior path fidelity, with an average displacement error
(ADE) of 0.63 meters and a jerk value of 0.91 m/s®, indicating
smoother and more comfortable trajectory planning. Although
the computation time per decision step increased slightly to
26.7 ms due to the complexity of the fusion process, it
remained within the acceptable range for real-time control
(<33 ms at 30 Hz).

Success Time
Method Rate Collision | ADE | Jerk per
o Rate (%) | (m) | (m/s®) | Step
(%) (ms)
Rule-
Based 71.3 224 | 093 1.72 8.6
Planner
Image-
Only 76.8 179 | 0.88 1.55 | 21.2
DQN
LiDAR-
Only 80.1 13.7 | 0.76 1.29 | 234
DQN
Proposed
Fusion- 89.4 6.5 | 0.63 091 | 26.7
DQN

In addition to the quantitative metrics, we performed
qualitative analysis across several complex driving scenarios.
Figure 2 illustrates the comparative behavior of the proposed
model versus baselines. In one instance, the image-only DQN
agent failed to detect a pedestrian occluded by a parked vehicle
and initiated acceleration, resulting in a collision. In contrast,
the Fusion-DQN agent correctly identified the pedestrian by
leveraging radar motion signals and LiDAR depth cues,
initiating a safe deceleration maneuver. In another test
involving an unprotected left turn, the rule-based planner
remained indecisive due to lack of contextual inference,
whereas Fusion-DQN completed the turn confidently after
modeling the intent and trajectories of oncoming vehicles.

To further assess generalization, we tested all models on
Town03, an unseen environment with dynamic weather and
alternate road topology. The proposed Fusion-DQN model
retained strong performance with an 83.1% success rate and a
9.2% collision rate, while the image-only and LiDAR-only
models degraded to 60.2% and 68.5%, respectively. This
suggests that the inclusion of multi-modal sensory inputs
during training enhances policy robustness under distributional
shifts, a crucial factor for real-world deployment of
autonomous vehicles.
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Figure 1. Qualitative comparison of decision-making
behavior across models.

5.Conclusion and Future Work

In this paper, we proposed a novel decision-making
framework for autonomous vehicles that integrates multi-
sensor fusion with deep reinforcement learning. By fusing
LiDAR, radar, and camera data into a unified bird’ s-eye-view
representation and feeding it into a DQN-based policy module,
the system is able to perceive complex urban environments and
generate high-level actions that prioritize safety, efficiency, and
passenger comfort. Through extensive experiments in the
CARLA simulator, we demonstrated that the proposed Fusion-
DQN model significantly outperforms both traditional rule-
based planners and unimodal DRL baselines. The agent
achieved higher success rates, reduced collision frequency, and
exhibited smoother control behavior, while maintaining real-
time inference capability.

Moreover, qualitative results showed that the system is
capable of handling occlusions, dynamic interactions, and
uncertain traffic situations more reliably than models relying on
single-sensor inputs. The ability to generalize to unseen
environments and adverse conditions further indicates the
robustness and adaptability of the proposed method, making it
a promising candidate for real-world autonomous driving
deployments.

In future work, we aim to extend this framework in
several directions. First, we plan to incorporate temporal
modeling using recurrent neural networks or transformer-based
encoders to improve decision stability over time. Second, we
intend to explore online adaptation mechanisms that allow the
agent to fine-tune its policy during deployment based on real-
time feedback. Third, we will integrate vehicle-to-everything
(V2X) communication data into the fusion pipeline, enabling



the agent to reason about traffic signals and nearby human-
driven vehicles more proactively. Lastly, we are working on
deploying the system on a physical AV platform to evaluate
real-world performance under hardware constraints and sensor
noise, thereby bridging the gap between simulation and reality.

The results presented in this study suggest that deep

sensor fusion combined with reinforcement learning constitutes
a viable and effective approach for the next generation of
autonomous driving decision systems.
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