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Abstract: This study addresses key challenges in early diabetes prediction, including complex data modalities, heterogeneous
semantic distributions, and hidden risk signals. A multimodal data fusion method based on electronic health records is proposed.
The method takes structured medical image data (EyePACS) and unstructured clinical text records (MIMIC-III/IV) as core inputs.
Constructing a unified temporal alignment mechanism and semantic embedding strategy, enables dynamic association modeling
across modalities. In terms of model architecture, a collaborative mechanism between CNN and Transformer is introduced. A
channel attention module is integrated to enhance the depth of modality interaction and focus on critical features. In addition, time
interval embeddings are employed to strengthen the model's perception of event progression rhythms. A series of comparative
experiments, ablation tests, and sensitivity evaluations are conducted. The model is systematically assessed across dimensions
such as modality dependence, noise robustness, data distribution, and temporal granularity. The results show that the proposed
method demonstrates strong stability and discrimination capability when processing multi-source heterogeneous electronic health
record data. It effectively captures early risk patterns associated with diabetes. The method provides accurate data support and
model support for the automatic identification of high-risk individuals.
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1. Introduction
Diabetes, as a typical chronic metabolic disease, has shown

increasing prevalence, younger onset, and prolonged
progression in recent years. It poses a serious threat to human
health and places a heavy burden on public health systems. In
its early stages, diabetes often presents with subtle or hidden
symptoms that are easily overlooked by patients, resulting in
missed opportunities for timely intervention and treatment.
Numerous studies have shown that potential damage to
multiple organ systems begins even at the onset of diabetes.
Therefore, achieving accurate early identification is critical for
slowing disease progression, reducing the risk of complications,
and optimizing resource allocation. Against this backdrop, the
extensive clinical data accumulated in electronic health records
offers new perspectives and technical foundations for early
diabetes prediction through efficient information integration
and intelligent decision-making mechanisms[1].

Electronic health record systems, as a key component of
healthcare informatization, store a wide range of patient data
throughout the medical care process. This includes structured
diagnostic and treatment information, unstructured text
descriptions, and multi-source data from imaging and
laboratory examinations. These diverse data types contain rich
latent clues about disease progression and individual health
conditions. However, due to the high heterogeneity in semantic
expression, temporal structure, and information density across
different modalities, traditional approaches often fail to
effectively extract and associate cross-modal features. This

results in poor generalization and low interpretability in
predictive models. Therefore, advancing multimodal data
fusion techniques in electronic health records is an important
step toward intelligent early disease identification[2].

From a clinical perspective, the onset of diabetes is closely
associated with multiple factors, including genetics,
metabolism, and lifestyle. Its manifestation involves a complex
interplay across various dimensions such as physical signs,
laboratory indicators, and drug responses. Single-modality data
cannot fully capture an individual's risk profile. In contrast,
different modalities offer natural complementarity[3]. For
example, medical images reveal visual signs of organ
abnormalities. Laboratory tests indicate metabolic changes.
Clinical notes contain detailed descriptions of disease evolution
and medical reasoning. Multimodal collaborative modeling
allows for comprehensive integration of structured and
unstructured data. This helps improve prediction accuracy
while enhancing model robustness and clinical applicability.

In practical applications, multimodal data fusion faces
several challenges. These include inconsistent data quality,
redundant information, and difficulty in cross-modal alignment.
To address these issues, various fusion strategies have been
developed, such as early fusion, late fusion, and joint
representation learning. Among them, joint representation
learning has become a major focus in multimodal medical
modeling due to its ability to preserve modality-specific
features while ensuring semantic consistency. In the context of
electronic health records, combining temporal modeling with
contextual construction strategies offers the potential for deep



integration across modalities. This provides a scalable solution
for risk prediction in complex chronic diseases such as
diabetes[4].

This study focuses on the multimodal nature of healthcare
information and the complexity of diabetes progression. It aims
to build an effective information fusion framework using large-
scale electronic health record data to improve sensitivity and
accuracy in early-stage diabetes identification. This research
direction has both significant methodological value and strong
clinical application potential. By exploring the collaborative
relationships among structured, physiological, and linguistic
clinical features, the study investigates the feasibility of
multimodal intelligent modeling in early diabetes prediction.
This contributes to the development of precision medicine and
smart healthcare systems and provides data-driven support for
chronic disease prevention and control strategies.

2. Related work
In recent years, with the continuous advancement of

healthcare informatization, electronic health record (EHR) data
has played an increasingly important role in disease prediction
and clinical decision support. Many studies have focused on
mining clinical knowledge hidden in EHRs[5]. Techniques
such as natural language processing, statistical modeling, and
machine learning have been used to extract features from both
structured data, such as vital signs and laboratory results, and
unstructured text, such as progress notes and physician orders.
These methods have improved the understanding of medical
data to some extent. However, due to strong heterogeneity,
poor timeliness, and high missing rates among different data
modalities, traditional single-modality modeling frameworks
often fail to fully capture cross-modal correlations. This limits
model generalization and robustness in real-world
applications[6].

To address this issue, multimodal learning approaches have
been gradually introduced into healthcare and have shown
promising progress. Multimodal learning emphasizes
collaborative modeling of medical data from different sources.
By designing shared representation spaces or interaction
mechanisms, it integrates information from structured data,
imaging data, and text data. This enhances the sensitivity and
accuracy of prediction models for complex disease
representation. In scenarios such as chronic disease prediction,
including diabetes, some studies have attempted to combine
laboratory results, physiological monitoring data, and clinical
text as joint model inputs. These approaches show advantages
over traditional methods in modeling depth and expressive
power. However, technical challenges remain in practical
deployment. These include unreasonable data fusion strategies,
imbalanced modality weights, and semantic redundancy[7].

In addition, multimodal fusion strategies in medical
applications have shown diverse development patterns. Early
fusion methods directly concatenate or encode features from
different modalities into a unified framework. These methods
are simple to implement and computationally efficient.

Traditional fusion pipelines often ignore the semantic
relationships and interaction mechanisms across modalities. In
late fusion, each modality is processed separately and the
outputs are combined only at the decision layer. Although this
design can cope with strong modality heterogeneity, it limits
feature interaction and weakens model consistency. Recent
studies therefore turn to joint representation learning: a shared
latent space with cross modal attention or graph based
modelling is used to capture higher order dependencies. The
YOLO-CBD framework, for example, combines behaviour
level feature extraction with targeted aggregation to align
visual evidence with contextual cues, which improves model
expressiveness and interpretability [8].

Despite the growing potential of multimodal fusion in
disease prediction, current research still faces limitations in
areas such as data quality control, handling missing modalities,
and incorporating clinical knowledge. In real-world clinical
applications, EHR data often suffers from class imbalance and
incomplete records, which pose challenges to model
generalization. At the same time, designing cross-modal fusion
mechanisms that align with clinical logic and disease
characteristics remains a key issue. Future research needs to
explore integration paths that combine structural awareness,
semantic guidance, and temporal dependencies. These
directions will help bridge the gap between technical validation
and clinical implementation.

3. Proposed Methodology
This study designed an early prediction model for

diabetes based on multimodal electronic medical record data,
aiming to jointly model structured indicators, unstructured text,
and time series features to achieve a comprehensive perception
of potential risk states. The model architecture is shown in
Figure 1.

Figure 1. The overall architecture of the multimodal early
diabetes risk prediction model based on electronic health

records.

First, the structured input is set as a multidimensional
numerical variable matrix dT

s RX  , which T represents



the time step and sd the structured feature dimension; the
unstructured text is represented as a coded vector sequence

dT
t RX  , and embedded extraction is performed through a

pre-trained language model. To ensure the synchronization and
correspondence of different modalities in the time dimension, a
position alignment mechanism is used to match the temporal
indexes sX and tX , thereby obtain a unified alignment
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In the construction of fusion representation, an attention-
guided feature interaction module is introduced to improve the
model's ability to model cross-modal semantic associations.
Specifically, for each time step t, the model calculates the
query-key-value triple:
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This process enables the model to capture significant
interactions between different modal features and improves the
ability to model potential risk patterns.

To further enhance the perception of continuous time
features, the model introduces a time embedding module to
map the original time interval vector TRt into a
composite representation of periodicity and aperiodicity:
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Where Rw is a learnable frequency parameter. This
mechanism can effectively capture the non-uniform time
distribution between medical events and help model potential
physiological rhythms and behavioral patterns. The fused
representation is concatenated with the original multimodal
features as the input of the subsequent classification module.

Finally, the model extracts the joint semantics through the
feedforward network and outputs the diabetes risk prediction
result ]1,0[y . In the training phase, the binary cross
entropy loss function is used for optimization, which is defined
as:
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Where ]1,0[y represents the true annotation label. In
order to improve the model's adaptability to imbalanced sample
distribution, weighted loss terms or adversarial perturbation
mechanisms can be further introduced to enhance
generalization and robustness. The entire method framework
builds an end-to-end trainable prediction system from

multimodal information representation and cross-modal
alignment to temporal modeling and risk prediction.

4. Dataset
The multimodal dataset used in this study is composed of

two publicly available medical data sources: EyePACS and
MIMIC-III/IV. EyePACS is an image dataset for diabetic
retinopathy screening. It contains a large number of color
fundus images that provide visual information related to
diabetes, such as hemorrhages, exudates, and microvascular
abnormalities in the retina. These visual features are often
regarded as key indicators in the progression of diabetes.
Therefore, they serve as input for the visual modality to capture
potential diabetic risk signs from the structure of the eye.

On the other hand, the MIMIC-III and MIMIC-IV datasets
offer rich clinical electronic health record text data. This
includes discharge summaries, examination records,
medication information, and diagnostic descriptions. These
data cover complete medical activities and disease trajectories.
As inputs to the textual modality, they provide information
about a patient's medical history, physiological state, and
clinical reasoning. This helps to supplement symptoms and
treatment factors that may not be directly visible in the visual
modality. Text features related to diabetes are extracted from
these records to construct structured representations.

During data preprocessing, the two datasets are aligned and
merged to form paired multimodal samples of images and text.
Sample labels are assigned based on confirmed diabetes
diagnoses, categorized as either "diabetic" or "non-diabetic."
To ensure data quality, image samples are normalized in size
and filtered based on quality. Text data undergoes tokenization,
stop word removal and medical entity recognition. The
resulting multimodal dataset contains aligned cross-modal pairs,
providing high-quality support for subsequent fusion and
discriminative modeling tasks.

5. Experimental Results
In the experimental results section, the relevant results of

the comparative test are first given, and the experimental
results are shown in Table 1. This part is designed to evaluate
the overall effectiveness of the proposed method by comparing
it with several baseline models under consistent conditions.
The comparison focuses on core performance metrics across
different approaches, aiming to highlight the strengths and
weaknesses of each method. Through this analysis, the study
establishes a reference framework to better understand the
relative advantages of the multimodal fusion strategy in the
context of early diabetes prediction.

Table 1: Comparative experimental results

Method Accuracy AUC F1-Score
CNN[9] 0.842 0.873 0.831
Transformer[10] 0.855 0.881 0.845
GNN[11] 0.836 0.866 0.820
CNN-Transformer[12] 0.869 0.892 0.856
LSTM-Transformer[13] 0.861 0.888 0.849
Ours 0.889 0.913 0.875



The results in the table show that traditional single-
modality models, such as CNN and Transformer, achieve a
certain level of performance in early diabetes prediction. CNN
reaches an accuracy of 0.842 and an AUC of 0.873, while the
Transformer reaches 0.855 and 0.881, respectively. These
results suggest that the visual and textual modalities each have
some discriminative capability. However, both models are
limited in terms of information coverage and risk feature
modeling. They fail to capture the semantic complementarity
and structural coordination across modalities, leading to
performance bottlenecks in the F1-score, especially under
imbalanced data conditions.

In contrast, fusion models such as CNN-Transformer and
LSTM-Transformer outperform the baseline models on all
three metrics. Their F1 scores reach 0.856 and 0.849,
respectively. These results indicate that by introducing
sequential modeling and joint visual-textual perception
mechanisms, the models can better handle temporal
dependencies and modality complementarity present in early
diabetes symptoms. Such fusion structures offer clear
advantages in representing potential pathological signals and
capturing intrinsic cross-modal associations. This validates the
effectiveness of multimodal collaborative modeling strategies.

It is worth noting that although GNN models have strengths
in certain structural tasks, their overall performance in this
study is lower than other methods. This may be due to their
limited ability to model dynamic semantic paths between visual
and textual modalities. GNNs are less effective when dealing
with non-graph-structured input data. This further highlights
the strong dependence of early multimodal prediction tasks on
semantic aggregation strategies and fusion mechanisms.

The method proposed in this study achieves the highest
values across all three key metrics. In particular, it reaches an
AUC of 0.913, indicating strong classification stability and risk
identification ability. This performance advantage is attributed
to the joint modeling of structured image features, unstructured
textual semantics, and temporal embedding features. The use of
channel attention mechanisms enhances the complementary
expression of different modalities. As a result, the model
significantly improves sensitivity and accuracy in detecting
early signs of diabetes. The experimental results confirm the
adaptability and broad application potential of the proposed
method in multimodal electronic health record environments.

This paper then gives an experiment on the interference of
medical text noise injection on the discrimination performance,
and the experimental results are shown in Figure 2. The
purpose of this experiment is to evaluate how varying levels of
random noise in clinical text affect the model's ability to
distinguish between different risk categories. By introducing
controlled disturbances into the unstructured textual input, the
study explores the robustness of the semantic processing
component and examines the extent to which text integrity
influences overall predictive stability in the multimodal setting.

Figure 2. Experiment on the interference of medical text
noise injection on discrimination performance

From the figure, it can be observed that as the proportion of
noise injection into medical text increases, the model's
performance on all evaluation metrics shows a clear downward
trend. The decline becomes more pronounced when the noise
level exceeds 30 percent. This indicates that the textual
modality plays a critical role in early diabetes identification.
The semantic integrity and structural clarity of text are essential
for the model's comprehension and decision-making. When a
large portion of the original text is disrupted by random noise,
the model struggles to extract relevant risk cues, leading to
degraded prediction results.

Further analysis shows that the AUC remains relatively
stable across different levels of noise. At 10 percent or 20
percent noise, the AUC stays at a high level, suggesting that the
model retains some discrimination ability even when partial
semantic content is damaged. This may be attributed to the
complementary effect of visual information in the multimodal
structure. It provides redundancy when the textual input is
incomplete or erroneous. However, when the noise level
exceeds 40 percent, the AUC also drops rapidly. This suggests
that the model can no longer effectively integrate information
across modalities, and its overall perception ability
significantly weakens.

At the same time, the F1-score is the most sensitive to noise
injection. Under high-noise scenarios, it drops sharply. This
change indicates that the model's ability to distinguish between
positive and negative samples is impaired when dealing with
complex textual interference. As a result, it becomes difficult to
maintain a balance between recall and precision. Since early
symptoms of diabetes are often implicitly expressed in text,
noise directly reduces the model's capacity to detect key
semantics. This leads to a simultaneous increase in both false
positives and false negatives.

In conclusion, the experiment further confirms the
importance of high-quality text data in multimodal diabetes
prediction tasks. It also demonstrates that the model's
performance strongly depends on the semantic completeness of
textual input. Future model designs should pay greater attention
to the robustness of the text modality and its resistance to noise.



This is essential for ensuring model stability and practical value
when dealing with incomplete or corrupted real-world data.

This paper also gives the influence of a single mode on the
experimental results, and the experimental results are shown in
Figure 3.

Figure 3. The influence of a single mode on the
experimental results

From the results shown in the figure, it can be seen that
under the condition of using only the text modality, the model
maintains a relatively stable accuracy across five-fold cross-
validation. The overall fluctuation is minimal, indicating a
certain degree of semantic stability. This suggests that clinical
text records do contain important clues related to diabetes risk,
especially within patients' medical histories and clinical notes.
However, due to the abstract nature of text and variability in
expression, the model still struggles to capture comprehensive
individual risk features through a single semantic channel.

Further examination of the visual modality results reveals
that the model performs slightly better than the text-only input.
The accuracy is more concentrated across folds. This is mainly
because diabetic retinopathy exhibits more direct and
observable features at the visual level. Image inputs help the
model identify potential pathological patterns, such as
microvascular damage, from structural characteristics.

However, relying solely on the visual modality leaves semantic
gaps. It cannot reflect critical patient information such as
metabolic indicators or medication history, which limits the
model's overall capacity.

It is worth emphasizing that the multimodal fusion
approach achieves higher and more stable accuracy across all
folds. This indicates a strong complementary relationship
between structured image features and unstructured textual
semantics. Through joint modeling, the model can capture
various dimensions of diabetes manifestation, enhancing both
predictive accuracy and robustness. The fusion mechanism
effectively overcomes the limitations of single-modality
expression and provides stronger support for early risk
identification.

This paper also gives a sensitivity analysis of the impact of
changes in data imbalance on model performance, and the
experimental results are shown in Figure 4.

Figure 4. Sensitivity analysis of model performance to
changes in data imbalance ratio

The results in the figure show that as the ratio of positive to
negative samples becomes increasingly imbalanced, the overall
model performance on all evaluation metrics declines. The
performance drop becomes more pronounced when the ratio
reaches 8:1 and 10:1. This trend indicates that the proposed
multimodal prediction model is sensitive to data distribution. In
particular, when positive samples are significantly scarce, the
model's ability to detect risk signals is substantially disrupted,
leading to reduced classification accuracy.

A closer examination reveals that the F1-score declines
more sharply than Accuracy and AUC. This suggests a shift in
the model's predictive balance under imbalanced conditions.
The model becomes biased toward the majority class, resulting
in reduced recall and poor overall balance. This issue is
especially critical in medical risk identification tasks, where
missing high-risk cases can directly compromise early
intervention and affect subsequent clinical decisions.

At the same time, AUC, which measures the overall
ranking ability of the model, shows relatively better resistance
to imbalance, although it also exhibits a clear downward trend.
This may be because the model can still maintain some level of
boundary structure through multimodal information fusion.



However, it remains inadequate in delineating the decision
boundaries for minority classes. This highlights a limitation in
the current modeling strategy when handling severely skewed
sample distributions.

This paper also gives the impact of time interval embedding
granularity setting on the model prediction effect, and the
experimental results are shown in Figure 5.

Figure 5. The impact of time interval embedding
granularity setting on model prediction performance

The figure shows that the granularity of time interval
embedding has a clear impact on the model's predictive
performance. The best result is achieved at the "Day" level,
where the model reaches a performance close to 0.89. This
indicates that medium-granularity time embeddings are more
effective in capturing key temporal relationships between
events in medical scenarios. They avoid the noise introduced
by overly fine granularity while preserving enough temporal
signals to model the progression of risk.

In comparison, the "Hour" and "Week" granularities result
in slightly lower performance, though still at a relatively high
level. This suggests that the model has some adaptability to
local temporal fluctuations. However, "Hour-level"
embeddings may introduce excessive detail, which interferes
with the modeling of long-term trends. On the other hand,
"Week" granularity may weaken the model's sensitivity to
closely linked events, leading to performance instability.

When the granularity is further expanded to "Month" and
"Quarter," the model performance drops significantly. The
"Quarter" level, in particular, shows the lowest result. This
suggests that overly coarse time encoding dilutes the sequential
nature of critical clinical events. As a result, the model
struggles to capture the logic of disease progression. This issue
is especially evident in chronic conditions like diabetes, where
stage-specific patterns are important.

These findings demonstrate that the choice of time
embedding granularity plays a key role in multimodal
modeling. It affects not only the fidelity of temporal
information but also the alignment between semantic and
structural features. In practical applications, the time
granularity should be adjusted based on task requirements and
data characteristics to balance detail retention with
generalization.

6. Conclusion
This study addresses key challenges in the early

identification of diabetes and proposes a multimodal prediction
method based on electronic health records. The method fully
leverages the complementary characteristics of structured
medical images and unstructured clinical texts. By introducing
attention mechanisms and time interval embeddings, it enables
joint modeling and semantic perception of patients'
multidimensional health states. The experimental design
includes model structure comparison, modality ablation
analysis, and various sensitivity tests. The results validate the
robustness and adaptability of the proposed method under
different data conditions, providing a practical solution for
disease prediction in complex medical scenarios.

By incorporating cross-modal alignment mechanisms and
fine-grained temporal modeling strategies, the proposed
multimodal fusion framework significantly enhances the
model's ability to capture early features of diabetes. It
overcomes the representational limitations of single modalities.
The results show that in the presence of complex structures and
dispersed semantics in electronic health records, the fusion of
multi-source information offers stronger generalization and
discrimination capabilities. This enables more accurate
identification of individual risk states from multiple
perspectives. The method holds practical significance for
improving chronic disease screening efficiency and optimizing
healthcare resource allocation.

In addition, this study systematically explores the model's
stability when faced with common medical application
challenges, such as data imbalance, noise interference, and
variations in temporal granularity. These analyses reveal key
factors affecting the deployment of multimodal models in real-
world settings. They not only provide empirical support for
model usability but also lay a foundation for future
improvements in multimodal medical AI systems. Overall, the
proposed method demonstrates generalizability in
understanding complex medical data and performing intelligent
classification. It shows potential for transfer across different
diseases and healthcare systems.

7. Future work
Future research may extend to multi-center data integration,

dynamic modeling of heterogeneous modalities, and self-
supervised learning guided by clinical knowledge. These
directions aim to improve the model's ability to perceive
unknown pathological structures and enhance task adaptability.
Combined with lightweight deployment strategies and user
interaction feedback mechanisms, this approach could support
the development of efficient and interpretable intelligent



screening systems for real clinical environments. It may further
promote the practical implementation of AI-assisted healthcare
systems in chronic disease prevention and control.
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