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Abstract: This paper proposes a temporal-graph attention-based method for EEG anomaly detection, aiming to effectively
model the spatiotemporal dependencies in multi-channel EEG data. The raw EEG signals are first transformed into a sequence of
dynamic graphs, where the neural channel structure at each time point is naturally represented as a graph. A temporal-graph
attention module is then introduced, combining graph structural attention across nodes and self-attention along the temporal
dimension. These components are used to extract spatial interaction patterns and dynamic temporal features, respectively. The
model constructs joint node-time representations to focus precisely on local abnormal signals and to capture cross-channel
abnormal propagation patterns. During feature fusion, a global aggregation strategy is applied to enhance the model's ability to
discriminate whole-brain states. Experiments are conducted on the TUH Abnormal EEG dataset, with systematic evaluations
under different window lengths, channel numbers, and labeling proportions. Results demonstrate the stability and effectiveness of
the proposed method in various complex modeling settings. The model consistently outperforms existing methods in terms of
accuracy, sensitivity, and specificity, showing advantages in modeling sparse anomalies and non-Euclidean dependencies. In
addition to general neurological disorders, this framework holds promise for aiding tumor-related brain activity monitoring, as
certain brain neoplasms can induce electrophysiological disruptions detectable by EEG. The proposed method is well-suited for
automated and structure-aware EEG anomaly detection in clinical monitoring scenarios.
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1. Introduction
In modern medicine and intelligent health monitoring,

electroencephalography (EEG) has become a widely used tool
due to its high temporal resolution and non-invasive nature. It
is applied in key tasks such as epilepsy detection, sleep analysis,
and emotion recognition. EEG signals reflect the macroscopic
activity of neuronal populations in the brain. They can reveal
subtle dynamic changes in the nervous system. This makes
EEG crucial for cognitive state monitoring, neurological
disorder diagnosis, and brain-computer interface development.
Especially for anomaly detection, EEG provides an intuitive
and real-time approach[1,2]. It offers potential for assisting
physicians in achieving efficient and automated clinical
diagnosis. However, EEG signals are highly non-stationary,
have a low signal-to-noise ratio, and exhibit multi-channel
heterogeneity. These characteristics limit the effectiveness of
traditional signal processing and pattern recognition methods in
capturing latent dynamics and abnormal patterns.

With the advancement of artificial intelligence, deep
learning models have been introduced into EEG anomaly
detection. Most methods rely on convolutional or recurrent
neural networks to model raw EEG sequences. They aim to
automatically learn spatial structures or temporal dependencies.
However, anomalies in EEG are often non-local, sparse, and
structurally uncertain across space and time. Traditional neural
networks struggle to model long-term dependencies or global

attention. This leads to feature dilution and pattern degradation,
making it difficult to capture complex cross-temporal and
cross-channel interactions. In multi-channel EEG, interactions
between channels carry rich neural information. Failure to
model this properly greatly reduces the accuracy and
robustness of anomaly detection[3].

Graph-based signal modeling offers a new perspective to
address this challenge. EEG signals can be abstracted as
dynamic brain networks. Each channel corresponds to an
observation node of a neural region, and inter-channel
correlations can be represented as edges. Representing EEG as
graph signals and applying graph neural networks allows
natural integration of spatial topology. This helps capture non-
Euclidean relationships across channels. Furthermore, graph
attention mechanisms can learn adaptive edge weights to
identify key dependencies[4,5]. This enhances the model's
focus on abnormal regions and events. It enables fine-grained
and semantically aware anomaly detection.

However, static graph models are limited in capturing
temporal changes in EEG sequences. Anomalies often appear
as short bursts, periodic activities, or context-dependent
fluctuations. These characteristics require dynamic modeling of
temporal structures. Integrating temporal modeling with graph
attention mechanisms offers a promising approach. Temporal
attention identifies critical time points, allowing focus on
dynamic changes[6]. Graph attention captures the most



informative channel dependencies at each time step. Together,
they enhance joint spatial-temporal modeling. This fusion
mitigates memory decay in long sequence modeling. It also
exploits sparse temporal-spatial patterns of anomalies in EEG.
The approach moves anomaly detection towards structure-
aware and semantically interpretable modeling[7].

In practical applications, EEG anomaly detection has great
potential in early warning, long-term monitoring, and
automated diagnosis of neurological disorders. Current clinical
practice still relies heavily on manual observation by experts,
which is time-consuming and subjective. This results in
inconsistent and sometimes inaccurate analysis. Leveraging
temporal-graph attention mechanisms to extract key abnormal
dynamics can greatly improve the detection of potential neural
disruptions[8].It also supports personalized treatment and
remote medical systems. The mechanism is scalable and
adaptable to various multi-channel biosignal anomaly detection
tasks. It lays a theoretical foundation for cross-modal neural
health sensing systems. Developing EEG anomaly detection
methods based on temporal-graph attention is not only a
structural innovation in deep modeling but also a response to
the clinical demand for efficiency, interpretability, and
generalizability in intelligent diagnosis.

Furthermore, given the growing interest in neuro-oncology,
EEG-based anomaly detection methods also hold potential for
assisting in the early diagnosis and monitoring of brain tumors.
Certain intracranial neoplasms can alter regional
electrophysiological activity, leading to detectable EEG
abnormalities. Incorporating tumor-specific EEG patterns into
the anomaly detection framework may provide valuable
insights for non-invasive cancer-related neurological
assessment.

2. Methodology
This study proposes an EEG anomaly detection method

based on the time graph attention mechanism to effectively
model the complex spatiotemporal dependency structure in
multi-channel EEG signals. The overall architecture is based on
graph neural networks, which integrates the interaction
between time and channels by building a dynamic graph
structure to mine potential abnormal signal areas. The model
architecture is shown in Figure 1.

Figure 1. Framework Overview of the Spatiotemporal
Graph Attention Model

Specifically, the original multi-channel EEG sequence is
represented as a graph sequence with time index:
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Each graph tG defines a node set V (corresponding to

EEG channels) and an edge set t (indicating the connection
strength between channels at that moment) at time t. The
feature vector of each node is expressed as:
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Where i is the channel index and t is the time step. To
model the spatial dependency between channels, the graph
attention mechanism is used to learn edge weights and
adaptively mine key structures at different time points.
Specifically, for node i and its neighbor node j, the attention
weight on its edge is defined as:
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Where W is a learnable linear transformation matrix, a is
the attention vector, || represents the vector concatenation

operation, B is the neighbor set of node i, and iN represents
the attention intensity of node j to node i at time t. The node
feature update rule is:
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Where )( is a nonlinear activation function.



In terms of modeling time dependency, a temporal attention
mechanism is introduced to capture the importance of
information between different time steps. For a historical
feature sequence }~,...,~{ 1 T

ii hh of node i, the contribution of
each time point t to the current time step T is calculated
through the self-attention mechanism:
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Where Tt WWq ,, is a trainable parameter, and i
t

represents the influence weight of time step t on node i at the
current moment.

After fusing the temporal context information, the dynamic
representation of node i is:
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To improve the overall abnormal expression ability, a
global spatiotemporal feature aggregation operation is
introduced to aggregate the dynamic representations of all
nodes at each time step into the final graph-level representation:
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Where )Readout( is the average pooling operation. The
graph-level embedding z is used in the subsequent anomaly
discrimination module. The entire modeling process takes into
account the structural dependency between nodes and the
dynamic changes of time series, which can effectively
characterize the distribution of non-stationary abnormal
features in EEG data and significantly enhance the expression
adaptability and abnormal sensitivity of the model under
spatiotemporal heterogeneous data.

3. Experimental Data
This study uses the TUH Abnormal EEG Corpus as the

primary dataset for EEG anomaly detection experiments. The
dataset consists of real clinical EEG recordings with a sampling
rate of 250 Hz. It includes both pathological and normal cases,
providing high representativeness and complexity. All
recordings are preprocessed and formatted as multi-channel
signals to reflect the distribution of EEG activity under real
clinical conditions.

Each sample in the TUH Abnormal EEG Corpus is a multi-
channel EEG segment with varying duration. The samples are
professionally labeled as either "normal" or "abnormal."
Abnormal labels correspond to atypical discharges related to
various brain dysfunctions. These include seizure activity,
slow-wave enhancement, and background rhythm disorders.
The channel configuration follows the international 10-20
system. It ensures high consistency and rich channel
information, which supports structured modeling in the spatial
domain.

In addition, the dataset offers a sufficient volume of
publicly available data. The division between training and
testing sets is clearly defined. This facilitates model
performance evaluation and comparative studies. Its clinical
authenticity, strict labeling standards, and complex multi-
channel structure make it a reliable benchmark for developing
and validating EEG anomaly detection methods.

4. Evaluation Results
This paper first conducts a comparative experiment, and the

experimental results are shown in Table 1.

Table1: Comparative experimental results
Model Accuarcy Sensitivity Specificity

BioSerenity-E1[9] 84.6 81.2 87.1
SGSTAN[10] 86.3 83.5 88.2
STFFDA[11] 88.1 85.4 90.1
SincVAE[12] 89.7 87.9 91.0

Ours 92.5 90.8 93.6

The comparison results in the table show that the proposed
model outperforms existing methods in EEG anomaly detection.
It achieves an overall accuracy of 92.5%, which is significantly
higher than that of other models. This indicates that the
introduced temporal-graph attention mechanism effectively
integrates temporal dynamics and non-Euclidean structural
dependencies among EEG channels. As a result, the model
enhances its ability to identify abnormal patterns. Compared
with traditional static modeling methods, our approach
demonstrates stronger feature representation and higher
classification accuracy.

In terms of sensitivity, our model reaches 90.8%, which is
substantially better than the baseline models such as
BioSerenity-E1 (81.2%) and SGSTAN (83.5%). This result
confirms that the model has a stronger recall capability in
identifying abnormal EEG states. It can more effectively
capture clinically significant abnormal discharges. The
improvement is attributed to the temporal attention mechanism,
which focuses on key time windows. This strategy highlights
prominent abnormal regions in the sequence and reduces
missed detections.

For specificity, our model also achieves a leading score of
93.6%, which is much higher than the 87.1% achieved by
BioSerenity-E1. This shows that the model is capable of
rejecting normal signals with high precision, thus reducing the
false positive rate. This advantage mainly comes from the
graph attention mechanism. It enables effective modeling of
semantic redundancy and weak cooperative signals across
channels. As a result, the model gains stronger robustness in
recognizing normal EEG structures.

In summary, the experimental results verify the
effectiveness of the temporal-graph attention architecture in
modeling high-dimensional spatiotemporal EEG sequences. By
jointly modeling inter-channel dependencies and temporal
dynamics, the model achieves significant improvements in
accuracy, recall, and specificity. This provides a structure-
aware and interpretable solution for anomaly detection. It is



especially suitable for clinical scenarios where high-precision
EEG analysis is urgently needed.

This paper also gives the impact of different time window
lengths on model performance, and the experimental results are
shown in Figure 2.

Figure 2. The impact of different time window lengths on model performance

As shown in the results of Figure 2, the overall performance
of the model varies significantly under different time window
lengths. This indicates that the temporal modeling strategy is
highly sensitive to anomaly detection performance. In
particular, at the 3-second window length, the model achieves
peak values in Accuracy, Sensitivity, and Specificity. This
suggests that this window length offers the highest information
density and temporal context for capturing abnormal EEG
features. This result is closely related to the proposed temporal-
graph attention mechanism, which focuses more effectively on
key time segments under moderate window lengths and
enhances the model's capacity to represent anomalies.

Accuracy increases first and then slightly decreases as the
time window length grows. This shows that more temporal
context is not always beneficial. A short window may lack
sufficient information to support effective graph-based
attention modeling. A long window may introduce redundant
or distracting signals, weakening the model's focus on
abnormal local patterns. Therefore, selecting an appropriate
time window requires balancing dynamic signal capture and
noise suppression. This is a key issue in the design of time-
sensitive mechanisms.

The trend in Sensitivity further confirms that an appropriate
window length not only improves overall detection accuracy
but also enhances the model's ability to recall rare abnormal
samples. The highest recall is observed at the 3-second window.
This indicates that this timescale is effective in emphasizing the
sudden nature of abnormal neural signals. This result aligns
with the temporal attention mechanism, which focuses on
critical instants. It also supports the idea that the proposed
architecture amplifies weak, localized, and sparse anomalies.

The Specificity results indicate that the model has stronger
false-positive suppression under reasonable window lengths.
Both the 3-second and 4-second windows maintain high
specificity. This shows that the temporal-graph structure can
model cooperative relationships among normal channels,
reducing the risk of misclassifying non-abnormal signals. This
also validates the strength of graph attention in modeling

spatial coupling structures. It provides reliable support for
spatiotemporal joint modeling. Overall, the performance
differences across window lengths reflect the model's high
sensitivity to temporal scale. This highlights the necessity and
effectiveness of introducing temporal-graph attention
mechanisms in EEG anomaly detection tasks.

This paper also investigates the impact of varying the
number of EEG channels on the model's spatial modeling
capacity. By systematically adjusting the number of input
channels, the study explores how the spatial topology and inter-
channel connectivity influence the ability of the proposed
model to capture meaningful patterns in brain activity. This
analysis aims to assess the sensitivity of the model to structural
complexity and redundancy in the input graph, providing
deeper insights into how spatial configurations affect overall
modeling performance. The corresponding experimental results
related to this analysis are illustrated in Figure 3.

Figure 3. The impact of changes in the number of channels on
the modeling capabilities of the model space

As shown in the results of Figure 3, the model's spatial
modeling performance first increases and then decreases as the
number of EEG channels grows. This change indicates that the



number of channels significantly affects model performance
and that there exists an optimal range. In particular, when the
number of channels is between 50 and 60, the model achieves
peak performance in Accuracy, Sensitivity, and Specificity.
This suggests that the spatial topology has the highest
information density suited to the modeling requirements of the
current graph attention mechanism. Too few channels may lead
to missing information, while too many channels may
introduce structural noise and redundancy, which interfere with
the model's ability to identify key connections.

The Accuracy curve shows a steady increase as the number
of channels grows from 10 to 50. This indicates that more
channels provide richer cross-regional neural activity
information, which enhances the expressive power of the graph
structure. However, when the number exceeds 60, the accuracy
begins to decline. This implies that the addition of redundant
nodes may dilute the focusing ability of the graph attention and
increase the burden of structural learning. This phenomenon
suggests that spatial modeling depends not only on the design
of the graph structure but also on the distribution of channels
and the control of redundancy.

The trend in Sensitivity is similar to that of Accuracy, but
shows a sharper decline at high channel numbers. This means
that the model's recall ability for abnormal signals is more
sensitive to spatial structure. When too many channels are
included, abnormal discharge features may be masked by
information from non-critical nodes. This causes the attention
mechanism to lose focus on key regions, leading to decreased
detection performance. This trend confirms that the graph
attention mechanism in the proposed method needs to balance
expressive power and sparsity when constructing non-
Euclidean spatial relationships.

The Specificity curve remains higher than the other two
metrics overall and reaches its best performance around 50
channels. This suggests that the model is most effective in
identifying normal signals under this structural setting. It shows
that the proposed model has a strong ability to suppress non-
abnormal activations across channels. The graph attention
module accurately inhibits false activations from irrelevant
channels. Properly controlling the number of channels during
spatial modeling improves the model's robustness to normal
neural patterns. This enhances the overall stability and
interpretability of anomaly detection.

This paper also gives a comparison of the model
generalization performance under different annotation ratios,
and the experimental results are shown in Figure 4.

Figure 4 shows the change in generalization performance of
the model under different label proportions. From the bar chart,
it is clear that as the proportion of labeled data increases, the
model's accuracy also improves steadily. This demonstrates a
strong positive correlation. It indicates that in EEG anomaly
detection, the richness of label information directly affects the
model's ability to generalize spatiotemporal features. In
particular, when the labeling rate increases from 10 percent to
50 percent, the performance improves most significantly. This
suggests that in low-resource settings, a small number of high-
quality labels can strongly guide the graph attention structure.

Figure 4. Comparison of model generalization performance
under different annotation ratios

Between 70 percent and 100 percent labeling, the
improvement in accuracy begins to plateau. This indicates that
as more labels are provided, the model gradually strengthens its
ability to distinguish between abnormal and normal patterns. At
the same time, it reveals a boundary effect of information
redundancy. In this phase, the graph neural network has already
formed clear semantic boundaries in the node representation
space. The marginal gain from additional labeled data starts to
decrease. This saturation trend is particularly evident in deep
graph modeling frameworks and reflects the balance between
structural and label information.

The results also show that under extremely low labeling
conditions, such as 10 percent, the model's performance drops
significantly. This suggests that although the graph structure
has some unsupervised modeling capability, the attention
mechanism may fail to focus on truly abnormal nodes and time
segments without sufficient label guidance. This further
confirms that the proposed temporal-graph attention
mechanism depends on supervision to effectively model sparse
EEG anomalies.

In summary, this experiment highlights the critical role of
label proportion in the generalization performance of graph
attention structures. In real-world applications, manual labeling
of EEG data is costly and time-consuming. Therefore, it is
important to design structured modeling frameworks that are
adaptive to low-label scenarios. The proposed method shows a
consistent upward trend under various labeling scales. This
demonstrates strong adaptability and good generalization. It
provides important support for practical clinical intelligent
diagnosis.

5. Conclusion
This study focuses on the task of EEG anomaly detection

and proposes a temporal-graph attention mechanism that
integrates temporal modeling and graph-based structural
learning. The method is designed based on the non-Euclidean
spatial structure and dynamic temporal evolution characteristics
of EEG signals. It builds a joint modeling framework that
effectively captures inter-channel dependencies and key time
segments. This enhances both the accuracy of anomaly



recognition and the model's generalization ability.
Experimental results show that the proposed method
consistently outperforms existing mainstream models across
multiple evaluation metrics. Significant improvements in
accuracy, sensitivity, and specificity validate the effectiveness
and robustness of the temporal-graph modeling strategy in
complex neural data scenarios.

This study also systematically analyzes the impact of key
factors such as time window length, number of channels, and
label proportion on model performance. It further reveals the
complementarity and interdependence between temporal
attention and graph attention mechanisms when modeling high-
dimensional spatiotemporal EEG signals. Under low-label
conditions, the model still demonstrates stable performance
gains, showing strong adaptability to limited supervision. This
provides a practical solution for the annotation bottleneck in
clinical settings. Additionally, the model shows a clear ability
to suppress channel redundancy and structural noise during
multi-channel spatial modeling, further supporting its practical
value in large-scale neural signal processing.

This work contributes not only methodologically but also
has practical implications for engineering applications in
intelligent EEG analysis. With the growing demand for smart
healthcare and remote monitoring, the proposed method offers
a theoretical and technical foundation for building automated
and high-precision EEG analysis systems. In particular, this
approach can be extended to support auxiliary diagnosis in
neuro-oncological contexts, where brain tumors may induce
regionally abnormal EEG signatures due to mass effect, edema,
or epileptogenic activity. By integrating tumor-specific features
or collaborating with neuroimaging data, the method could
contribute to early-stage cancer detection or therapeutic
monitoring in clinical oncology. In critical applications such as
epilepsy prediction, neural function monitoring, and cognitive
disorder diagnosis, the temporal-graph attention mechanism
supports the development of personalized diagnosis and
intelligent decision-making platforms. It expands the
application scope of EEG analysis techniques in the healthcare
domain.

Future work may explore the extension of this method to
cross-modal brain signal fusion, unsupervised anomaly
detection, and real-time online learning. Introducing structural
priors with stronger neurophysiological interpretability or
adopting multi-scale graph modeling strategies may further
enhance the model's explainability and clinical compatibility.
In addition, with the increasing availability of wearable EEG
devices, deploying this method on edge devices to enable low-
latency and low-power online anomaly detection will be an
important direction for future research and real-world
implementation.

References
[1] Dairi, Abdelkader, et al. "EEG-based mental tasks recognition

via a deep learning-driven anomaly detector." Diagnostics 12.12
(2022): 2984.

[2] Tahura, Sharaban, et al. "Anomaly detection in
electroencephalography signal using deep learning
model." Proceedings of International Conference on Trends in
Computational and Cognitive Engineering: Proceedings of
TCCE 2020. Springer Singapore, 2021.

[3] Alvi, Ashik Mostafa, Siuly Siuly, and Hua Wang. "Neurological
abnormality detection from electroencephalography data: a
review." Artificial Intelligence Review 55.3 (2022): 2275-2312.

[4] Alvi, Ashik Mostafa, Siuly Siuly, and Hua Wang. "Developing a
deep learning based approach for anomalies detection from EEG
data." International Conference on Web Information Systems
Engineering. Cham: Springer International Publishing, 2021.

[5] Karpov, Oleg E., et al. "Evaluation of unsupervised anomaly
detection techniques in labelling epileptic seizures on human
eeg." Applied Sciences 13.9 (2023): 5655.

[6] Yang, Xue, Xuejun Qi, and Xiaobo Zhou. "Deep learning
technologies for time series anomaly detection in healthcare: A
review." Ieee Access 11 (2023): 117788-117799.

[7] Pilcevic, Dejan, et al. "Performance evaluation of metaheuristics-
tuned recurrent neural networks for electroencephalography
anomaly detection." Frontiers in Physiology 14 (2023): 1267011.

[8] Fernando, Tharindu, et al. "Deep learning for medical anomaly
detection– a survey." ACM Computing Surveys (CSUR) 54.7
(2021): 1-37.

[9] Bettinardi, Ruggero G., Mohamed Rahmouni, and Ulysse
Gimenez. "BioSerenity-E1: a self-supervised EEG model for
medical applications." arXiv preprint arXiv:2503.10362 (2025).

[10]Xiang, Jie, et al. "Synchronization-based graph spatio-temporal
attention network for seizure prediction." Scientific Reports 15.1
(2025): 4080.

[11]Huang, Zhentao, et al. "EEG detection and recognition model for
epilepsy based on dual attention mechanism." Scientific
Reports 15.1 (2025): 9404.

[12]Pollastro, Andrea, Francesco Isgrò, and Roberto Prevete.
"SincVAE: a New Approach to Improve Anomaly Detection on
EEG Data Using SincNet and Variational Autoencoder." arXiv
preprint arXiv:2406.17537 (2024).


