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Abstract: In the age of big data and advancing computing power, the dominance of deep learning has been established 

worldwide. Traditional image classification techniques struggle to handle vast image datasets and fail to meet the demanding 

standards for accuracy and speed in image classification. Convolutional Neural Networks (CNNs) have emerged as a 

breakthrough in overcoming these limitations, swiftly becoming the leading algorithm for image classification. Effectively 

harnessing CNNs for image classification has thus become a focal point of research in computer vision globally.This paper 
provides an overview of the research background, significance, and current status of CNN models and image classification. We 

delve into two prominent image classification methods based on ResNet and ShuffleNet, conducting a comprehensive 

exploration of their construction methodologies and distinctive characteristics. Finally, we conduct a comparative analysis of 

the performance of these two classification models. 
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1. Introduction 

Image classification is an important research direction in 

the field of artificial intelligence and an important branch in 

image processing. It has long attracted the attention of 
academia and industry, and many research results have been 

achieved. Image classification is to extract the features of the 

image, and then according to the category to which the 

features belong to be classified. Early image classification is 

to use manual to mark, with the eyes to judge the category of 

the picture.  

As more and more types of images and more and more 

complex structures, how to effectively manage images is a 

very meaningful topic at present. With the advent of the 

information age, the image classification technology develops 

as a machine identifies and classifies the objectively existing 

things by simulating the human visual system. In the past 
decade or so, as the demand for image processing related 

technologies has been growing, there have been many 

significant breakthroughs in the research of image 

classification. As early as the 1980s, LeGun et al. have 

proposed the use of convolutional neural networks[1] for 

image classification. Since then there have been many 

competitions on image classification, e.g., between 2005 and 

2012, including Pattern Analysis, Statistical Modelling, 

Computational Learning, the Visual Object Class (PASCAL 

VOC) Challenge, and the ImageNet Large Scale Visual 

Recognition Challenge[2]. Since Krizhevsky et al. proposed a 
pioneering AlexNet[3] convolutional neural network model in 

2012, the performance of image recognition has been 

significantly improved, dramatically reducing the error rate of 

image classification. This was a major advancement in image 

classification and a pioneering development in the field of 

deep learning. Since then, various CNN-based image 

classification methods have continued to appear. To name a 

few, LeNet[4], GoogLeNet[5], VGGNet[6] and many other 

convolutional neural network models. The performance of 

image classification techniques continues to improve, and 

some methods have even surpassed the human level. 

With the rapid development of computers and the great 
improvement of computing power, deep learning has 

gradually stepped into our vision.  Compared with 

traditional image classification methods, it no longer needs 

to manually describe and extract features from the target 

image, but through the neural network to autonomously learn 

the features from the training samples, and these features are 

closely related to the classifier, which is a good solution to 

the problem of manually extracting features and selecting 

classifiers[7]. Therefore, it is of great significance to study 

image classification methods based on convolutional neural 

network models in various scene applications. Therefore, two 

image classification methods based on ResNet[8] and 
ShuffleNet[9] will be discussed and studied in this paper. 

2. Relevant Theories 

2.1. Basic Theory of Image Classification 

Image classification involves extracting features from the 

input image and categorising them. In image classification, 

the appropriate dataset is first selected, then the dataset is 

preprocessed to eliminate the influence of other factors on the 

features, then the feature information is extracted from the 

image, and finally, after learning and training, the 

classification result is finally obtained and assigned a label. 

The labels are obtained from a predefined set of possible 
classifications. The main processes of image classification 

include image preprocessing, image feature description and 

extraction, and classifier design. Preprocessing includes 

operations such as image filtering and size normalisation, 

which are designed to facilitate the subsequent processing of 

the target image; image features are descriptions of salient 

features or attributes, and each image has some of its own 
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features, feature extraction, i.e., according to the features of 

the image itself, select suitable features and extract them 

efficiently in accordance with a certain established way of 

classifying images; a classifier is an algorithm for classifying 

the target image according to the selected features. Classifier 

is an algorithm that classifies the target image according to 

the selected features. 

Traditional image classification techniques mainly consist 
of two parts: feature extraction and classifier learning. Feature 

extraction is more important than classifier learning in 

traditional image classification, because when feature 

extraction does not extract enough feature information, the 

classification accuracy of the classifier will decrease and the 

error rate of image classification will become higher. Among 

feature extraction, feature coding is one of the most studied 

areas. In feature-based image classification, it can usually be 

divided into three steps, the first step is the input image, the 

second step is feature extraction, which processes the input 

image, and finally outputs the result for classification. This 

part of feature extraction can be further divided in detail into 
three stages: descriptor extraction, feature coding and spatial 

pooling. 

With the rapid development of computers and the great 

improvement of computing power, deep learning has 

gradually stepped into our vision. In the field of image 

classification, convolutional neural network in deep learning 

can be very useful. Compared with traditional image 

classification methods, CNN-based image classification can 

automatically learn to extract image features, has a strong 

feature expression ability, and is an important component of 

today's image classification tasks. Its classification process 
consists of preprocessing, feature extraction, learning and 

training. Among them, its focus part is the training process, 

which can be divided into forward and back propagation. 

When training an image, the results obtained from the input 

image after convolutional layer, pooling layer, and classifier 

are compared with the target value, after which forward 

propagation or back propagation is chosen and finally the 

output is obtained. 

2.2. Basic Theory of Convolutional Neural 

Networks 

Convolutional neural networks are similar to traditional 

artificial neural networks in that they are made up of a number 

of neurons which are self-optimising and constantly learning. 

Each neuron is first assigned a feature of the input data and 

then proceeds to the next operation, and countless neurons 

form together to form the basis of the neural network. 

Neurons in a CNN are typically composed of three 

dimensions, input height, width and depth. Unlike standard 

artificial neural networks, the neurons in any given layer of a 
CNN are connected to only a small portion of the area of the 

previous layer.The overall architecture of a CNN consists of 

a convolutional layer, a pooling layer, and a fully connected 

layer. These layers can be stacked on top of each other, and 

when stacked together, they make up a CNN architecture. The 

essence of convolutional neural network is a multi-layer 

perceptual machine. Compared with fully connected neural 

network, convolutional neural network can effectively reduce 

the size of training parameters in the network by setting local 

receptive fields, weight sharing, pooling layer and other 

operations, which can greatly reduce the amount of 
computation and the complexity of the model, and therefore 

it is especially suitable for use in image recognition and 

feature extraction tasks as a feature extractor for images. 

3. ResNet-based Image Classification 

3.1. Feed-forward neural network 

Feedforward neural networks are one of the most 

commonly used function approximation techniques and have 

been applied to problems arising from a variety of disciplines. 

Feedforward neural network is a deep learning model with a 

unidirectional multilayer structure in which each layer packs 
a number of neurons. Its zero-layer structure is called the 

input layer, which is the location of the input of the original 

data, the hidden layer is an intermediate layer or layers after 

the zero layer, the number of layers of the hidden layer 

determines the depth of the network, and the hidden layer is 

followed by the output layer, which represents the 

classification probability in the classification task. 

As shown in Figure 1, this is a typical multi-layer feed- 

forward neural network, this neural network has four neurons 

in the input layer, the neurons are connected to each other 

after passing through the input layer, and then they become 
five when they reach the first hidden layer, and then after the 

first hidden layer, the neurons are reduced to three, and the 

neural network extracts deeper features in these processes, 

and then finally outputs the classification results through the 

output layer. 

 

 

 

 

 

 

 
 

 

Figure 1. Multilayer feed-forward neural network structure 

Feedforward neural network not only possesses the 

outstanding features of simple structure and wide range of 

application scenarios, but also it is easy to fit a variety of 

continuous functions, and its representation ability is very 
powerful to learn the data laws of any data set. In terms of 

computation, feedforward neural networks lack rich dynamic 

behaviour. And from a system perspective, the nonlinear 

mapping ability of feedforward neural networks is static. 

However, it has a powerful nonlinear processing capability, 

the implementation of which is obtained by simple 

combinatorial mapping of neurons. As far as most of the 

feedforward neural networks are concerned they are a 

relatively good learning network with better performance 

than the usual feedback networks in the field of image 

classification. 
However, in the field of deep learning, feedforward neural 

networks also have flaws. Feedforward neural networks in the 

training aspect, using the traditional gradient descent method, 

which makes the training rate is lower, the training time is 

longer. At the same time, the learning rate chosen by the 

model is not flexible enough, and the learning rate is closely 

related to the performance of the neural network, too big or 

too small will lead to bad consequences. 
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3.2. ResNet model 

The core concept of ResNet is to add a constant mapping 

path to the neural network, as shown in Figure 2, where the 

input data is passed through two consecutive network layers 

to get a non-linearly mapped output, and added to the original 

input to get the final residual output. That is, the addition of a 

constant mapping converts the original function H (x) that 

needs to be learned into F (x) + x , and the hypothetical 

optimisation of F (x) would be much simpler than H (x) , 

which would be the same for both representations but not the 

same level of difficulty to optimise. The emergence of this 

model has allowed the network model depth to be unrestricted 

over a wide range (currently up to 1000 layers or more) and 

has had a profound impact on the subsequent development of 

convolutional neural networks. The idea has gone through a 

short period of time from its creation to its practical 

application. 

 
Figure 2. ResNet's residual learning module 

property converge faster in processing the image, which 

proves that applying more advanced concepts and using a 

better processing method can enhance the optimisation well. 

While conducting research on residual connectivity, 

"Highway Network[12]" provides shortcut connections with 

gating features. This kind of shortcut connections can 

somehow be beautiful with the idea of residual connections, 

however, these gating mechanisms are more data dependent 
and they also have extra parameters, this drawback increases 

the computational effort and training of the network. On the 

other hand, when the gating mechanisms are turned off, their 

network representation has no advantage as in the case of non- 

residual networks. Unlike this network, the layer-hopping 

connected constant mapping module in the residual network 

does not introduce additional training parameters or 

hyperparameters and is committed to learning the residual 

function this operation does not ignore the learning of the 

constant mapping and the Highway Network does not have 

the advantage of performing as well as the residual network 

in the deeper network. 

4. ShuffleNet-based Image 
Classification 

4.1. Group convolution under channel 

substitution 

Modern convolutional neural networks are generally made 

up of network layers with the same structure stacked in 

different ways. In the Xception and ResNeXt models, the 

1´1  convolution and deep separable convolution were 

In image processing, VLAD (Vector of Locally Aggregated 

Descriptors)[10] is a representation encoded by a vector of 

residuals, while Fisher Vector[11] is described as a 

probabilistic statistical version of VLAD. Residual-based 

fitting as well as probabilistic distribution modelling is a 

powerful in image retrieval and classification tasks data 

shallow characterisation techniques. In vector quantisation, 

encoding residual vectors will present a more efficient 

performance than encoding raw vectors directly. In low-level 

introduced into the models in order to strike an effective 
balance between the feature extraction capability of the model 

and the computational complexity. However, the 1´1 

convolution contains significant computational complexity 
and parameters in both models. For example, in ResNeXt, the 
only convolutional layer that employs group convolution is 

3´3 , and the other layers are not equipped for use. So in each 

residual structure in the ResNeXt model, the 1´1 convolution 

has 93.4% product. In a small network, the higher 

vision tasks, in order to solve Partial Differential Equations complexity of the 1´1 convolution makes the number of 

(PDES), scientists divide the system into multiple sub-tasks 

on multiple scales by means of multiple meshes. Or rather, the 

task is refined step by step to create a different sub-task, each 

dealing with residual solutions at different scales. Compared 

to normal solvers, these solutions that employ the residual 

feature channels limited and cannot be stacked, which will 

lead to the performance of the model. Therefore how to 

balance the accuracy and computational complexity of the 

model becomes the problem addressed by ShumeNet. 

 

 

Figure 3. Channel disruption with two stacked group convolutions. (a) Two stacked group convolution layers; (b) Stacked 
group convolution with channel disruption; (c) Group convolution after channel disruption 

 

In order to do this while satisfying sufficient accuracy and 

complexity, some ideas have been proposed in ShumeNet. 

Sparse channel connections are applied in the model, for 

example by performing group convolution on the 1´1 

layers. Previously, the convolution of each group was run 

only on the corresponding channel with no additional number 

of parameters, and the computational complexity of the model 

decreased. However, setting up multiple group convolutions 
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stacked together for model design purposes inevitably creates 

an important problem: a channel in the middle layer of the 

network is only correlated with the input channel 

corresponding to that channel, and the output value of that 

channel is then only correlated with its corresponding input 

channel, and not with the channels of the other groups. The 

case of two stacked group convolutional layers is shown in 

Fig. 3(a). It is obvious that the output features from a given 
group only interact informatively with the features within its 

corresponding input group, and are completely disconnected 

from the features between the groups. As a result, the 

grouping convolution greatly hinders the flow of information 

and reorganisation between the individual groupings of the 

channel, largely weakening the expressive power of the 

network. 

Assuming that group convolution can obtain data from 

different input groups (as shown in Fig. 3(b)), the information 

its desired effect. In addition, the channel disruption is also 

differentiable, which means that this disruption operation can 

be embedded in the network structure to participate in end-to- 

end learning, reducing the cost of redundant operations. 

With the proposed method of channel disruption, building 

more robust structures using multiple groups of convolutional 

layers has thus become possible. 

4.2. ShuffleNet module 

Using the channel disruption approach, a novel ShumeNet 
network cell has been proposed for designing the structure of 
the microminiature network model. The structural details of 

the baseline model can be seen in Fig. 4(a). ShumeNet is 

different in that, in its residual branch, for the 3´3 

convolutional layers, the model applies a depth-separable 
convolution on the feature map to extract spatial information. 
Then, the group convolution layer of 1´1 is used to replace 

between the input and output features of different groups in the 1´1 convolution to reduce the model computation, and 
the model will circulate with each other in time. That is to say, 

for the feature maps generated in the previous set of layers, 

the channels in each group are first divided into several 
subgroups, and then the channel feature information of 

different subgroups in the previous layer is provided to each 

group in the next layer, and then the information of the output 

channels and the input channels of different groups will 

interact. In order to achieve the goal, the model can be 

constructed by channel disambiguation operation to realise 

the vision with as little computational time as possible (Fig. 

3(c)): assuming that the input of a convolutional layer is 

divided into a different group of a, and its corresponding 

output channels are a´b ; firstly, the dimension of the output 

channels is changed to (a, b) transposed to (b, a) before being 

flattened and used as inputs to the next layer. Note that even 

if the number of channels in the two groups is not equal, this 
implementation is not affected in any way and still achieves 

then the output feature map is channel disrupted to achieve 
the purpose of channel interaction, so far a ShumleNet unit is 

formed, as shown in Fig. 4(b) The purpose of the second 1´1 

convolution is to recover the channel dimensions to match the 
residual-connected data input dimensions. For simplicity, no 
additional channel disruption operation is applied after the 

second 1´1 layer, as the channel exchange in each residual 
cell is sufficient and no additional operation needs to be 
introduced. The use of batch normalisation (BN) and 

nonlinearity Similar to the Xception and ResNeXt models, 
ShufeNet does not use the ReLU activation function after 
deep convolution as in the case of residual networks. For the 

ShumeNet application, only two modifications were made 
(see Fig. 4(c)): (i) a window of 3 average pooling was added 
to the residual connections; and (ii) the element summing was 

replaced with channel splicing, making the channel 
dimension easy to scale up without adding extra cost. 

 

 
Figure 4. ShufeNet network units (a) Bottleneck unit with deeply separable convolution; (b) ShufeNet unit with 1´1 

convolution and channel disambiguation; (c) ShufeNet with step size 2 
group 

 

The 1´1 group convolution employs channel disruption, Since smaller networks generally do not have more channels 

allowing the modular components of the ShufeNet model to 

be combined efficiently. Compared to ResNet and ResNeXt, 

the structure of ShumeNet has lower complexity for the same 

setup. For example, ShufheNet requires fewer floating point 

operations (fops) compared to ResNet and ResNeXt for the 

same setup of input size and number of bottleneck channels. 

Alternatively, ShumleNet is able to use feature maps with a 

larger number of channels in the same computational budget. 

to process information, the advantage of ShufeNet is quite 

important for them. 

In ShumeNet, only the bottleneck feature maps are deeply 

convolved. This is mainly due to the fact that small mobile 

devices have poor memory access rates compared to other 

intensive computing operations due to their own device 

parameter limitations, so deep convolution complexity is 

difficult to accomplish effectively on mobile devices despite 
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the fact that it has been theoretically reduced to a very low 

level. This shortcoming is also present in ShufneNet, which 

has a TensorFlow-based runtime library. In the ShumeNet unit, 

deep separable convolutional operations are performed only 

on the bottleneck layer, which minimises redundant model 

computation overhead. 

4.3. Overall structure of the ShuffleNet 

network 

ShufieNet network, in terms of model structure design, was 

chosen to design a network structure with better performance 

in order to make the model faster and model size reduction. 

The details of the ShumleNet model structure are illustrated 

in Fig. 5 The network is mainly composed of a stack of 

ShumleNet network units which are mainly composed of 

three stages. The first convolution in each stage is chosen with 

a step size of 2, and the subsequent steps are changed 
according to the training process. The other parameters in that 

stage are not adjusted, and for the next stage, the number of 

channels of the output data is doubled compared to that of the 

input data, which is caused by the final channel splicing 

operation of the ShumeNet network cells. The number of 

bottleneck channels for each ShumeNet network is set to 1/4 

of the output channels, which is intended to reduce the 

network parameters and make the model more simplified, but 

it is mentioned in ShuffleNet that more hyper-parameter 

tuning may give better results. 

In the Shufienet unit, the number of groups g controls the 

sparsity of the convolution's connections over the channels. 
Figure 5 discusses various numbers of groups (all 

approximately 140 MFLOPs) that adjust the output channels 

to ensure that the overall computational complexity is 

essentially the same. It is clear that, for a given complexity 

constraint, a larger number of groups will increase the number 

of output channels, which will result in more convolutional 

filters being generated, thus allowing more information to be 

encoded, although this will also result in degradation of a 

single convolutional filter due to its respective input 

channel.Shumenet examines the effect of different 

computational constraints on this number of channels. 

Customising the network to the desired complexity only 
requires applying the scale factor s to the number of channels. 

 

 
 

 

5. Results 

Figure 5. Shuffle network structure 

 

contains 600~900 images. The size size of the pictures in the 

training set in the dataset is not uniform, the common size is 

5.1. Image classification based on ResNet 

model 

With the increase of the number of layers of the deep 

network, better feature learning can be carried out, but it also 

leads to the re-propagation process in the network can become 

unstable. The design of ResNet model makes the internal 

structure of the network model has the ability of certain 

constant mapping, and solves the problem of gradient 

explosion or gradient disappearance by adding the residual 
connection, which enhances the stability in the propagation of 

the network, and effectively accelerates the convergence of 

the network, and the degradation problem of the deep network 

can be solved as a result. 

5.1.1. Comparison of classification performance based on 

different networks 

The classification performance of the ResNet model will 

be evaluated on a flower dataset, as shown in Fig. 6 for some 

of the images. The selected flower dataset is nearly 4000 
images in total, with a total size of about 200M, which can be 

classified into 5 different types of flower images, namely 

sunflower, tulip, rose, dandelion, and daisy, and each type 

320×240 or 180×240, etc., and the size of the pictures ranges 

from 30 to 150kb, and the data is not pure, which is mixed 
with some other pictures. For subsequent experiments, the 

flower dataset is divided into two parts: flower_train and 

flower_test. 
 

Figure 6. Selected data sets 

 

We validate the effect of the number of ResNet layers on 

classification performance by choosing ResNet-18, ResNet- 

34, ResNet-50, ResNet101, ResNet-152,the number of 

training validation rounds is 20, and the classification 

accuracy metrics are denoted by the total accuracy OA. 
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Table 1. Comparison of classification performance with 
different network depths 

 
 

layers acc% Flops/109 

ResNet-18 93.22 1.8 

ResNet-34 93.42 3.6 
ResNet-50 94.01 3.8 
ResNet-101 94.55 7.6 
ResNet-152 94.63 11.3 

 

From Table 1, it can be seen that as the number of 

convolutional layers increases, the overall accuracy also 

increases, and it can be concluded that the accuracy of ResNet 

based image classification increases as the number of 

convolutional layers increases. This is due to the fact that as 

the number of layers increases, the depth of the network and 

the performance ability of the model gets better and the 
overall accuracy is higher. Also, the floating point computing 

data in the table shows an increase in computing complexity 

with increasing number of convolutional layers without any 

decrease in accuracy. This is because as the depth of the 

network gets deeper, the number of layers increases and the 

computational complexity required increases. 

5.2. Image classification based on ShuffleNet 

model 

With the development of deep learning, the network 

structure of CNNs is getting deeper and deeper, and most 

high-precision neural networks need to undergo billions of 

computations, which makes most network models difficult to 

use on devices with low computational power. The Shufflenet 

model, on the other hand, pursues optimal accuracy under a 

relatively small budget of computational resources by using 

channel disruption, which allows the input and output channel 

information flows to interact. For the same computational 
complexity budget, the Shufflenet model allows more 

channels to be used than other common architectures, helping 

to encode more information. Especially when used in small 

networks, it has better performance, which makes it popular 

for small devices. 

5.2.1. Effect of Group Size on Classification Performance 

The classification performance of the ShuffleNet model 

was also evaluated on the floral dataset mentioned above. In 

order to assess the importance of 1×1 group convolution for 

the ShuffleNet model, we verified the effect of ShuffleNet 

group size g on the classification performance when the 

number of experimental training rounds was chosen to be 30, 

and the number of groups chosen was g = {1 2 3 4 8},the 

classification accuracy metric was expressed as the total 

accuracy OA. 

 
Table 2. Effect of different group sizes on classification 

performance 

complexity decreases with the increase in the number of 

groups g without any decrease in accuracy. Table 2 also shows 

that when the number of groups g becomes relatively large, 

the overall accuracy of classification decreases, but the results 

are still better than without channel disruption. 

5.2.2. Ablation experiments with ShuffleNet modules 

In order to verify the importance of channel Shuffle in the 

ShuffleNet model, we conducted experiments on it. We 

operate on two different groups g with and without channel 

Shuffle. The classification accuracy metrics of the 

experimental results are expressed as the overall accuracy OA. 

Table 3. Ablation studies on whether channels are Shuffle 

 or not with different ShuffleNet modules  
 

ShuffleNet groups acc error 
(%,no shuffle) 

acc error 
(%,shuffle) 

ShuffleNet(g=3) 94.33 32.6 
ShuffleNet(g=8) 94.35 32.4 

 

From the results, it can be seen that when the number of 

groups g is 3, the overall accuracy of the ShuffleNet model 

with channel Shuffle is much higher than that of the 

ShuffleNet model without channel Shuffle. This indicates that 

whether or not channel Shuffle is performed has a great 

impact on the classification performance, and pure group 

convolution hinders the interaction of channel information 

between groups, so channel information flows better after 

channel Shuffle is performed, and the classification 

performance is relatively better. 

6. Conclusion 

As we enter the era of intelligent information, where 

computer hardware continuously evolves and software 

algorithms are consistently refined, the field of artificial 

intelligence experiences rapid expansion, with deep neural 

networks becoming increasingly pervasive in image 

classification technology. This paper has provided a 

comprehensive review of the research background, 

significance, and current landscape of convolutional neural 

networks and image classification technology.Moreover, we 

have effectively implemented image classification using 

ResNet and ShuffleNet, conducting comparative 

experiments to assess their classification performance. 
Additionally, we have investigated the classification 

performance of image classification based on ResNet across 

varying network depths and the classification performance 

of image classification based on ShuffleNet across different 

group sizes. Furthermore, we have validated the significance 

of channel shuffling in the ShuffleNet model.These findings 

underscore the advancements and nuances within deep 

neural network-based image classification and pave the way 

for further advancements in this dynamic field of artificial 

intelligence. 
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From Table 2, it can be seen that the overall accuracy 

increases with the increase in the number of groups g, which 

indicates that the accuracy increases with the increase in the 

number of groups. At the same time, the floating point 

operation data in the table also shows that the operation 
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