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Abstract: In this paper, a thought chain control generation method based on structure guidance is proposed to solve the
problem that large language models lack logical control and structural constraints in complex language generation tasks. This
method introduces a structure encoding module and a dynamic structure state mechanism to guide the model to develop a thought
chain along a preset structural path during the generation process, thereby improving the logical coherence and structural
consistency of the generated content. Specifically, the model first converts the task requirements into a structured representation,
fuses it with the input semantic context to construct a joint representation, and then generates it step by step through a structure-
aware decoder. In this process, the dynamic structure state updates and constrains the generation state to achieve real-time
regulation of the language output path. In order to systematically evaluate the effectiveness of this method, this paper designs
experiments in multiple dimensions, including structural step sensitivity, comparison of structural representation methods, and
performance comparison with a variety of public models. A comprehensive test is carried out using the NarrativeQA dataset. The
experimental results show that this method is significantly superior to existing mainstream methods in terms of structural
alignment, thought chain coherence, and generation accuracy, which effectively verifies the control value and modeling

advantages of the structure guidance mechanism in generation tasks.
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1. Introduction

In recent years, large language models have achieved
remarkable breakthroughs in natural language processing and
have become core components of many complex linguistic
tasks. However, despite their strong generalization and
adaptability in generation, these models still face limitations in
controlling reasoning paths, logical progression, and task
structure. Particularly in tasks requiring multi-step thinking or
chain reasoning, traditional large language models often lack a
clear control mechanism[1]. This leads to outputs that are
disjointed, incoherent, or logically inconsistent. Such issues not
only affect the quality of generation but also limit the practical
application of these models in scenarios that demand high
reliability and interpretability. Therefore, effectively guiding
large language models to generate content with structured
reasoning paths has become a key research direction[2].

The introduction of the chain of thought provides a new
perspective on enhancing reasoning in large language models.
Chain-of-thought refers to a process where the model simulates
human-like analogical reasoning, decomposing complex tasks
into intermediate steps and gradually forming a complete
answer. This sequential generation helps improve the model's
understanding of task structure, thereby enhancing coherence
and plausibility. However, in practice, most existing
approaches rely on static templates or a few demonstration
prompts to trigger a chain of thought. These methods lack deep
modeling of the task structure and often lead to mismatches
between reasoning paths and task intentions. Prompt-based
strategies alone are insufficient to meet the needs of diverse

tasks, highlighting the need for more systematic and adaptive
control mechanisms[3].

To address these challenges, structure-guided methods have
emerged as a key approach in chain-of-thought control. By
introducing structured prior knowledge into the generation
process, these methods help align the model's reasoning path
with the intended task. This reduces redundant information and
generation deviation. Structure guidance also offers strong
interpretability and controllability, enabling clear segmentation
of information granularity and logical relations across task
stages. In complex multi-hop reasoning, question answering,
and decision generation scenarios, structure-guided strategies
significantly enhance the model's ability to handle multi-level
information and cross-domain knowledge integration.

Furthermore,  structure-guided  strategies  improve
generation control not only in single tasks but also across
multiple tasks. By constructing general structure templates or
transferable generation rules, models can reuse reasoning
abilities across task types and enable transfer learning for
chain-of-thought reasoning. This approach also reduces
reliance on extensive human annotations, lowers deployment
costs, and improves scalability and stability in practical
applications. From the perspective of generation control,
structure guidance is not just an optimization tool but also a
pathway toward higher-level intelligent language systems[4].

In conclusion, integrating structure guidance with chain-of-
thought control addresses core limitations in the logical
reasoning and structural handling of large language models. It



lays the theoretical and methodological foundation for
improving the interpretability, robustness, and generalization
ability of generative AI systems. This line of research is
expected to drive a shift from content generation to process
understanding. It expands the application potential of large
language models in high-reliability fields such as education,
law, and healthcare, and supports the development of
controllable and transparent general-purpose language
intelligence systems.

2. Background & Motivation

2.1 Background

With the continuous evolution of pre-trained language
models, large-scale models have demonstrated strong
performance in various language generation and understanding
tasks[5]. However, the generation process of these models
remains heavily data-driven and lacks explicit control over
reasoning paths. When facing complex logical tasks, the
models often rely on shallow context matching instead of
effectively planning and executing multi-step reasoning. This
results in outputs that lack coherence, hierarchy, and
interpretability. The problem is especially pronounced in tasks
that require structured thinking or multi-stage inference, which
seriously limits the model's applicability in reasoning-driven
scenarios[6].

In addition, current large language models generally lack
intrinsic organizational mechanisms when handling complex
task structures. Although some approaches attempt to trigger
chain-of-thought reasoning through example prompts, such
prompts are typically static and not scalable. They cannot
dynamically adapt to different task structures. As a result, the
model's generation path often deviates from the logical
requirements of the target task. Furthermore, in the absence of
explicit structural guidance, models tend to repeat, omit, or
introduce irrelevant information during reasoning. This
undermines the reliability and consistency of the overall
output[7].

Finally, existing training and fine-tuning mechanisms do
not provide direct supervision for the generation process. They
focus primarily on the correctness of the final result rather than
the reasonableness of the reasoning path. As a consequence,
models may appear to complete a task, but their underlying
reasoning logic remains opaque and potentially flawed. This
weakens user trust in the model's outputs and hinders its
deployment in decision-critical domains. These issues together
highlight the urgent need for a method that embeds explicit
structural control into the generation process. Such a method is
essential to improve reasoning quality and ensure reliability in
real-world applications.

2.2 Motivation

As the demand for complex language tasks continues to
grow, improving the controllability and reasoning transparency
of large language models has become an urgent challenge.
Existing methods mainly focus on enhancing final performance,
while paying insufficient attention to structural and logical
consistency during the generation process. In tasks involving
multi-step reasoning or intermediate decision points, the lack of

effective control over the generation path often leads to
disorganized outputs. This also weakens the interpretability of
the model and reduces trust in its application. Therefore, it is of
practical and urgent value to explore more systematic control
mechanisms that regulate content organization during the
unfolding of the reasoning process.

Currently, large language models lack deep modeling
capabilities for the internal structure of tasks when dealing with
chain reasoning or complex generation. Although these models
show strong language expression and pattern recognition
abilities, their generation behavior often deviates from the
expected path when a task requires adherence to a specific
logical order or structural framework. This problem is
especially evident in open-ended tasks or those with multiple
possible solutions. In such cases, models tend to adopt
generalized strategies rather than strictly following task-
specific structures. Designing a generation mechanism with
structural awareness and control can enhance the model's
ability to adapt to and execute complex task requirements.

Promoting the shift from language-driven to structure-
driven generation is a key step toward building general-purpose
language intelligence systems. Structural control improves the
coherence and relevance of outputs. It also enables the model
to respond with greater flexibility and stability in the face of
diverse task goals. In scenarios that demand high transparency,
structural guidance can significantly enhance the controllability
and trustworthiness of the model's outputs. This provides a
solid foundation for deployment in fields such as research,
education, question-answering, and decision support. From the
perspective of task control and reasoning path construction,
developing structure-guided generation methods is a major
driving force for ongoing progress in this field.

3. Method

3.1 Overall Framework

This study proposes a structure-guided large language
model generation method, which guides the model to construct
content along a preset thinking path by explicitly introducing
structural priors in the generation process. The overall
framework consists of three parts: a structure encoding module,
a context fusion module, and a decoding generation module.
The structure encoding module first converts the task
requirements into a structural representation

S ={s,,8,,...,5, } , where each S, represents a logical step
or subtask to be followed in the generation process. After the
structural information is combined with the input context

X ={x,x),...,x,} , a  joint  representation
H = Fusion(X,S) is generated through the fusion module,

providing an organized semantic basis for subsequent
decoding. The overall model architecture is shown in Figure 1.
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Figure 1. The overall model architecture diagram of this
algorithm
In the decoding stage, the model takes the joint semantic
representation as input, combines the structural guidance
information of each stage, and gradually generates the output

Y= {00000 Y

process can be expressed as:

P(Y[X,S)= |_|P(y, |y H,S)
=1
To ensure the continuity of structural control, a dynamic

sequence The specific generation

structural state vector Zz, is introduced, which is updated

based on the structural representation and the current
generation state:
z, =Updata(z, ,,s,,h,)

The final output is constructed through a structure-aware
decoder, which has task alignment and logical consistency.
The overall framework is designed to improve the structural
integrity of the generated content and the controllability of the
thinking path so that the model can not only generate accurate
results but also reasonably explain its generation logic.

3.2 Optimization Objective

In the structure-guided large language model generation
framework, the optimization goal revolves around the efficient
interaction between the input context and the structural
information, ensuring that the generated sequence can be

gradually developed along the preset thinking path. The model
first receives the input text sequence X = {xl,xz,...,xn}
and extracts the contextual semantic representation
H, € R™ through the encoder, where d represents the

feature dimension. At the same time, the structural encoding
module vectorizes the task structure representation

S=1{s,8,,...,8,} to obtain the structural embedding

representation H g € R , which provides a priori guidance
on the reasoning path for generation.

Subsequently, the model interactively combines the
context representation and the structure representation through
the fusion module to form a joint semantic representation

H = Fusion(H ,,H) , which establishes an alignment

relationship at the semantic and structural levels. Specifically,
the fusion operation can be formalized as:

H =MLP(Concat(H ,,Hy))

Next, in the decoding phase, the model generates step-by-
step based on the joint representation H . At the tth time step,
the model inputs the generated fragment y_, at the previous
moment, and combines it with the current structural state
vector Z, to generate the probability distribution of the next
tag:

h, = Decoder(y_,,H,z,)

P(y,)=Softmax(W h, +b,)

The structural state vector is dynamically updated at each
step to adapt to the generation requirements of different stages.
The update process is controlled by the following function:

z,=GRU(z,_,,h,)
Finally, the output sequence is Y ={y,,V,,.0s V,.} »

whose construction process fully integrates contextual
semantics, structural guidance, and dynamic state information,
reflects the model's ability to accurately model the content
generation path. Through this multi-source information joint
driving mechanism, the network can effectively manage
complex reasoning structures and achieve a highly organized
text generation process.

3.3 Training Strategy

In order to achieve effective learning of the structure-
guided generation path, a structure-aware objective function is
introduced in the training phase to strengthen the model's
ability to follow the structure before the generation process.
Specifically, the model's prediction of the next token at each
time step is supervised by a standard cross-entropy loss, which
takes the joint semantic representation and the dynamic
structural state as input to ensure that the generated output is
semantically correct while maintaining consistency with the
preset structure. Formally, the generation loss is defined as:

Ly, =-> logP(y,|y..H,z,)
t=1

On this basis, in order to further enhance the model's ability
to model the intermediate nodes of the thought chain, the
structural consistency loss is introduced to constrain the
correspondence between the decoding state and the structural
representation. This loss is optimized by minimizing the cosine
distance between the current decoding representation and its
corresponding structural vector:

k
Lstmct = Z (1 - COS(h(i) > Si ))
i=1

The ultimate training goal is a weighted combination of the
two, which drives the model to accurately model and execute
structural paths while maintaining language fluency, thereby



improving structural control

controllability.

capabilities and reasoning

4. Experimental setup & Dataset
4.1 Experimental setup

This study conducts systematic training and evaluation of
the proposed method under structure-guided generation
scenarios. All experiments are carried out in a high-
performance server environment. A trained language model
based on the Transformer architecture is used as the backbone.
On this basis, a structure-aware module and decoding control
mechanism are integrated. The Adam optimizer is applied
during training, along with a warm-up strategy and linear
learning rate decay. Gradient clipping is used to control the risk
of gradient explosion. An early stopping mechanism is adopted,
where training is terminated based on validation set
performance to ensure stability and prevent overfitting.

All experiments adopt mixed-precision training with FP16
to improve efficiency. Grouped evaluations are conducted
based on structure complexity, input length, and the number of
structured steps. To verify the effect of the structure-guided
mechanism on generation control, ablation settings are
introduced by toggling the structure module on and off. The
model is evaluated under different numbers of training epochs
and batch sizes. Table 1 presents the key training configuration
parameters.

Table 1: Experimental detailed parameter settings

Configuration items Value
Backbone Model Qwen-7B
Maximum input length 512 Tokens
‘Warm-up steps 500
Batch size 32
Learning Rate 2e-4
Optimizer AdamW
Gradient clipping threshold 1.0
Structural step encoding

. . 256
dimensions
Decoder hidden layer

R . 768
dimensions

4.2 Dataset

This study uses the NarrativeQA dataset as the primary
experimental corpus to evaluate the structure-guided large
language model on long-document generation and chain-of-
thought reasoning tasks. NarrativeQA consists of a collection
of novels and movie scripts, along with corresponding
summaries and question-answer pairs. The dataset features rich
event logic and structural text characteristics, making it well-
suited for assessing model performance in multi-hop reasoning
and logical unfolding.

The input of this dataset includes either full or partial
document content. The target is to generate coherent answers or
summaries based on the context, with an emphasis on tracking
narrative clues and integrating information. The documents are
long, and the tasks are highly open-ended, which naturally
forms scenarios for complex chain-of-thought generation. This

supports the evaluation of the model's ability to construct
reasoning paths under structural control.

In the experimental setup, samples with document lengths
no longer than 1,000 words are selected for training and
evaluation. Structural representations are constructed to
annotate key turning points or paragraph cues during
generation. This structural injection approach enables the
model to learn not only the input-output mapping but also the
internal organization and reasoning order of the task. It
provides a realistic and challenging environment to validate the
structure-aware generation method.

5. Experimental Results

In the experimental results section, we first present the
relevant outcomes of the comparative test to demonstrate the
effectiveness and applicability of the proposed method under
different conditions. This part aims to provide a clear
comparison between the structure-guided approach and several
baseline models across key evaluation metrics. The setup and
implementation of the comparative experiments strictly follow
consistent criteria to ensure fairness and reproducibility. The
corresponding experimental settings, evaluation indicators, and
model configurations are described in detail to support a
comprehensive understanding of the testing framework. The
experimental results are summarized and visually presented in
Table 2.

Table 2: Comparative experimental results

Method Structure Chain Token-level
Alignment | Coheren | F1
Score ce Score
COT[8] 71.3 69.2 82.5
COATI[9] 73.8 71.0 83.6
Thinkprune[10] 74.5 72.4 84.1
Search-in-the-chain[11] 75.1 73.0 84.5
ThoughtSource[12] 76.3 74.2 85.2
Ours 79.4 77.8 87.1

The experimental results show that the proposed structure-
guided generation method demonstrates clear advantages in
structural consistency and logical coherence. Compared with
traditional Chain-of-Thought models (COT), our method
achieves an 8.1-point improvement in the Structure Alignment
Score. This indicates that the model can more accurately follow
the predefined task structure when generating reasoning chains.
While COT has basic multi-step reasoning capabilities, it lacks
explicit modeling of task structures, leading to reasoning paths
that often deviate from core objectives.

Further comparisons with recent optimized reasoning
models such as COAT and Thinkprune confirm the strong
structure-aware capability of our approach. COAT improves
reasoning by optimizing prompt selection, and Thinkprune
reduces redundant generation. However, both still rely on weak
structural information and lack stable generation control
mechanisms. Our method introduces structural encoding and
dynamic state modeling, which enhances the model's ability to
track task logic progression. The Chain Coherence Score
reaches 77.8, significantly outperforming existing methods.



This suggests that the generated content is more coherent and
natural in terms of reasoning flow.

In terms of the token-level F1 score, our method achieves
the highest result of 87.1%. This reflects its strength not only in
structural control but also in information reconstruction.
Traditional methods often suffer from omissions or redundancy
when retrieving information or tracing clues. With the
structure-guided mechanism, the model can extract and
reconstruct key information more precisely, thus improving
generation accuracy. This structure-driven information
aggregation approach significantly enhances the model's ability
to manage multi-level semantics in complex tasks.

This paper also includes an analysis aimed at exploring how
variations in the number of structural steps influence the
overall quality of generated outputs. The purpose of this
investigation is to better understand the relationship between
structural guidance and the effectiveness of the generation
process within the proposed framework. By adjusting the
number of structural steps used during generation, the study
examines how such changes affect the logical coherence and
consistency of the output. The details of this analysis, along
with the corresponding visualization of the experimental setup
and findings, are presented in Figure 2.

00 Effect of Structure Step Count on Generation Quality

B Structure Alignment Score
B Chain Coherence Score
B Token-level F1

4 6 8
Structure Step Count

Figure 2. Analysis of the influence of different structural
steps on generation quality

The figure shows that changes in the number of structural
steps have a significant impact on generation quality, with a
generally stable upward trend within a certain range. When the
number of structural steps increases from 2 to 8, there is a
consistent rise in Structure Alignment Score, Chain Coherence,
and Token-level F1. This indicates that properly increasing the
stages of structural guidance helps the model organize
reasoning paths more precisely and enhances the
synchronization between structural understanding and
generation control.

In terms of structure alignment, more structural steps
greatly improve the model's adherence to task structure during
generation. Especially between 4 and 8 steps, the granularity
introduced by structural guidance aligns more closely with task
logic, effectively reducing deviation in content generation. This
trend confirms that the structural embedding mechanism plays

a crucial role in controlling multi-stage reasoning and is key to
improving generation accuracy.

Chain coherence also improves as structural information
becomes more detailed. This suggests that the model can not
only capture more complex structures but also maintain stable
reasoning based on the sequence of structural steps. At 8 steps,
coherence reaches its peak, indicating that the structural
constraint is most effective at this level. However, there is a
slight decline at 10 steps, possibly due to excessive granularity
causing sparse information distribution, leading to local
interruptions or redundant reasoning paths.

Token-level F1 remains relatively stable across the entire
range of structural steps. This further confirms that structural
guidance not only enhances logical consistency but also
strengthens the model's ability to retrieve and reconstruct key
content. Overall, the results demonstrate that the number of
structural steps is a critical variable in structure-guided control.
It strongly supports the model's reasoning organization and
output quality and provides valuable insights for future
structural design and dynamic control strategies.

This paper also gives the impact of the size of the hidden
dimension on the model's thinking chain construction ability,
and the experimental results are shown in Figure 3.

00.0 Effect of Hidden Dimension Size on Chain Construction Ability
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Figure 3. The influence of hidden dimension size on the
ability to construct model thinking chain

The figure shows that the size of the hidden dimension has
a significant impact on the model's ability to construct chain-
of-thought reasoning. The overall trend follows a pattern of
initial improvement followed by a plateau. When the hidden
dimension increases from 128 to 768, all evaluation metrics
steadily improve. Notably, at 512 and 768, the model achieves
high levels of structural alignment and reasoning coherence.
This suggests that expanding the representation space within a
reasonable parameter range enhances the model's capacity to
capture  structural information and build semantic
representations.

The rise in structure alignment score reflects stronger
structural awareness enabled by larger hidden dimensions. As
the dimension increases, the model gains richer semantic
representation during encoding. This helps it better integrate
structural guidance signals and maintain consistency in



reasoning paths during generation. However, at 1024, the score
slightly declines. This indicates that an overly large parameter
space may introduce noise or cause structural decoupling,
reducing the model's ability to stably control reasoning steps.

A similar pattern is observed in chain coherence. Increasing
the dimension from 256 to 768 improves logical compactness
and semantic flow during generation. This shows that stronger
feature representations help extend reasoning chains more
reliably. Yet, at 1024, coherence slightly drops. This suggests
the model may face issues such as dispersed attention or
redundant features, which affect local logical control.

This paper further conducts a detailed analysis of how
different structural representation methods affect the quality of
generated content within the proposed framework. The aim of
this analysis is to examine the role that various structural
encoding strategies play in guiding the model during the
generation process, particularly in terms of influencing the
logical structure, coherence, and expressiveness of the outputs.
By comparing multiple approaches to structural representation,
the study seeks to uncover their respective strengths and
limitations in supporting high-quality generation. The
corresponding  experimental design and comparative
observations are visually presented in Figure 4 to provide a
clear overview of the analysis.

90.0 Impact of Structure Representation on Generation Quality

—e— Structure Alignment Score
87.5 Chain Coherence Score

—4— Token-level F1
85.0
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Figure 4. Analysis of the impact of different structural
representation methods on generation quality

The figure shows that different structural representation
methods have a clear impact on generation quality. Among
them, the Flat structure yields the lowest overall performance,
showing disadvantages across all three evaluation metrics. This
indicates that without hierarchy or organization, the model
struggles to effectively model task logic, which in turn affects
the accuracy and coherence of generated content. In particular,
the Chain Coherence Score is notably low for the Flat structure,
suggesting its inability to support complex chain-of-thought
reasoning.

As the structural representation becomes progressively
more complex, from Sequential to Hierarchical, generation
quality steadily improves. The Sequential structure introduces
order information, which enhances structure alignment. The
Hierarchical structure further adds multi-level semantic
organization, significantly improving the model's control over

information organization. Both the alignment score and
coherence improve in this stage, indicating that hierarchical
structures can effectively guide the model to follow a clear
reasoning path during generation.

The Graph-based structure provides flexibility in
representing logic, but its performance is slightly lower than
that of the Hierarchical structure in this task. This may be due
to sparsity or complexity in graph-based guidance, which
makes it harder for the model to maintain consistent structure
alignment during generation. Nevertheless, the F1 score
remains high, showing that the graph structure still supports
strong information reconstruction and is well suited for tasks
involving multi-source relationships.

Finally, the Hybrid structure achieves the best results across
all three metrics. This suggests that combining hierarchical and
relational advantages offers stronger organization and control
for large language models. With dual support from structural
awareness and reasoning path construction, the model not only
maintains semantic precision but also follows the predefined
structure to generate high-quality chain-of-thought outputs.
These findings confirm the central role of structural
representation in shaping generation performance.

6. Conclusion

This study addresses the challenges of controllability and
reasoning transparency in large language models for complex
tasks. It proposes a structure-guided chain-of-thought
generation method. By introducing structural encoding and
dynamic structural state modeling, the method enables the
model to unfold along a predefined logical path during
generation. This significantly improves structural consistency,
logical coherence, and semantic accuracy in the generated
content. The results show that structural information not only
optimizes generation behavior but also enhances the model's
understanding of task organization and information distribution.
This provides a new solution for automatic reasoning in
complex language tasks.

The proposed method balances the scalability of structural
representations with the dynamic adaptability of the decoding
mechanism. This ensures stable structural awareness across
tasks with varying levels of complexity. Through a systematic
evaluation of multiple factors such as structural steps and
representation types, the study reveals the coupling relationship
between structural control and generation quality. It offers
methodological support for designing structure-driven
generation frameworks. The method also demonstrates strong
generality, supporting various types of structural inputs and
task requirements. It shows broad practical potential in
applications such as natural language reasoning, question
generation, and summarization.

From the perspective of task modeling, the structure-guided
mechanism effectively addresses longstanding issues in
traditional generation models. These include missing reasoning
paths, logical jumps, and redundant expressions. The model
can now produce clearer and more organized outputs for multi-
stage and hierarchical tasks. This structure — semantic fusion
paradigm may become a core component of future general-



purpose language intelligence systems. It holds strong
application potential in scenarios with high demands for logical
consistency, such as educational support, policy analysis, and
legal question answering.

7. Future work

Future work may explore automatic structural
representation to improve the flexibility and intelligence of the
guidance process. The integration of structural control with
multi-task learning and cross-modal modeling is also a
promising direction. This will support the development of large
language models with stronger reasoning ability and better
interpretability. As generative Al is deployed more widely in
complex domains, ensuring controllability, safety, and
accountability in the generation process becomes critical. The
structure-guided paradigm proposed in this study offers a solid
and practical path toward that goal.
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