
Journal of Computer Technology and Software

ISSN: 2998-2383

Vol. 3, No. 5, 2024

Adaptive Container Migration in Cloud-Native Systems via Deep
Q-Learning Optimization
Wenxuan Zhu
University of Southern California, Los Angeles, USA
zhuwenxu@usc.edu

Abstract: This paper proposes a reinforcement learning-based container migration optimization method to address the
challenges of dynamism, high dimensionality, and multi-objective optimization in cloud-native environments. The migration
process is modeled as a Markov Decision Process. A Deep Q-Network is used to learn the policy between system states and
actions. A state feature vector is constructed to comprehensively represent resource usage, network latency, and container
distribution. This guides the model to generate migration strategies with global optimality. A composite reward function is
designed to balance multiple objectives. It considers load balancing, migration cost, and service latency. This ensures the model
performs well across all scheduling goals. In the experimental section, a public cloud computing dataset is used to validate the
model. The results show superior performance in key metrics such as resource utilization, load balancing, migration efficiency,
and service delay. In addition, multiple comparative experiments and parameter sensitivity analyses are conducted. These explore
the impact of key hyperparameters, such as learning rate and scheduling frequency, on system performance. The findings further
demonstrate the effectiveness and stability of the proposed method in dynamic resource scheduling tasks. Through systematic
modeling and policy optimization, this paper provides an adaptive and intelligent solution to the container migration problem. It
supports the improvement of resource management and system responsiveness in cloud-native platforms under complex operating
conditions.

Keywords: Container scheduling; reinforcement learning; migration optimization; system performance

1. Introduction
In the context of rapid digitalization and intelligent
development, cloud computing has emerged as a fundamental
enabling technology. It plays a key role in driving the digital
transformation of various industries[1,2]. As business demands
become more diverse and the need for elastic resource
management grows, traditional virtualization technologies have
shown limitations in flexibility and resource efficiency. Against
this backdrop, the concept of cloud-native computing has
emerged and quickly become the mainstream direction for the
next-generation cloud architecture. Its core idea is to achieve
rapid application development, elastic deployment, and
efficient operations through container technology,
microservices architecture, and DevOps practices. In a cloud-
native environment, containers become the basic unit of
resource scheduling. They are lightweight, fast to start, and
highly portable. These features significantly enhance system
agility and scalability[3].

However, as the number of deployed containers grows rapidly
and business workloads change dynamically, efficient
container migration becomes a key challenge in cloud-native
systems. Container migration affects not only load balancing of
computing resources but also service availability and response
latency. In high-concurrency and low-latency scenarios, poor
migration strategies may lead to resource waste, performance
degradation, or even service disruption. In complex
environments such as multi-tenancy, public cloud, and edge
computing, container migration decisions face high uncertainty

and dynamic conditions. This requires more intelligent and
adaptive migration strategies[4].

Reinforcement learning, an intelligent algorithm that interacts
with the environment to continuously optimize decision-
making policies, has shown strong capabilities in solving
dynamic decision and optimization problems. Compared with
rule-based methods or static optimization models,
reinforcement learning can adjust migration strategies in real
time based on changes in system state[5]. It enables fine-
grained control and intelligent scheduling of resources. When
facing multi-dimensional metrics, non-linear system behavior,
and complex resource constraints, its deep policy learning and
self-evolving ability can better handle the complexity and
uncertainty of the migration process. Therefore, applying
reinforcement learning to optimize container migration
strategies can improve the generalization and adaptability of
these strategies. It also offers the potential to provide more
intelligent and efficient resource scheduling mechanisms in
cloud-native environments[6].

From the perspective of system-level resource management,
optimizing container migration involves not only performance
improvement of individual nodes or applications but also
collaborative optimization of resource allocation at the data
center level. In multi-tenant environments, services have
diverse resource demands and performance goals. Proper
scheduling of container migration tasks can reduce resource
fragmentation, improve overall cluster utilization, and avoid
hot spots and idle resources[7]. As green computing gains

importance, energy saving has also become a key concern for
cloud service providers. Intelligent migration strategies can
help reduce energy consumption while ensuring service quality.
This enables dual optimization of performance and energy
efficiency. Therefore, in practical applications, research on
container migration has significant economic and social value.

In summary, under the trend of widespread adoption of cloud-
native architectures, optimizing migration strategies in
container environments has become a vital direction for
ensuring the efficient operation of modern cloud platforms. By
leveraging the intelligent decision-making capabilities of
reinforcement learning, container migration can gain higher
autonomy and flexibility. This helps address dynamic resource
changes and diverse workload demands in cloud environments.
The research holds great potential and practical significance in
building the next generation of resilient, intelligent, and green
cloud-native infrastructures.

2. Method
This study aims to optimize container migration in cloud-
native environments and proposes a migration decision
method based on reinforcement learning, which models the
container migration process as a Markov decision process
(MDP). The model architecture is shown in Figure 1.

Figure 1. Overall model architecture

The process takes system state, action set, state transition
function and reward function as core elements, and defines the
following four-tuple),,,(RPAS . Among them, S
represents the state set of the system at any time, including
multi-dimensional information such as container load, node
resource utilization, network delay, etc.; A is the action set,
which represents optional migration decisions, such as
migrating a container to a specified target node;),|'(assP
represents the probability distribution of transitioning to state
C after taking action a in state s;),(asR is the immediate
reward obtained by performing action a in state s, which is
used to guide the direction of strategy optimization.

In terms of state representation, this study constructs a high-
dimensional feature vector to represent the system state ts ,
namely:

],,,...,,[21
t
k

t
ij

t
n

tt
t cluuus

t
iu represents the CPU and memory utilization of the i-th

node at time t, t
ijl represents the network delay between node

i and node j, and t
kc represents the node where the k-th

container is currently located and its resource usage. This state
vector can fully reflect the current cluster load distribution and
network status, providing accurate environmental information
for strategy learning.
In the design of reinforcement learning strategy, Deep Q-
Network (DQN) is used as the decision framework to estimate
the state-action value function);,(asQ , where is the
neural network parameter. The goal is to minimize the
following mean square error loss function:

))];,();','(max[()(')',,,(asQasQrEL asras

Where is the discount factor and represents the fixed
target network parameters, which are used to improve training
stability. By repeatedly sampling interaction experience to
update the Q function, the optimal strategy can be
approximated.
In order to improve the convergence efficiency and resource
perception of the migration strategy, a composite reward
function is designed to comprehensively consider multi-
objective optimization, including system load balancing,
migration overhead and service latency. The specific reward
function form is as follows:

)'(),(
)'(Imbalance),(
sDelayasCost

sasR

)'(Imbalance s represents the imbalance of the load of each
node in the new state,),(asCost is the system resource
consumption generated by executing the migration action,

)'(sDelay reflects the average response delay of user
requests, and ,, is the coefficient for adjusting the
weight of each target. Through policy iteration, the agent can
gradually optimize the overall performance of the system
while maximizing the long-term return.
To further improve training efficiency and avoid the strategy
from falling into local optimality, the experience replay
mechanism and -greedy exploration strategy are introduced.
In each iteration, the agent selects a random action with
probability and selects the action

),(maxarg* asQa a with the highest current valuation

with probability 1 . At the same time, all interaction data

are stored in the replay buffer pool in the form of tuples
)',,,(sras , and small batches of experience are regularly

sampled from it for network training. This mechanism ensures
the diversity and stability of strategy updates, thereby more
effectively learning container migration strategies with
generalization capabilities in complex cloud-native
environments.

3. Experiment
3.1 Datasets

This study uses the Google Cluster Data (Google Borg Trace)
as the dataset for training and evaluating the container
migration optimization model. The dataset was collected from
a large-scale data center during real production operations. It
includes detailed information such as resource usage across
thousands of servers, job scheduling records, and container
instance lifecycles. The dataset has high representativeness and
complexity, reflecting real-world operating conditions.

It features a short sampling interval, continuous time series,
and rich records. These characteristics provide a realistic and
complex background for container migration decision-making.
Key fields in the dataset include CPU and memory usage, task
start and end times, machine status changes, and task priorities.
This information can be used to construct the system state
space and guide the optimization of migration objectives.

To meet the modeling requirements of reinforcement learning,
the raw log data must be preprocessed. This includes data
cleaning, normalization, and state vector construction. The goal
is to generate training samples with temporal continuity and
characteristics of resource scheduling.

The main reason for selecting this dataset lies in its large scale,
realistic scenarios, and complex structure. It can effectively
simulate resource dynamics and container scheduling behavior
in a cloud-native environment. With this dataset, the
adaptability of reinforcement learning strategies to complex
and dynamic resource conditions can be validated in a non-
synthetic setting. It provides a solid foundation and data
support for deploying the model on real cloud platforms.

3.2 Experimental Results

This paper first gives the comparative experimental results, and
the experimental results are shown in Table 1.

Table 1: Comparative experimental results

Method CPU
Utilization

Load
Imbalance

Migration
Cost

Avg.
Latency

Ours 87.4 0.031 12.5 84.6
Heuristic
Threshold
Policy[8]

79.2 0.087 25.8 113.2

Randomized
Placement[9]

76.5 0.105 21.4 126.7

SGX-aware
container[10]

82.6 0.066 18.2 102.3

COSCO[11] 85.1 0.049 15.6 95.4

The experimental results show that the proposed reinforcement
learning-based container migration method achieves the best
performance in resource utilization. It reaches a CPU
utilization rate of 87.4 percent, which is significantly higher
than other comparison algorithms. This result indicates that by
introducing deep reinforcement learning strategies, the model
can dynamically perceive system states and make more
informed migration decisions. This leads to efficient scheduling
and allocation of resources. In contrast, traditional heuristic
strategies and random migration methods lack modeling of
global states and long-term objectives. As a result, they show
clear limitations in resource consolidation.

In terms of load balancing, the proposed method achieves a
load imbalance degree of only 0.031, which is much lower than
other baseline models. This demonstrates that the
reinforcement learning model can effectively learn the
distribution characteristics of resources across nodes. It can
proactively adjust container placement to reduce the pressure
on hotspot nodes and achieve more balanced load distribution.
In comparison, although the SGX strategy performs well under
static conditions, it lacks real-time adaptability under dynamic
load changes. This results in unstable balancing performance.

Regarding migration cost, the proposed method maintains low
overhead, with a migration cost of only 12.5. This is more than
50 percent lower than that of heuristic methods. This
improvement is due to the reinforcement learning model
incorporating both resource load and migration cost into the
reward function. Through policy iteration, it balances migration
overhead with scheduling performance. Other methods often
overlook the network and system burden introduced by
migration, which leads to unnecessary resource waste.

In terms of service response latency, the proposed method also
shows strong advantages. The average response time is 84.6
milliseconds, which outperforms all comparison models. This
suggests that the reinforcement learning strategy can optimize
both system performance and service quality during migration
scheduling. It ensures high resource utilization while
significantly reducing user request latency. Overall, the method
demonstrates strong global adaptability and intelligent
decision-making in dynamic, multi-objective container
migration scenarios. It effectively meets the real-world
demands of elastic scheduling and efficient operations in cloud-
native environments.

Next, the hyperparameter sensitivity experiment of the learning
rate is given, as shown in Table 2.

Table 2: Learning rate hyperparameter sensitivity
experimental results

LR CPU Utilization Load
Imbalance

Migration
Cost

Avg.
Latency

0.004 82.9 0.062 19.3 104.7
0.003 85.0 0.048 15.8 95.8
0.002 86.2 0.037 13.9 89.3
0.001 87.4 0.031 12.5 84.6

The experimental results show that the learning rate has a
significant impact on the performance of the reinforcement
learning model in container migration tasks. As the learning

rate gradually decreases from 0.004 to 0.001, the overall
performance of the model steadily improves. This
improvement is particularly evident in CPU utilization and load
balancing. The results indicate that a lower learning rate helps
the model update its policy more stably. It avoids fast
convergence that may lead to policy oscillation or local optima,
thereby achieving better resource allocation.

For the load balancing metric, the system reaches its best
performance when the learning rate is set to 0.001. The
imbalance degree drops to 0.031, the lowest among all tested
settings. Under this configuration, the reinforcement learning
model captures the resource differences across nodes more
effectively. Through refined action selection, it enables
reasonable container migration. This reduces pressure on
hotspot nodes and enhances the coordination of system-wide
scheduling.

Migration cost and service latency also decrease as the learning
rate becomes lower. At a learning rate of 0.001, the model
shows more stable behavior in avoiding unnecessary
migrations. The migration cost is only 12.5, and the average
response time drops to 84.6 milliseconds. This shows that an
appropriate learning rate can balance exploration and
exploitation. It allows the model to maintain system efficiency
while avoiding frequent or redundant migration actions. As a
result, it optimizes user experience while ensuring performance.

Overall, the learning rate is a critical hyperparameter in
reinforcement learning training. Its selection directly affects the
effectiveness of the final migration policy and the system’s
performance. The experimental results confirm that, with
proper tuning, the model can fully leverage the strengths of
reinforcement learning in dynamic scheduling and multi-
objective optimization. This further demonstrates its potential
for adaptive migration optimization in complex cloud-native
environments.

Finally, this paper gives an analysis of the impact of different
scheduling frequencies on system performance, and the
experimental results are shown in Figure 2.

Figure 2. Analysis of the impact of different scheduling
frequencies on system performance

The experimental results in the figure show that scheduling
frequency has a significant impact on the overall performance
of container migration strategies. Shorter scheduling intervals,

such as 1 second and 5 seconds, help the system respond more
promptly to changes in resource status. This enables finer-
grained migration decisions. As a result, higher CPU utilization
and better load balancing are observed. At a 5-second
scheduling frequency, the system achieves high CPU
utilization and the lowest imbalance degree. This indicates that
the reinforcement learning strategy can quickly adapt to
dynamic workloads and optimize resource distribution within
short cycles.

However, as the scheduling frequency decreases to 30 seconds
and 60 seconds, the system performance drops noticeably. This
is especially evident in migration cost and service latency. The
delay in executing scheduling actions prevents the system from
responding quickly to load changes across nodes. Some nodes
remain overloaded, while underutilized resources are not
released in time. This leads to reduced scheduling efficiency
and longer user request response times. These results further
suggest that lagging scheduling weakens the advantage of
reinforcement learning in dynamic environments.

For migration cost, the results show that moderate frequencies,
such as 5 seconds and 10 seconds, result in relatively low
overhead. This indicates that the model can balance response
speed and migration stability within this range. A very high
frequency may improve agility but can lead to excessive and
unnecessary migrations, increasing system overhead.
Conversely, a very low frequency may cause load buildup,
indirectly increasing migration pressure. This trend shows that
scheduling frequency is a key factor in balancing policy
efficiency and resource consumption.

Overall, the experiment confirms that scheduling frequency
plays a decisive role in the performance of container migration
strategies. A well-chosen scheduling interval can significantly
improve system responsiveness, resource utilization, and
service quality. In a reinforcement learning-based migration
optimization framework, scheduling frequency should be
treated as a critical control parameter. It needs to be
dynamically adjusted based on system scale, load variability,
and application characteristics to fully realize the potential of
intelligent migration strategies.

4. Conclusion
This study addresses the key challenges of container migration
in cloud-native environments and proposes an intelligent
optimization method based on reinforcement learning. It aims
to handle dynamic resource changes, workload fluctuations,
and multi-objective scheduling demands. By formulating the
problem as a Markov Decision Process and applying a Deep Q-
Network to learn the state-action mapping, the model achieves
adaptive policy adjustment and long-term performance
optimization. Experimental results show that the proposed
method outperforms classical strategies in improving resource
utilization, reducing load imbalance, controlling migration
overhead, and optimizing service latency. This confirms its
adaptability and effectiveness in complex real-world
environments.

The study highlights that in cloud-native architectures,
containers serve as the core unit for resource scheduling and
service deployment. The intelligence of migration decisions

directly affects the overall system efficiency and stability.
Introducing reinforcement learning brings dynamic awareness
and policy evolution to traditional scheduling mechanisms.
This allows the system to learn from historical experiences and
continuously refine its scheduling behavior. The approach
demonstrates strong scalability and migration value in
scenarios such as multi-tenancy, edge computing, and elastic
scaling. It provides both theoretical support and a practical path
for building future-oriented, efficient resource management
platforms.

In addition, the study conducts a systematic analysis of key
factors including scheduling frequency, reward function design,
and state space construction. It reveals their deep impact on
overall system performance. The model shows good
convergence and generalization ability. It also offers a highly
modular and tunable solution for multi-objective container
scheduling. By deploying intelligent migration strategies, cloud
platforms can respond more accurately to resource supply and
demand changes. This enables comprehensive optimization of
green computing, cost control, and service quality. It enhances
the intelligent operation of the underlying infrastructure.

Future research may explore deploying and validating the
model in real distributed production environments. It is worth
investigating the integration of reinforcement learning with
emerging intelligent technologies such as federated learning
and graph neural networks. This can better meet the needs of
distributed and heterogeneous resource management. Further
work can also focus on improving the adaptability of container
migration strategies under complex network conditions, sudden
workload spikes, or cross-cluster scenarios. As cloud-native
technologies continue to evolve, the proposed method is
expected to contribute to large-scale cloud platforms, edge
computing architectures, and intelligent scheduling systems. It
can help build the next generation of cloud infrastructure that is
more efficient, agile, and intelligent.

References
[1] Ahmad I, AlFailakawi M G, AlMutawa A, et al. Container scheduling

techniques: A survey and assessment[J]. Journal of King Saud
University-Computer and Information Sciences, 2022, 34(7): 3934-3947.

[2] Menouer T. KCSS: Kubernetes container scheduling strategy[J]. The
Journal of Supercomputing, 2021, 77(5): 4267-4293.

[3] Lai W K, Wang Y C, Wei S C. Delay-aware container scheduling in
kubernetes[J]. IEEE Internet of Things Journal, 2023, 10(13): 11813-
11824.

[4] Rausch T, Rashed A, Dustdar S. Optimized container scheduling for
data-intensive serverless edge computing[J]. Future Generation
Computer Systems, 2021, 114: 259-271.

[5] Oleghe O. Container placement and migration in edge computing:
Concept and scheduling models[J]. IEEE Access, 2021, 9: 68028-68043.

[6] Mao Y, Fu Y, Zheng W, et al. Speculative container scheduling for deep
learning applications in a kubernetes cluster[J]. IEEE Systems Journal,
2021, 16(3): 3770-3781.

[7] Jorge-Martinez D, Butt S A, Onyema E M, et al. Artificial intelligence-
based Kubernetes container for scheduling nodes of energy
composition[J]. International Journal of System Assurance Engineering
and Management, 2021: 1-9.

[8] Zhu L, Wu F, Hu Y, et al. A heuristic multi-objective task scheduling
framework for container-based clouds via actor-critic reinforcement
learning[J]. Neural Computing and Applications, 2023, 35(13): 9687-
9710.

[9] Arnau Q, Barrena E, Panadero J, et al. A biased-randomized discrete-
event heuristic for coordinated multi-vehicle container transport across
interconnected networks[J]. European Journal of Operational Research,
2022, 302(1): 348-362.

[10] Vaucher S, Pires R, Felber P, et al. SGX-aware container orchestration
for heterogeneous clusters[C]//2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2018: 730-741.

[11] Tuli S, Poojara S R, Srirama S N, et al. COSCO: Container orchestration
using co-simulation and gradient based optimization for fog computing
environments[J]. IEEE Transactions on Parallel and Distributed Systems,
2021, 33(1): 101-116.

	3.1 Datasets
	3.2 Experimental Results

