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Abstract: This paper addresses key challenges in root cause identification within microservice architectures, focusing on
limited structural modeling capabilities and insufficient integration of multi-dimensional features. A Transformer-based model for
multi-dimensional fusion root cause identification is proposed. The method includes two core modules: Structure-Aware Trace
Encoding (SATE) and Multi-dimensional Attention Fusion (MAF). The SATE module aggregates upstream and downstream
dependency information for each node in the service trace. It enhances node representation through structural embedding, thereby
preserving the topological dependency features between services. The Transformer module then models the entire structured
sequence to capture long-range temporal dependencies within the trace. On this basis, the MAF module introduces separate
attention channels from three dimensions: latency, status codes, and dependency paths. This further integrates multi-source
monitoring data and improves the model's ability to represent anomaly propagation paths. A series of comparative and ablation
experiments validate the effectiveness of the proposed method in terms of accuracy, robustness, and structural generalization. The
model maintains high discriminative power even under service topology perturbations and increased trace complexity. These
results demonstrate the strong practical potential of the proposed method in complex distributed systems.
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1. Introduction
In today's highly distributed system architecture, microservices
have been widely adopted due to their flexibility, scalability,
and modularity[1,2]. Compared to traditional monolithic
applications, microservices divide applications into multiple
independent service units that cooperate through remote
procedure calls (RPC) or message queues. This architecture
improves development efficiency and deployment flexibility.
However, it also introduces unprecedented runtime
complexity[3]. When failures occur, the intricate
interdependencies between services can lead to fault
propagation and difficulty in pinpointing responsibility.
Especially under high-concurrency scenarios, the massive
volume of call chain data makes manual analysis and
traditional monitoring methods almost infeasible. Accurately
locating the root cause of anomalies across multi-dimensional,
cross-service, and cross-node call chains has become a critical
challenge in microservice operations[4].

With the rise of AIOps, an increasing number of studies are
exploring the use of artificial intelligence to assist in fault
localization. In such tasks, call chain data, as behavioral
sequences reflecting system runtime states, provides highly
informative features for root cause analysis. A single call chain
typically contains key indicators such as service invocation
order, latency, and return status. These features are essential for
observing the system's causal pathways. However, due to the
strong temporal nature, variable length, and complex nested
structure of call chains, traditional models relying on feature

engineering often struggle to generalize. They fail to handle the
diverse anomaly scenarios and dynamic service topologies
effectively. Therefore, building an algorithmic framework
capable of automatically extracting semantic features and
modeling inter-service causal relationships from raw call
chains is of significant value for root cause classification[5].

In recent years, the Transformer architecture has shown
remarkable advantages in many complex structured data
analysis tasks due to its powerful sequence modeling capability
and self-attention mechanism. Compared to traditional
recurrent neural networks, Transformers can effectively capture
long-range dependencies and avoid information loss over long
sequences. This makes them particularly suitable for inputs like
call chains that contain hierarchical structures and complex
dependencies. In microservice environments, the impact of
anomalies varies across services, and the propagation paths of
anomalies are nonlinear and context-dependent. These
characteristics align well with the design of the Transformer.
Applying Transformers to call chain modeling allows for
deeper exploration of inter-service interaction semantics. It
enables global analysis to identify which nodes or paths are
likely fault sources, thereby improving the accuracy and
interpretability of root cause identification[6].

In real-world scenarios, microservice systems generate billions
of call chains daily. Anomalies often exhibit the "low-
frequency but high-impact" pattern. Root cause services may
be buried in massive volumes of normal calls as noise. Unlike
passive alerts based solely on threshold metrics, Transformer-
based root cause identification methods can actively extract key
features from entire call sequences. They model semantic



relationships along causal chains to precisely detect service
nodes responsible for global anomalies[7]. This approach
enhances the intelligence level of fault localization. It also
provides a practical and generalizable technical path for
enterprises, helping to alleviate the operational bottlenecks of
"slow detection, delayed localization, and late recovery."
Especially in environments where service topologies frequently
change and call paths evolve dynamically, this method
demonstrates strong adaptability and robustness.

In summary, building a Transformer-based framework for call
chain modeling and root cause identification represents a deep
integration and extension of current AIOps technologies. It is
also a natural response to the high complexity of modern
microservice systems. This research not only poses theoretical
challenges but also offers broad engineering application
prospects. By extracting hidden temporal features and service
dependency semantics from call chains, it is possible to
construct a root cause analysis system that is more interpretable,
real-time, and generalizable. This can provide a solid
foundation for the stable operation and intelligent maintenance
of large-scale distributed systems.

2. Related work
2.1 Microservice fault identification

As a mainstream architecture in modern cloud computing and
enterprise application development, microservices aim to
divide monolithic applications into a set of small,
independently deployable and runnable services. Each service
focuses on a specific business function[8,9]. This architectural
style significantly enhances system modularity. It makes
development, testing, deployment, and operations more flexible
and efficient. Microservices are usually deployed in containers.
They rely on infrastructure such as service discovery, load
balancing, and configuration centers to achieve high
availability and elastic scaling. Despite the performance and
engineering efficiency benefits, microservices introduce new
challenges in service interaction complexity, state consistency
management, and distributed transaction control. These issues
affect system stability and observability. In high-concurrency
and complex business scenarios, the intricate service
interactions can easily cause fault propagation and make
diagnosis difficult[10,11].

As microservice systems scale up, traditional monitoring
methods based on node logs or single metrics can no longer
provide a comprehensive view of system health. To improve
observability, many microservice systems have introduced
distributed tracing mechanisms. These mechanisms inject
unique identifiers into service calls to record the complete
invocation path[12]. Call chain data includes not only the order
and hierarchy of service calls, but also key runtime metrics
such as latency, return status, and error information. This
makes it a vital source for observing system behavior[13].
However, such data is typically complex in structure, high in
dimensionality, and strongly time-dependent with contextual
relevance. Extracting meaningful signals from massive and
heterogeneous call chains to support fault localization has
become a key research direction in microservice operations[14].

Against this backdrop, research on intelligent operations for
microservices is evolving rapidly. Multiple technical
approaches have been proposed for root cause analysis,
anomaly detection, and behavior modeling[15]. Some methods
use graph structures to model service dependencies, or
construct fault propagation paths through rule engines. Others
apply clustering and pattern recognition to categorize
anomalous behaviors. However, these traditional methods often
depend heavily on feature engineering and lack generalization
ability. They struggle to cope with real-world conditions such
as frequent service changes, diverse anomaly patterns, and
unstable call chain structures. There is an urgent need for an
algorithmic framework with strong sequence modeling and
global dependency capture capabilities. Such a framework can
better understand the behavioral semantics within call chains
and advance the intelligent development of fault diagnosis in
microservice systems[16].

2.2 Transformer

The Transformer architecture was originally proposed for
natural language processing. It achieved significant
breakthroughs in handling sequential data through its unique
self-attention mechanism[17]. Unlike traditional recurrent or
convolutional neural networks, the Transformer does not rely
on the temporal order of sequences to transmit information.
Instead, it uses a global self-attention mechanism to establish
direct connections between any positions in the input sequence.
This design improves the model's ability to capture long-range
dependencies. It also greatly accelerates training and enhances
parallel computation efficiency[18]. As the architecture has
evolved, Transformer models have expanded from natural
language processing to fields such as computer vision, graph
learning, and time series analysis. They have set new
performance benchmarks in many tasks and become one of the
most widely used architectures in deep learning research[19].

In scenarios such as intelligent system operations and behavior
modeling, the Transformer shows distinct advantages. Its
multi-head attention mechanism captures potential
dependencies between different positions in a sequence across
multiple dimensions. This helps reveal contextual relationships
in complex system behavior. For example, in microservice call
chains, the anomaly at a service node may not be caused by the
node itself[20]. It may result from the combined influence of
multiple upstream services. Such complex dependencies are
often difficult for traditional models to capture. The
Transformer, without relying on fixed windows or structural
assumptions, can model the dynamic evolution of service call
chains from a global perspective. This provides strong
modeling power for anomaly path identification and root cause
localization. Its scalability and ability to handle variable-length
input sequences make it naturally suited for processing call
chains, which are often long, hierarchical, and structurally
diverse.

In recent years, with the increasing modularization of model
design, the Transformer's application potential in industrial
intelligent operations has gained attention. By incorporating
components such as positional encoding, residual connections,
and feed-forward networks, the Transformer can process
complex and sparse input features more stably. It also



demonstrates good generalization and interpretability. In the
context of microservice call chains, the behavioral features of
service nodes and their contextual semantics can be embedded
as inputs. This guides the model in learning the patterns of
anomaly propagation in the call paths. It provides a theoretical
foundation for building high-accuracy models for root cause
identification. It also supports data representation learning
needed for interpretability, security, and self-healing
capabilities in future systems. Therefore, applying the
Transformer to root cause identification in microservice call
chains is a meaningful extension of deep sequence modeling
techniques. It also offers new approaches and methods for
intelligent system diagnostics[21].

3. Method
This study proposes a Transformer-based model for root cause
identification in microservice call chains. It aims to address
the limitations of existing methods in modeling complex

service dependencies for anomaly localization. The proposed
method introduces two key innovations. First, a Structure-
Aware Trace Encoding (SATE) mechanism is designed. It
integrates service hierarchy and invocation order information.
This enhances the model's ability to perceive structural
semantics in the call chain. Second, a Multi-dimensional
Attention Fusion (MAF) module is introduced. It models
multiple feature channels in parallel, including latency, error
code distribution, and upstream-downstream dependencies.
This enables the model to capture anomaly propagation
patterns from multiple perspectives. As a result, the robustness
and generalization ability of root cause identification are
improved. The method operates within an end-to-end
framework. It does not rely on handcrafted rules or static
configurations. It offers strong scalability and adaptability,
making it suitable for dynamic and evolving microservice
environments. The architecture of the overall model is
illustrated in Figure 1.

Figure 1. Overall model architecture diagram

3.1 Structure-Aware Trace Encoding
In a microservice system, the call chain typically takes the
form of a directed acyclic graph (DAG), which reflects both
the invocation path and the dependency relationships among
services. To effectively encode the structural characteristics
and semantic information embedded in this graph, we
developed a structure-aware call chain encoding mechanism.
This mechanism is designed to transform the original call
chain into a high-dimensional vector representation that
retains the topological and contextual dependencies between

services. The encoded representation is optimized for input
into the Transformer model, enabling the downstream
architecture to capture long-range interactions and complex
relationships within the service graph. The overall architecture
of this encoding module is illustrated in Figure 2.



Figure 2. SATE module architecture

Assume that a call chain consists of several service nodes,
denoted as },...,,{ 21 nsssT  , where each node is
corresponds to a service instance and its context call
information. We encode the original features of each node into
a vector d

i Rh  , which consists of the following types of
information: embedded representation of the service identifier,
the node's response time, status code, exception mark and
other multi-dimensional operation indicators.
To enhance the ability to model structural dependencies
between nodes, we introduce an upstream and downstream
structure-aware mechanism to encode the service call
hierarchy information into the node representation.
Specifically, we aggregate information about the direct
upstream service set )( isP and downstream service set

)( isC of each node is . The aggregation function is defined
as follows:
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Next, we concatenate the upstream and downstream
representations with the original node representation as
structure-aware input:

)////(' iiii cphMLPh 
// represents the vector concatenation operation, and MLP
represents the multi-layer perceptron, which is used to perform
dimension regularization and nonlinear transformation on the
concatenated representation. This structure enables the
representation of each node to contain both its own running
status information and explicitly encode its contextual
dependency in the entire call graph, thereby improving the
model's ability to model abnormal propagation paths.
In addition, to adapt to the input requirements of Transformer,
we perform position embedding and path normalization on the
encoding of all nodes. We introduce the position encoding

function )(iPE to convert the relative position of the
service in the call chain into a continuous vector. The resulting
sequence input is represented as:

)(' iPEhx ii 
All node vectors form the input sequence

},...,,{ 21 nxxxX  in the order of calling, which serves as
the input of the subsequent Transformer module. This
structure-aware encoding method ensures that the model can
not only capture the individual characteristics of the service
nodes, but also model the causal structure and calling
semantics between nodes, providing stronger representation
capabilities for root cause identification.

3.2 Multi-dimensional Attention Fusion
In order to further improve the modeling capability of the

root cause identification task for multi-dimensional operating
states, we designed a multi-dimensional attention fusion
module (MAF) to extract key semantic information from
multiple perspectives such as delay features, state code
distribution, and service dependency structure based on the
Transformer encoding results. Its module architecture is
shown in Figure 3.

Figure 3.MAF module architecture
Suppose the node representation sequence obtained after
Transformer encoding is },...,,{ 21 nzzz . We will define an
independent attention head for each attention dimension and
weightedly integrate information from different dimensions to
enhance the model's sensitivity and interpretability to
abnormal features.
For the delay feature, we designed an attention mechanism
based on delay differences to capture the propagation pattern
of service response time in the call chain. The delay attention
scoring function is defined as:
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Where id represents the response time of service node i, and
)(

,
delay
ji represents the delay correlation of node j to node i.

The context after combining the attention weight is expressed
as:
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The state code attention is used to highlight the state
information that indicates abnormal behavior. The state code
embedding is defined as is , and the state-related attention
weight is calculated as:
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The fusion is represented as )(status
jc , where sW is the

learnable projection matrix.
In the dimension of structural dependency, we introduce the
adjacency relationship )(iN of the service call graph to
perform structural attention modeling, so that the model can
perceive the propagation path of the node in the topology. Its
attention aggregation form is:
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Where ji , is the attention weight calculated based on the

structural association between nodes, for example, through a
GNN-inspired approach or structural position encoding.
Finally, we fuse the context vectors of the three dimensions to
generate a multi-view representation for subsequent
discrimination decisions. The fusion method can be expressed
as:
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This mechanism explicitly encodes multi-dimensional system
signals into the model's attention space, effectively improving
the fine-grained perception capability of the representation and
providing richer decision-making basis for the identification of
root cause service nodes.

4. Experimental Results
4.1 Dataset
This study uses the Alibaba Trace Open Dataset as the primary
data source. The dataset is collected from a real large-scale e-
commerce microservice system. It features a highly complex
service call structure and rich anomaly samples. It contains
billions of trace records and covers the runtime behavior of
hundreds of microservice components. It includes multi-
dimensional indicators such as call latency, status codes,
service identifiers, and service dependencies. These features
reflect the operational characteristics and potential anomaly
patterns of microservice systems in production environments.

In this dataset, each trace is stored in JSON format. It includes
the call sequence between services, timestamps, latency, return
codes, and anomaly indicators. The complete service topology
is also preserved. The data has an obvious hierarchical
structure and strong temporal characteristics. It is an ideal
source for structure modeling and root cause analysis tasks. In
addition, the dataset labels part of the abnormal traces. This
facilitates supervised learning and model validation.
The Alibaba Trace Open Dataset is collected from an
industrial-grade microservice system. It has typical features
such as high concurrency, large scale, and multi-source
heterogeneity. It is well-suited for research on intelligent
operations in large-scale systems. The real call chain topology
and detailed runtime records provide sufficient training data
and validation resources for the structure-aware modeling and
multi-dimensional attention mechanisms proposed in this
study.

4.2 Experimental setup

The experiments in this study were conducted on an offline
platform that simulates a real microservice runtime
environment. Training and testing samples were constructed
based on trace logs from the Alibaba Trace Open Dataset. To
validate the effectiveness of the model, we performed
supervised partitioning of the trace data according to service
anomaly labels. All data were normalized and structurally
encoded in a unified manner.

The model was trained using the Adam optimizer. The
learning rate was determined through grid search. An early
stopping mechanism was applied on the validation set to
prevent overfitting. All experiments were carried out on a
server equipped with a 32GB GPU. This ensured efficient
processing of large-scale trace samples and stable model
training. Its detailed configuration is shown in Table 1.

Table 1: Specific parameter diagram

Parameter name Setting Value
Input Dimensions 128
Number of Transformer Layers 4
Number of attention heads 8
Learning Rate 0.001
Batch size 64
Number of training epoch 50
Optimizer AdamW
Hardware Environment NVIDIA RTX 3090, 32GB GPU

4.3 Experimental Results
1) Comparative experimental results

This paper first gives the comparative experimental results, as
shown in Table 2.

Table2: Comparative experimental results
Method Accuracy AUC F1-Score
LogAnomaly[22] 82.1 75.3 78.5
GTrace[23] 86.4 79.6 82.8
MicroRCA[24] 88.7 83.2 85.4



Tadl[25] 90.5 85.9 87.1
Ours 93.6 89.4 91.0

As shown in Table 2, the model proposed in this paper
achieves significantly better performance than existing methods
in the root cause identification task for microservice systems.
Compared to traditional log sequence modeling methods such
as LogAnomaly, which lack inherent capabilities for structural
modeling and semantic anomaly detection, performance is
limited. Its Accuracy, AUC, and F1-score reach only 82.1
percent, 75.3 percent, and 78.5 percent, respectively. This
indicates that it struggles to handle the complex service
dependencies and cross-node propagation paths in trace data,
often resulting in false positives and missed detections.

GTrace and MicroRCA introduce modeling of service topology
and show improved performance, especially in AUC and F1-
score, which reach 79.6 percent and 83.2 percent, and 82.8
percent and 85.4 percent, respectively. These results highlight
the importance of structural information in root cause
identification. However, these methods still rely primarily on
static service graphs or rule-based approaches. They lack the
ability to integrate dynamic invocation behavior and multi-
dimensional monitoring signals, which leads to unstable
performance under complex call chains. In particular, their
identification accuracy is limited when dealing with cross-level
anomaly propagation.

Tadl, a recent Transformer-based method, incorporates deep
feature modeling and achieves more stable results across all
metrics. Its F1-score improves to 87.1 percent. However, its
modeling approach focuses on global feature aggregation and
lacks fine-grained modeling of structural hierarchy and key
semantics along anomaly paths between services. As a result,
its robustness and interpretability remain limited in scenarios
involving service heterogeneity or topological perturbations.

In contrast, the model proposed in this paper introduces
Structure-Aware Trace Encoding (SATE) and Multi-
dimensional Attention Fusion (MAF) mechanisms. These
components allow simultaneous capture of topological
dependencies, anomaly propagation paths, and multi-
dimensional metric signals in the call chain. The model
achieves unified modeling from both structural and semantic
perspectives. It maintains strong discriminative power in
complex microservice environments and ultimately reaches
93.6 percent Accuracy, 89.4 percent AUC, and 91.0 percent
F1-score. This demonstrates superior adaptability, stability, and
practical potential for real-world deployment.

2) Ablation Experiment Results

This paper also further gives the results of the ablation
experiment, and the experimental results are shown in Table 3.

Table 3: Ablation Experiment Results
Method Accuracy AUC F1-Score
BaseLine 87.2 82.5 84.1
+SATE 90.1 85.9 87.3
+MAF 91.4 87.2 88.5
Ours 93.6 89.4 91.0

As shown in the ablation results in Table 3, the two core
modules in the proposed model, SATE (Structure-Aware Trace
Encoding) and MAF (Multi-dimensional Attention Fusion),
both play critical roles in improving root cause identification
performance. Although the baseline model already uses a
Transformer to model trace data, it lacks the ability to represent
structural and multi-dimensional semantic information. As a
result, its performance on Accuracy, AUC, and F1-score is
significantly lower, reaching only 87.2 percent, 82.5 percent,
and 84.1 percent, respectively.

After integrating the SATE module into the baseline, the model
shows a clear performance improvement. Accuracy rises to
90.1 percent, indicating that the structure-aware encoding
mechanism effectively enhances the model's understanding of
service dependency context. By introducing topological and
upstream-downstream information between services, SATE
enables the model to capture potential causal relationships
along the anomaly propagation path. This leads to more precise
localization of the root cause. Meanwhile, AUC and F1-score
improve to 85.9 percent and 87.3 percent, respectively, further
validating the positive impact of structural modeling on
classification performance.

When the MAF module is added to the baseline, improvements
in AUC and F1-score become more pronounced. These metrics
reach 87.2 percent and 88.5 percent, respectively. This suggests
that the multi-dimensional attention mechanism can effectively
focus on key feature channels during anomaly propagation,
such as latency fluctuations, status code changes, and structural
dependencies. By modeling from multiple perspectives, MAF
strengthens anomaly signal representations and enhances the
model's ability to detect real anomaly paths. Compared to
single-view or static approaches, MAF significantly improves
the model's robustness in handling anomalous samples.

Finally, when both modules are incorporated, the full model
(Ours) achieves the best results across all metrics. Accuracy
reaches 93.6 percent, showing that the model can accurately
locate the root cause services responsible for global anomalies
in complex microservice traces. These results confirm the
synergistic effect of structural modeling and multi-dimensional
semantic fusion in root cause analysis. They also demonstrate
the strong adaptability and superior effectiveness of our method
in real-world scenarios.

3) Hyperparameter sensitivity experiments

Furthermore, this paper gives the experimental results of
hyperparameter sensitivity. First, the experimental results of
learning rate are given, as shown in Table 4.

Table 4: Hyperparameter sensitivity experiment results
(learning rate)

Learning Rate Accuracy AUC F1-Score
0.004 88.2 83.1 85.0
0.003 90.7 86.0 87.9
0.002 92.4 88.1 89.6
0.001 93.6 89.4 91.0



As shown in the learning rate sensitivity results in Table 4, the
choice of learning rate has a significant impact on model
performance. Under a larger learning rate, such as 0.004, the
model performs poorly in Accuracy, AUC, and F1-score,
reaching only 88.2 percent, 83.1 percent, and 85.0 percent,
respectively. This suggests that a larger step size may cause
large oscillations during optimization. As a result, the model
struggles to converge stably and fails to learn the structural and
anomaly features effectively from the trace data.

As the learning rate decreases gradually, the model shows a
consistent improvement in performance. When the learning
rate is set to 0.003, Accuracy increases to 90.7 percent. This
indicates that the model can better fit high-dimensional features
from the structure-aware encoding and multi-dimensional
attention mechanisms under the current optimization state. In
root cause identification tasks, which are highly sensitive to
recall, training stability is crucial for capturing anomaly
propagation paths. A proper learning rate can help the model
more effectively extract key node representations from
complex traces.

When the learning rate is further reduced to 0.002, all
evaluation metrics continue to improve. AUC reaches 88.1
percent, indicating enhanced discriminative ability between
positive and negative samples. At this point, the Transformer
encoder and the multi-dimensional attention module can better
learn structural dependencies and status signals among services.
This leads to finer-grained identification of abnormal behaviors.
The gradual refinement of the learning rate also helps the
model maintain focus on critical propagation paths and reduces
the risk of misidentifying non-root cause nodes.

At a learning rate of 0.001, the model achieves its best
performance, with the F1-score reaching 91.0 percent. This
shows that in highly complex tasks like root cause
identification, lowering the learning rate supports deeper
structures in modeling the semantic behaviors of microservices
more effectively. A well-chosen learning rate not only
accelerates model convergence but also improves the
responsiveness of the multi-dimensional attention fusion
module to anomaly signals. This provides stronger support for
system-level root cause localization.

Furthermore, the experimental results of different optimizers
are given, as shown in Table 5.

Table 5: Hyperparameter sensitivity experiment results
(Optimizer)

Optimizer Accuracy AUC F1-Score
AdaGrad 88.9 83.8 85.7
SGD 90.3 85.2 87.1

Adam 92.1 87.5 89.0
AdamW 93.6 89.4 91.0

As shown in the optimizer sensitivity results in Table 5, the
choice of optimizer has a significant impact on model
performance in the root cause identification task. When using
AdaGrad, the model performs relatively poorly across all three
key metrics. Accuracy reaches 88.9 percent, AUC is 83.8
percent, and F1-score is 85.7 percent. This is likely due to
AdaGrad's aggressive penalty on accumulated gradients during
training. It often causes the learning rate to decay too quickly,
making it difficult to fully train complex structure-aware
models. As a result, the model struggles to capture fine-grained,
multi-dimensional features in microservice traces.

In contrast, SGD, as a classical first-order optimizer, shows
improvement in both accuracy and discriminative ability. It
achieves an Accuracy of 90.3 percent. However, due to its
reliance on single-step gradients and lack of adaptive
mechanisms, it can easily get stuck in local minima, especially
in high-dimensional models involving multi-head attention and
structure fusion. For anomaly propagation modeling, the
instability of SGD may reduce generalization on anomalous
samples and lead to a higher miss rate.

When switching to the Adam optimizer, the model achieves
notable gains across all metrics. AUC improves to 87.5 percent,
and F1-score reaches 89.0 percent. Adam's adaptive learning
rate mechanism and first- and second-order moment estimation
provide better optimization capability for heterogeneous and
sparse trace data. This improves convergence on features along
abnormal propagation paths. It also allows faster learning of
key weights in the multi-dimensional attention mechanism,
resulting in more stable performance in multi-perspective
information fusion.

Finally, the model achieves the best performance when using
the AdamW optimizer. The F1-score reaches 91.0 percent.
AdamW retains the benefits of Adam while introducing a
weight decay regularization mechanism. This helps suppress
overfitting and improves the stability of parameter learning. In
root cause identification tasks that require modeling of complex
structural dependencies and abnormal behavior propagation,
AdamW better balances the optimization of both structural
modeling and semantic aggregation. This leads to higher
accuracy and greater robustness.

4) Evaluation of the generalization ability of the model
under different topological complexities

This paper also gives an evaluation of the generalization ability
of the model under different topological complexities, and the
experimental results are shown in Figure 4.



Figure 4. The generalization ability of the model under different topological complexities

As shown in Figure 4, the model exhibits significant
performance differences under varying levels of topological
complexity. As the structure of the trace becomes more
complex, overall model performance shows a downward trend.
Specifically, as complexity increases from Low to Very High,
Accuracy drops from 94.5 percent to 87.6 percent. This
indicates that in environments with deeply nested structures or
highly coupled service dependencies, the root cause
identification task becomes more challenging. The results
suggest that extracting structural information and modeling
semantics becomes increasingly difficult under such conditions.

The declining trend in the AUC curve further confirms that the
model's discriminative ability is affected by high topological
complexity. In particular, AUC decreases from 92.8 percent to
86.1 percent. This implies a reduced ability to distinguish root
cause nodes from non-root nodes. In complex structures,
anomaly propagation paths are more dispersed and the anomaly
signals are less obvious. To maintain high discriminative
performance, the model needs stronger capabilities for
capturing global dependencies and integrating multi-
dimensional anomaly information.

The trend of the F1-score, which considers both precision and
recall, further supports these findings. At the "Very High"

complexity level, the F1-score drops to 86.5 percent. This
reflects increased false negatives and false positives in high-
complexity topologies. It highlights the importance of the
multi-dimensional attention mechanism in handling irregular
anomaly propagation and structural heterogeneity. It also
suggests that there is still room for improvement when facing
extremely complex environments. Overall, the experimental
results effectively validate the model's generalization ability
under different structural complexities. They demonstrate that
the proposed structure-aware encoding and multi-dimensional
attention fusion mechanisms offer strong stability and
robustness. Even in real-world microservice scenarios with
dynamic topologies and highly coupled service interactions, the
method maintains strong performance. This shows promising
engineering adaptability and valuable potential for further
research.

5) Analysis of the impact of service dependency
disturbance on discrimination results

This paper further gives an analysis of the impact of service
dependency disturbance on the discrimination results, and the
experimental results are shown in Figure 5.

Figure 5. Analysis of the impact of service dependency disturbance on discrimination results



As shown in Figure 5, model performance in the root cause
identification task consistently declines as the level of service
dependency perturbation increases. This indicates that the
model is highly sensitive to the completeness of structural
information. When the perturbation ratio is 0 percent, the
model achieves high performance across all metrics. Accuracy
reaches 93.6 percent, F1-score is 91.0 percent, and AUC is 89.4
percent. These results suggest that with a complete dependency
structure, the model can effectively capture causal relationships
between services and accurately identify root causes.

However, when the perturbation ratio increases to 20 percent or
more, model performance begins to degrade significantly.
Accuracy drops to 90.5 percent, while F1-score and AUC
decrease to 87.5 percent and 86.4 percent, respectively. This
trend shows that missing or incorrect dependency links
interfere with the model's ability to perform semantic modeling
of the trace. In particular, it weakens the model's capacity to
reconstruct anomaly propagation paths. The disturbance of
dependency information disrupts the actual interaction graph
between services, making it difficult for the model to correctly
identify which nodes are the true sources of system-wide
anomalies.

As the perturbation ratio reaches 50 percent, the model's
performance declines more rapidly. The F1-score falls to 79.2
percent. This result reveals that in highly disrupted structural
environments, even models equipped with structure-aware
encoding and multi-dimensional attention mechanisms are
severely impacted. It becomes especially difficult to identify
cross-level anomaly paths or long anomaly propagation chains.
This demonstrates that structural completeness plays a
fundamental role in root cause analysis. Perturbations weaken
the model's ability to capture fine-grained anomaly features. In
summary, this experiment clearly validates the critical role of
service dependency structures in supporting root cause
identification models. The proposed structure-aware
mechanism performs well under relatively complete
dependency conditions. However, it also highlights the need for
high-quality dependency tracing mechanisms in real-world
deployments. Ensuring the accuracy and completeness of trace
data is essential for reliable anomaly diagnosis and effective
system self-healing.

5. Conclusion
This paper addresses the challenges of root cause identification
in microservice systems and proposes a Transformer-based
model that integrates structure-aware encoding with a multi-
dimensional attention mechanism. The method uses trace data
as the core modeling target and fully considers structural
dependencies among microservices along with runtime multi-
dimensional metrics. This significantly enhances the model's
ability to detect and locate anomalies in complex system
environments. Through the Structure-Aware Trace Encoding
(SATE) module, the model incorporates topological context
information of service nodes. The Multi-dimensional Attention
Fusion (MAF) module further strengthens the recognition of
anomaly propagation paths by modeling from multiple
perspectives, including latency, status codes, and dependency
structures. Together, these components provide detailed and

comprehensive feature support for the root cause localization
task.

Experimental results confirm the effectiveness of the proposed
method across multiple evaluation metrics. The model
demonstrates strong performance in overall accuracy,
robustness, and generalization, especially under conditions
involving topological disturbances or complex dependency
structures. These results show that deep integration of
structural semantics and multi-dimensional monitoring data can
significantly improve the automation and responsiveness of
intelligent operations systems. Compared to traditional rule-
based or shallow feature extraction methods, the proposed
approach achieves notable advances in depth, flexibility, and
adaptability in root cause analysis.

This study not only provides technical support for intelligent
operations in microservice systems but also offers
methodological insights for anomaly detection and self-healing
design in broader distributed systems. In practical industrial
environments, service dependencies are often large-scale, and
system conditions change dynamically. This places higher
demands on the model's structural understanding and
multimodal data integration capabilities. The model framework
presented in this work offers a unified and high-precision
solution for root cause tracing and fault identification under
high-complexity conditions. It holds practical value for large-
scale online systems, edge computing platforms, and cloud-
native architectures.

6. Future work
Looking ahead, several directions remain worthy of further
exploration. First, improving inference efficiency and model
lightweighting without sacrificing modeling power is critical
for real-world deployment. Second, given that trace data may
be partially missing or sampled incompletely in real systems,
developing more robust hybrid models that combine graph and
sequence learning is a promising direction. In addition, future
work can explore integrating this approach with emerging
techniques such as federated learning and self-supervised
representation learning. This would enhance the model's
transferability and adaptability while preserving data privacy,
enabling better support for intelligent system operations and
automated fault diagnosis in key application scenarios.
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