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Abstract: This paper addresses the issues of structural rigidity, parameter redundancy, and insufficient semantic adaptation in
the fine-tuning of large language models. It proposes a structure-aware fine-tuning mechanism based on modular reconfiguration.
The method freezes the backbone parameters of the original model and introduces a learnable module set along with a task-aware
controller. Through structural decoupling and semantic alignment, it enables dynamic reorganization of internal structural paths
and functional injection into the model. In the design, the method incorporates a module activation gating strategy and a structural
consistency regularization term. These components enhance functional separation and combination stability among modules. The
framework also supports structural-level dynamic adaptation under different task inputs. To evaluate its effectiveness, a series of
sensitivity and robustness experiments are conducted under varying conditions, including different module counts, learning rates,
input lengths, and noise levels. The experiments assess the model's performance in terms of structural adaptability, module
utilization, and task alignment. Results show that the proposed method significantly improves structural generalization and input
robustness while maintaining parameter efficiency. It demonstrates strong multi-task responsiveness and semantic control. This
study provides a new design perspective and technical foundation for building fine-tuning frameworks for large language models
that are structurally controllable and task-sensitive.
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1. Introduction
Currently, large language models (LLMs) have achieved
significant breakthroughs across various natural language
processing tasks. With massive parameter scales and pre-
training mechanisms, they demonstrate outstanding generative
capabilities and generalization performance[1]. However, as
model sizes continue to grow, the adaptation and transfer costs
for specific downstream tasks have also increased sharply.
Traditional fine-tuning methods often require updating all
parameters, which leads to heavy resource consumption and
can easily cause catastrophic forgetting and representation
shifts in multi-task settings. In resource-constrained
environments, the computational load, storage cost, and
deployment difficulty of large-scale fine-tuning severely limit
the practical application of LLMs. Efficient, flexible, and
controllable fine-tuning methods are now a critical area of
research[2].

In real-world applications, language models often face diverse
and complex task requirements. Tasks differ in structure,
semantics, and information redundancy. Using a unified
parameter structure for all tasks makes it difficult to balance
task specificity and general model utility. Moreover, many
fine-tuning methods lack structural awareness. They cannot
precisely identify or control the functional differences and
information dependencies among internal modules. This limits
the model's ability to construct fine-grained semantics and
perform structural transfer. It also weakens its adaptability

in task migration, dynamic adjustment, and local intervention.
Therefore, designing a fine-tuning paradigm with module
decoupling and structural reconfiguration becomes essential to
address these challenges[3].

The concept of modular reconfiguration offers a new
perspective for optimizing fine-tuning mechanisms. By treating
LLMs as systems composed of semantic and structural-
functional modules, it becomes possible to selectively
reconfigure internal components without altering the original
parameter structure. This enables module-level replacement,
insertion, or adjustment based on task-specific requirements,
allowing efficient local adaptation. Modular design also
facilitates parameter reuse, transfer, and sharing. In complex
scenarios such as multi-task learning or incremental learning,
this greatly improves model flexibility and stability. Thus, fine-
tuning methods based on modular structures not only reduce
adaptation overhead but also enhance structural interpretability
and control[4].

In addition, modular reconfiguration provides natural
scalability and composability. It allows the fine-tuning strategy
to adapt to task input complexity, output granularity, and
context structure. This approach goes beyond the static
adjustment paradigm of traditional methods and builds a
foundation for dynamic and general fine-tuning. In tasks like
instruction following, domain adaptation, and semantic
alignment, modular reconfiguration can accurately identify key
paths and structural bottlenecks within the model. It improves
both performance and efficiency through structural replacement
and module injection. Therefore, modular fine-tuning is not



only a structural optimization method but also a framework for
building generalization and controlling system performance[5].

From a broader perspective, LLM fine-tuning mechanisms
driven by modular reconfiguration may also lead to a shift in
model development paradigms. Compared to end-to-end
parameter updates, modular fine-tuning provides greater
transparency, controllability, and interpretability. This supports
the creation of safer and more stable AI systems and lays a
foundation for future component-level markets, personalized
model construction, and composable reasoning frameworks. As
LLMs evolve into system-level intelligent agents,
reconfigurable fine-tuning frameworks will become essential
for supporting complex reasoning, dynamic interaction, and
multidimensional cognition. Thus, research on fine-tuning
mechanisms based on modular reconfiguration holds
significant theoretical value and broad practical importance.

2. Background and Literature Review
The development of fine-tuning mechanisms for large language
models (LLMs) has evolved from full-parameter updates to
parameter-efficient fine-tuning (PEFT). Early methods were
typically based on traditional fine-tuning paradigms, updating
all model parameters through gradient descent. Although these
methods achieved strong performance, their resource
consumption became unacceptable as model sizes grew
exponentially[6]. To address this issue, researchers proposed
various PEFT strategies. These include inserting lightweight
adaptation modules, freezing most of the original parameters,
and updating only a small set of newly added components.
Such methods significantly reduce computational and storage
costs while maintaining performance, enabling the application
of LLMs in low-resource environments and on-edge devices.
However, most of these approaches focus on parameter
compression and cannot model and regulate internal structures.
As a result, they struggle to provide fine-grained control over
semantic representations and structural adaptation to task-
specific requirements[7].

Introducing structural modeling into the fine-tuning process has
become a key trend in recent methodological advances. Some
studies have tried to explicitly model the information flow
between modules to enable structure-aware model adaptation.
For example, techniques such as pruning, matrix factorization,
and low-rank reconstruction have been used to structurally
reconfigure parameter matrices, improving model compression
and transferability. Other methods introduce functional
modules, such as attention redirection and channel selection, to
locally adjust submodules and better handle diverse input needs.
These approaches highlight the importance of internal model
structure and show the potential of structural fine-tuning to
enhance flexibility and task adaptability. However, they often
lack unified modeling of module independence and
composability, which limits their ability to fully exploit
structural modularity[8].

Modular fine-tuning mechanisms further expand the structural
capacity of fine-tuning paradigms. By dividing the model into
reusable and interchangeable functional submodules, they offer
finer-grained units for model construction and adaptation. This
approach shifts fine-tuning from parameter updates alone to

structural optimization based on module selection and
recombination. Existing research on module partitioning
mainly focuses on Transformer layers, subnet pathways, or
semantic functional units. These designs align modules with
task-specific requirements through abstract modeling.
Although modular methods have shown advantages in
performance, efficiency, and scalability, they still face
challenges in function decoupling, cross-module semantic
consistency, and automation of module composition. These
limitations hinder their generalization ability and scheduling
flexibility in complex task scenarios[9].

At the same time, evaluation metrics for fine-tuning methods
have expanded beyond traditional performance indicators to
include structural efficiency, adaptation capability, and
generalization stability. Recent studies focus on how to share
modules across tasks, how to achieve minimal-intervention
knowledge transfer, and how to maintain consistency and
controllability in multi-task settings. As complex scenarios
such as multi-task learning, lifelong learning, and incremental
learning continue to emerge, the dynamic, localized, and
reconfigurable nature of fine-tuning has become a critical
standard for evaluating its effectiveness. In this context,
designing a fine-tuning framework with structural awareness,
module tunability, and dynamic composition not only improves
adaptation to shifting task distributions but also provides a key
pathway for systematic model construction and the
development of general-purpose intelligent agents.

3. Methodological Framework
This study proposes a large language model fine-tuning
mechanism based on module reconstruction, aiming to
improve the model's adaptability and structural expression
efficiency in multi-task, multi-structure heterogeneous
scenarios. Specifically, we introduce pluggable structured
modules on the basis of freezing the main parameters of the
original language model and combining dynamic combination
strategies to achieve selective regulation at the module level.
The model architecture is shown in Figure 1.

Figure 1. Architecture of the Proposed Module-
Reconstruction-Based Fine-Tuning Framework



Given the original pre-trained model represented as )(xf ,

where  represents the frozen parameters, and the input x
represents a text sequence of any length. We introduce an
independent modular function );( ii xM  in each layer of the

structure, which i represents the learnable parameters of the
i-th module, and the overall output is expressed as:
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Among them, }10{ ，i is a learnable gating weight, which
is used to control whether the module is activated and realize
the selectivity and flexibility of module reconstruction.

In order to improve the functional differences and combination
stability between modules, the method introduces a structural
decoupling regularization term during the training process.
Considering any two modules iM and jM , we expect them
to have low redundancy in the functional space, so the
structural decoupling loss is defined as follows:
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This loss term encourages functional differences between
modules by minimizing the sum of squared inner products
between module outputs, thereby improving the expressive
decoupling of the overall structure.

In addition, in order to achieve dynamic adaptation of module
functions, this method designs a task-aware module selection
mechanism. Assuming the condition of the current task is
represented as a vector z, we introduce a controller network

)(zC to generate the activation probability of each module:

))(( ii zC 

 represents the Sigmoid activation function, which is used
to map the controller output to the interval [0,1] to implement a
soft selection mechanism. This mechanism enables the model
to adaptively select the most appropriate module combination
when faced with different task inputs, thereby achieving a more
task-aligned structural reconstruction.

In order to further enhance the information coordination ability
between modules, we introduce structural alignment items in
the output fusion stage to constrain the consistency between the
output of each module and the target distribution. The specific
form is:
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Where targetP represents the reference semantic distribution,

iP represents the probability output distribution generated by

module iM , and )||( KLD is the KL divergence. This term

ensures that the aggregation direction of the module output in
the semantic space is consistent with the target task, avoiding
semantic drift during the structural reconstruction process.

Finally, the total loss function of the fine-tuning process is
composed of the main task loss, the structural decoupling term,
and the alignment term, and the overall optimization objective
is defined as:

aligndecoupletasktotal LLLL 21  

21, is an adjustable weight hyperparameter used to balance
the impact between various structural constraints and the main
task objectives. This loss structure ensures that the model
achieves efficient structural adaptation and module
controllability while maintaining the stability of the backbone,
supporting the fine-tuning requirements in complex semantic
tasks.

4. Dataset Description
This study uses the ShareGPT Dataset as the primary data
source. The dataset contains a large number of multi-turn
dialogue texts generated from real user interactions with
language models. It covers a wide range of semantic types,
including knowledge-based question answering, code
generation, and instruction-based reasoning. The content is
mainly in English and is characterized by complete semantic
structures, diverse instruction styles, and rich linguistic
distributions. These features effectively reflect the generative
behavior and semantic expression capability of large language
models under multi-task and multi-instruction settings.

The ShareGPT dataset is open and representative. The included
texts are derived from anonymized model outputs collected on
public platforms. It contains many examples of tasks such as
natural language reasoning, complex dialogues, and creative
generation. This makes it suitable as a foundational resource
for evaluating fine-tuning mechanisms for language models.
The dataset is organized by conversation turns, which supports
the modeling of dialogue context structures. It also allows the
construction and validation of fine-tuning tasks at different
levels of granularity.

To ensure data quality and distributional balance, this study
applies preprocessing and filtering based on task labels and
response types. The input format is standardized, and a
consistent training-validation split is constructed. The dataset
provides diverse semantic inputs and complex instruction tasks,
which are essential for evaluating the proposed modular
reconfiguration fine-tuning method. It supports the
comprehensive assessment of the method's structural
adaptability and generalization across tasks.

5. Experimental Results
In the experimental results section, the relevant results of the
comparative test are first given, and the experimental results
are shown in Table 1.

Table 1: Comparative experimental results



Method Structure
Adaptability

Module
Utilization

Task
Alignment
Score

LoRA[10] 83.1 65.4 76.9
AdaLoRA[11] 86.7 72.8 80.2
Compacter[12] 79.3 59.1 74.6
Prefix-Tuning[13] 75.8 53.7 71.3
Ours 92.5 87.3 89.8

The experimental results show that the proposed modular
reconfiguration fine-tuning mechanism performs best in
structural adaptability, reaching a score of 92.5, which is
significantly higher than that of existing methods. This
indicates that the method can achieve more effective semantic
modeling and structural alignment through flexible module
composition strategies in scenarios involving diverse task
structures. Compared with static fine-tuning methods such as
LoRA and Prefix-Tuning, this method features a dynamic
module reconfiguration mechanism. It captures the structural
paths required by input tasks more precisely, thereby enhancing
overall structural generalization.

In terms of module utilization, the proposed method also
demonstrates clear advantages, achieving an efficiency of 87.3.
This is much higher than baseline methods such as Compacter
and Prefix-Tuning. These results confirm the strong module
activation and reuse capability of the controller mechanism and
task-aware selection strategy introduced in the method. By
controlling the composition and injection of modules, the
model avoids interference from redundant parameter paths. It
efficiently completes semantic reconstruction tasks using a
minimal module set, improving both fine-tuning efficiency and
representational accuracy.

For task alignment, the method scores 89.8, significantly
outperforming other approaches. This result shows that the
modular reconfiguration mechanism not only improves
structural adaptability but also enhances consistency between
input semantics and generated responses. Through task-aware
embeddings and module selection strategies, the model can
select more suitable representational paths in different task
contexts. This enables more targeted response generation and
reduces semantic drift and generation ambiguity. Such
capability is critical for large language model applications in
multi-task and multi-instruction settings.

Taken together, the results across these three metrics
demonstrate that the proposed modular fine-tuning mechanism
offers a synergistic advantage in structural flexibility, module
efficiency, and semantic consistency. Compared to existing
methods, it shifts the fine-tuning paradigm from parameter
injection to structural control without significantly increasing
the number of parameters. This transformation improves the
model's responsiveness under complex input conditions and
provides a theoretical and structural foundation for building
scalable and composable fine-tuning frameworks for language
models.

This paper also gives an analysis of the impact of different
module number settings on model performance. The study
explores how varying the number of modules influences the
structural behavior of the model during the fine-tuning process.
By adjusting the modular configuration, the research aims to

understand the balance between structural flexibility and
stability across different levels of granularity.

Through controlled experiments, the paper examines how the
modular reconfiguration mechanism responds to changes in
module count under diverse input conditions. This analysis
helps reveal the relationship between module quantity and the
model's ability to support semantic alignment, task adaptability,
and structural coordination. The experimental results are shown
in Figure 2.

Figure 2. Analysis of the impact of different module
number settings on model performance

In terms of structural adaptability, performance improves
significantly when the number of modules increases to six,
reaching the highest point. It then slightly declines at eight
modules, showing a trend of rising first and then converging.
This indicates that the modular reconfiguration mechanism
supports complex structural modeling more effectively when
the scale is appropriate. However, too many modules may
introduce redundant structures that interfere with the original
information flow, reducing overall adaptability. This
phenomenon confirms that structural reconfiguration must
strike a balance between flexibility and stability to avoid
structural disruptions caused by excessive module
combinations.



For module utilization, the model shows a steady upward trend
as the number of modules increases. This reflects that the task-
aware control mechanism can effectively activate newly added
modules and support dynamic multi-path expression under
richer structural configurations. The result indicates that the
proposed mechanism has strong compatibility with module
expansion. Even with more modules, the model maintains
efficient selective activation, improving both structural
coverage and parameter efficiency.

The task alignment score exhibits a nonlinear pattern, peaking
at six modules. This reflects the strongest semantic consistency.
It suggests that moderate modular reconfiguration enables the
model to better align structural paths with task semantics,
enhancing the relevance and coherence of generated outputs.
When the number of modules increases further, excessive
structure selection may cause a shift in task representation,
leading to a drop in alignment accuracy.

Taken together, the trends across the three metrics show that
the number of modules significantly affects the model's
structural control ability. Under a fixed model scale, the
effectiveness of module configuration determines the
expressive power and semantic stability of the reconstructed
structure. The experimental results overall support the design
principle of optimizing performance through structural
granularity control in the fine-tuning process. They also
highlight the importance of dynamic scheduling strategies
under adjustable module scales for achieving optimal structure-
semantic coordination.

This paper also gives an analysis of the impact of learning rate
changes on module fusion stability, and the experimental
results are shown in Figure 3.

Figure 3. Analysis of the impact of learning rate changes
on module fusion stability

The experimental results show that as the learning rate
increases from 1×10⁻⁵ to 5×10⁻⁵, the module fusion stability
score gradually rises. This suggests that a moderate increase in
learning rate helps optimize coordination between modules.
During this phase, the model adjusts the parameter weights of
each module more effectively. It establishes stable information
flow paths, improving overall structural consistency. This trend
reflects the dynamic adaptability of the modular
reconfiguration mechanism to learning rate changes. A

moderate update speed supports better integration of structural
information.

When the learning rate further increases to 7×10⁻⁵, the
stability remains at a high level but approaches saturation. This
indicates that within a certain hyperparameter range, the model
maintains strong structural consistency and information
coordination among modules. It shows the model's moderate
tolerance to learning rate variation. However, the rate of
improvement slows down at this stage, suggesting that stability
is reaching its upper limit and the adjustable range is narrowing.

At a learning rate of 1×10⁻⁴, the fusion stability drops
significantly. This shows that an excessively large update step
may lead to an imbalance in module collaboration, unstable
information paths, and even structural disruption. This
phenomenon is particularly sensitive in a modular
reconfiguration framework. Frequent parameter updates may
break the semantic connections between modules, causing
structural drift when handling different task instructions. This
result highlights the importance of structural control
mechanisms in learning rate scheduling. This paper also
presents a module robustness evaluation experiment under
noise injection interference, and the experimental results are
shown in Figure 4.

Figure 4.Module robustness evaluation experiment under
noise injection interference

The figure shows that under ideal conditions without noise
interference, the module robustness score reaches its highest
value. This indicates that the designed module structure
exhibits strong semantic preservation and internal consistency
under stable input. At this stage, information flows smoothly
between modules, and the reconstruction paths are highly
coordinated. This ensures the stability and accuracy of the
semantic construction process. The result confirms the steady-
state performance advantage of the modular reconfiguration
mechanism in structurally clear scenarios.

With the introduction of mild noise, the model's robustness
slightly decreases but remains at a high level overall. This
demonstrates that the proposed fine-tuning framework has a
certain tolerance to local disturbances. The controller selection
mechanism and structural redundancy between modules help
the model maintain effective structural fusion, even with
imperfect inputs. This robustness is especially important in



real-world tasks that involve ambiguous expressions or unclear
semantics.

As noise intensity increases to a medium-high level, module
robustness continues to decline. This reflects that the structural
composition paths begin to be affected by interference.
Semantic transmission between modules becomes less accurate,
and uncertainty in structural reconstruction increases. This
weakens the consistency of semantic alignment. The trend
suggests that the modular reconfiguration mechanism is
sensitive to input quality and requires further stability control
under high-noise conditions.

Under extreme noise conditions, the robustness score drops
significantly. This suggests that the model struggles to maintain
stable structural organization and output consistency under
severe input disturbances. The result also reveals the current
limitations of the modular mechanism in extreme environments.
It points to the need for improvements in interference
resistance. Overall, the experiment verifies that the modular
reconfiguration mechanism performs robustly under clean and
mildly noisy conditions, while also highlighting the stability
challenges it faces under intense perturbation.

This paper also presents a structural adaptability test under
varying input sequence lengths, and the experimental results
are shown in Figure 5.

Figure 5. Structural adaptability test under varying input
sequence length

The experimental results show that when the input sequence
length is short (e.g., 32 to 128 tokens), the model's structural
adaptability rises rapidly. This indicates that the proposed
modular reconfiguration mechanism can quickly activate
appropriate structural paths under low semantic load. It enables
efficient structural modeling and semantic organization. At this
stage, module selection is task-oriented, and structural
configuration remains stable. The model shows strong
structural responsiveness to short instructions.

When the input length increases to around 256 tokens,
structural adaptability reaches its peak. This suggests that the
model achieves optimal structural scheduling and module
coordination under moderate input complexity. Information
flows efficiently among modules. The controller accurately
assigns modules and constructs paths based on task
embeddings. This enhances the complementarity between

modules and achieves an optimal balance between semantic
understanding and structural construction.

As the input length continues to increase to 512 tokens or more,
structural adaptability gradually decreases. This reflects
growing pressure on the module system under long sequence
conditions. At this stage, task information must travel through
longer paths across modules. The original structure lacks
sufficient expressive capacity, leading to partial redundancy or
misalignment among modules. This trend highlights the need
for greater structural flexibility and representational capacity
when processing long texts.

6. Conclusion
This paper proposes a modular reconfiguration-based fine-
tuning mechanism for large language models. It aims to
address the limitations of traditional fine-tuning methods in
structural adaptability, semantic consistency, and parameter
efficiency. By designing a task-aware controller and a
composable module set, the mechanism enables structural-level
fine-tuning while keeping the backbone parameters frozen. It
effectively improves adaptation and representation flexibility
across diverse task conditions. Experiments verify the
advantages of the proposed method in structural generalization,
module selection stability, and robustness to input perturbation.
These results highlight its potential in efficient structural
modeling and multi-task response.

At the methodological level, this study emphasizes the central
role of structural controllability in LLM fine-tuning. It moves
beyond traditional fine-tuning methods that focus only on
parameter updates. For the first time, it integrates module
organization, composition strategies, and structural awareness
into a unified modeling framework. This structure-oriented
fine-tuning mechanism improves model interpretability in
heterogeneous settings and introduces a new scheduling logic
for semantic path construction under task supervision. The
proposed regularization on module decoupling, task alignment
objective, and fusion control mechanism jointly form a multi-
level and dynamic structural fine-tuning system.

The mechanism contributes to structure-sensitive application
scenarios. It is especially suitable for complex tasks such as
instruction following, multi-turn dialogue, semantic alignment,
and financial text analysis, which require strong structural
responsiveness. The modular design adapts to task context
shifts, reduces redundant training costs, and improves
deployment and iteration efficiency. In future research on
cross-domain knowledge transfer, low-resource adaptation, and
system-level language agents, this method can serve as a key
fine-tuning module to support the development of scalable
language systems.

7. Future work
Future work may further explore automatic module generation,
cross-level structural reconfiguration, and optimal scheduling
for structure fusion. Combining graph-based modeling,
attention compression, and knowledge-guided mechanisms
may lead to more hierarchical and semantically stable module
control networks. As large-scale pre-trained language models



continue to evolve, structural reconfiguration can serve as a
core bridge. It connects the pre-training and fine-tuning stages
at the structural-semantic level, advancing language models
toward greater generalization, efficiency, and robustness.
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