
Journal of Computer Technology and Software

ISSN: 2998-2383

Vol. 3, No. 6, 2024

Fast Adaptation Pipeline for LLMs Through Structured Gradient
Approximation
Wenxuan Zhu
University of Southern California, Los Angeles, USA
zhuwenxu@usc.edu

Abstract: This paper focuses on the problem of efficient adaptation of large language models to downstream tasks. It proposes
a fast fine-tuning strategy based on gradient approximation to address challenges such as high resource consumption and large
training costs during the fine-tuning phase. The method keeps the backbone model parameters frozen. It introduces a gradient
approximation module to model the optimization direction. Combined with a lightweight parameter update mechanism, it enables
rapid convergence and performance transfer for specific tasks. The model framework consists of three core components: input
encoding, approximate gradient construction, and lightweight parameter update. The approximation module builds on semantic
representations to predict update directions related to the target loss. These directions then guide the fine-tuning process. To
systematically evaluate the performance of the proposed method, the study designs multiple experiments. These include tests on
hyperparameter sensitivity, data perturbation effects, and changes in structural depth. Representative datasets are selected, and the
method is compared against various mainstream fine-tuning approaches. Experimental results show that the proposed method
significantly reduces the proportion of trainable parameters while maintaining high task performance. It achieves a good balance
among model accuracy, convergence speed, and resource efficiency. The paper also further analyzes the method's stability under
challenging scenarios such as distribution shift and reduced sample size. These results validate the effectiveness of the structural
design and the adaptability of the proposed approach.

Keywords: Gradient approximation; fast fine-tuning; lightweight parameter update; model stability

1. Introduction
With the rapid development of natural language processing
technologies, large language models have emerged as a key
technology driving advances in language understanding and
generation[1]. Their scale continues to grow, and their
performance keeps improving. These models have
demonstrated strong generalization and adaptability across a
wide range of tasks. However, as the number of model
parameters increases exponentially, the computational cost and
time required for training and fine-tuning have become
significantly higher. This issue is especially pronounced when
adapting models to specific domains or tasks. Traditional full-
parameter optimization is no longer a feasible option in many
scenarios. The contradiction between resource demand and
efficiency has prompted researchers to explore more efficient
parameter adjustment strategies. The goal is to achieve rapid
adaptation without sacrificing model performance[2].

Fast fine-tuning is essential for the practical deployment of
large language models. The main challenge lies in reducing the
scale of parameter updates and the number of training iterations,
while still maintaining predictive performance. To address this,
recent methods such as low-rank adaptation, prompt tuning,
and parameter freezing have been proposed. These techniques
aim to balance efficiency and effectiveness. However, they
often require careful parameter design or modifications to the
model structure. As a result, they still face limitations when

applied to diverse real-world applications. In this context,
approximating the gradient direction for parameter updates
provides a new theoretical and technical basis for fast model
adaptation[3].

Gradient approximation simulates the direction of model
updates with minimal computational cost. It constructs an
understanding of model change through limited computations,
without executing full-scale backpropagation. This approach
can greatly reduce computational requirements and is also
highly scalable and task-agnostic. It is especially suitable for
environments with limited computational resources or strict
online deployment needs. Furthermore, gradient approximation
methods can complement current efficient fine-tuning
mechanisms. They enhance the dynamic adaptability of the
fine-tuning process while preserving parameter efficiency.

From the perspective of real-world applications, many
language tasks involve small datasets, strong timeliness, and
rapidly changing demands. These characteristics require
models to adapt quickly. Traditional fine-tuning strategies are
often too resource-intensive for large-scale deployment in such
settings. Gradient approximation-based fine-tuning offers a
feasible path for building lightweight, fast, and adaptive model
update frameworks. It expands the applicability of large
language models and supports practical use in resource-
constrained environments[4].

In summary, studying fast fine-tuning strategies for large
language models based on gradient approximation has clear

theoretical and practical value. It addresses the technical
challenge of high training costs and aligns with the trend
toward lightweight, customized, and efficient model
deployment. As large language models continue to be applied
across domains, the demand for efficient fine-tuning will only
grow. Exploring a high-precision, low-resource gradient
approximation method is a critical step toward making large
model capabilities widely accessible. It also plays a key role in
the ongoing evolution of model intelligence.

2. Background &Motivation
2.1 Background
Although large language models have shown remarkable
performance across many natural language processing tasks,
they still face significant bottlenecks in efficiency and resource
usage. In particular, when fine-tuning is required for domain-
specific or task-specific adaptation, traditional full-parameter
fine-tuning often leads to high computational costs and
memory demands. This makes deployment on edge devices or
in resource-constrained environments extremely difficult. Such
heavy resource dependence limits the availability and
flexibility of large language models in broader application
scenarios[5].

At the same time, current mainstream parameter-efficient fine-
tuning techniques have helped reduce resource burdens to some
extent. Methods such as partial parameter freezing, lightweight
module insertion, or prompt-based optimization are common
examples. However, these approaches still face problems such
as limited adaptability, performance degradation, or strong
reliance on task-specific structures. When applied to complex
and diverse task demands, they often struggle to maintain
stability and generalization. These issues are especially
pronounced under low-resource or multitask conditions,
exposing the limitations of current techniques. Reducing the
cost of fine-tuning while preserving model performance
remains a key challenge[6].

In addition, most existing fine-tuning methods rely on full
gradient computation and multiple rounds of backpropagation.
This affects training speed and limits the model's ability to
respond quickly to changes in task requirements. In real-world
scenarios, task objectives often change dynamically or follow
short cycles[7]. Traditional fine-tuning strategies cannot offer
sufficient flexibility and response efficiency. Therefore, there is
an urgent need for a fine-tuning strategy that can quickly adapt
while easing resource demands. Such a solution is crucial for
supporting the broader application of large language models in
dynamic environments.

2.1 Motivation
To address the efficiency bottlenecks and resource constraints
in the fine-tuning of large language models, it is essential to
explore a lighter and more general optimization strategy.
Gradient approximation offers a promising direction. It
captures the optimization path without fully updating model
parameters. This approach significantly reduces the
computational burden and avoids redundant parameter updates.
As a result, it accelerates model adaptation to specific tasks.
This capability holds practical value in real-world applications.

As large language models are increasingly applied in more
specialized scenarios, the demand for faster response and
flexible deployment continues to grow. Traditional fine-tuning
methods struggle to meet the practical need for rapid response
and low-cost adaptation. In contrast, gradient approximation
methods provide strong generality and flexibility. They allow
the model to adjust its behavior quickly in response to changing
tasks. This mechanism not only improves model usability but
also offers a technical foundation for building adaptive
intelligent systems in the future.

At the same time, as model sizes continue to grow, achieving
effective performance transfer with minimal intervention has
become a central challenge in deploying large models. The
introduction of gradient approximation is a positive step toward
solving this issue. It has the potential to optimize the model
training process and expand the adaptability of large language
models. This strategy enables more flexible and efficient model
updates, and it lays the groundwork for fast deployment and
continuous improvement of large-scale models in the future.

3. Method
3.1 Overall Framework
This study proposes a fast fine-tuning strategy for large
language models based on the gradient approximation
mechanism, aiming to achieve efficient adaptation to specific
tasks while significantly reducing parameter updates and
computational costs. The overall framework mainly includes
three stages: input encoding, gradient approximation modeling,
and lightweight parameter updates. In the input stage, text
samples are converted into context-related semantic vectors
through the embedding layer of the pre-trained language
model, denoted as)(XEncoderH  , where X
represents the input sequence and H is the corresponding
representation tensor. On this basis, the model estimates the
gradient of the loss function L to replace the complete back-
propagation process, thereby significantly reducing the
training cost. The overall model architecture is shown in
Figure 1.

Figure 1. The overall model architecture diagram of this
algorithm

To achieve effective gradient modeling, this paper introduces
a gradient approximation module, the goal of which is to

construct a mapping function),(YXAg 


to

approximate the true gradient)),((YXfL  , which Y
represents the supervision signal and)(A is the learned
gradient approximator. The approximate gradient will be used
to update a small number of trainable parameters, such as low-
rank adaptation layers or prompt vectors, to achieve
performance transfer with minimal parameter adjustment. The
update strategy follows the following form:

 g'
Where  is the learning rate and ' is the updated
parameter. Through the above modular design, the model
achieves efficient task fine-tuning and semantic transfer
capabilities while retaining the frozen backbone parameters.

3.2 Optimization Objective
In the proposed large language model fast fine-tuning strategy,
the model first receives the original text sequence as input,
represented as },...,,{ 21 nxxxX  , where each ix is a
discrete word unit. The sequence is preliminarily semantically
modeled through the frozen large language model encoder,
and the corresponding context representation sequence

)(XEncoderH  is output, which dnRH 
represents the semantic embedding of each word unit in the
context, and d is the hidden dimension.

In order to achieve an efficient fine-tuning mechanism, the
model introduces a lightweight parameter module  , which
does not modify the backbone parameters, but models the
parameter update path based on the gradient approximation
mechanism. Specifically, the semantic representation H is
input into a gradient predictor, which outputs an approximate
gradient vector:

)(HGg 

)(G is a gradient approximation network, which has
parameter-sharing capability and can output directional
updates consistent with the training signal.

Subsequently, the approximate gradient vector is used to
update lightweight parameters in the adjustable module, such
as the prompt vector or low-rank matrix parameters. The
parameter update form is expressed as:

g  '
Where  is the learning rate that controls the update step
size. The updated parameters are used in conjunction with the
backbone model to generate the final output representation.
The overall output is defined as follows:

)';( HDecoderZ
Where Z represents the prediction vector or generation result
of the model, and the decoder can adopt a conditional
language modeling structure to support diversified outputs.

Before generating the prediction, to improve the accuracy and
stability of the representation, the system also normalizes and
structures the representation sequence to meet the input
dimension requirements of the downstream decoder:

)'(Projection)('  HLayerNormH
The entire optimization process keeps the backbone
parameters frozen and only adjusts the lightweight modules,
forming an efficient closed-loop path from input semantic
modeling to gradient approximation update and then to output
decoding.

3.3 Training Strategy
In the training phase, in order to achieve efficient and
controllable parameter updates, this method designs a fine-
tuning loss function that focuses on lightweight modules.
Specifically, the model only updates the low-rank adaptation
layer, prompt vector, or micro-learnable module on the basis of
freezing the backbone parameters, and the loss function only
depends on the output results generated by these modules. Let
the input be X , the corresponding label be Y , and the model
prediction result be);( XfY


, where  represents

all trainable lightweight parameters. The main optimization
objective of the fine-tuning phase is defined as minimizing the
difference between the prediction result and the supervision
signal, expressed as follows using standard regression loss or
classification loss:

),(YYLLtask




Among them,)(L can be specifically a loss function form
related to specific tasks, such as mean square error, cross-
entropy, etc.

In order to further improve the stability of the model during
fast fine-tuning, the gradient will be truncated and normalized
during training to avoid excessive update deviations in the
gradient approximation module. At the same time, since the
gradient approximator itself is also learnable, its output will be
passed to the loss end through the forward propagation path to
indirectly learn the optimization direction. Therefore, all
parameter updates are back-propagated based on the error
signal generated by the task loss taskL , thereby achieving
efficient training of micro-modules such as prompt vectors and
low-rank adapters, allowing the model to achieve fast and
stable task adaptation while keeping the overall structure
unchanged.

4. Experimental setup & Dataset
4.1 Experimental setup
This study validates the effectiveness of the proposed fast fine-
tuning method across multiple natural language processing
tasks. All experiments follow a unified training procedure and
parameter configuration to ensure comparability. Experiments
are conducted on servers equipped with NVIDIA A100 GPUs
using the PyTorch framework. To improve efficiency, the
backbone of the large language model remains fully frozen
during training. Only the gradient approximation module and

lightweight parameter components are updated. The optimizer
used is AdamW with an initial learning rate of 2e-4. The batch
size is set to 32, and the number of training epochs is
dynamically adjusted based on validation set convergence. All
text inputs are encoded using BPE, with the maximum
sequence length limited to 512.

To enhance model stability and generalization during training,
gradient clipping is applied with a threshold of 1.0. A linear
learning rate warm-up strategy is also used. Each task follows
the same fine-tuning pipeline, with adaptations only in input
format and evaluation metrics according to task-specific
requirements. To assess the generality of the proposed method,
representative tasks from classification, extraction, and
generation are selected to construct the experimental set. The
method is compared with mainstream parameter-efficient fine-
tuning techniques. Detailed experimental settings are presented
in Table 1.

Table 1: Experimental detailed parameter settings

Configuration items Value
Backbone Model ChatGLM-6B
Training Framework PyTorch + Transformers
GPU Environment NVIDIA A100 × 1
Batch size 32
Learning Rate 2e-4
Optimizer AdamW
Maximum sequence length 512 Tokens
Number of training rounds Maximum 200 rounds, early

stopping strategy enabled

4.2 Dataset

This study selects the BoolQ dataset from the SuperGLUE
benchmark as the core evaluation task. The goal is to verify the
adaptability of the proposed fast fine-tuning strategy in
understanding-based question-answering tasks. BoolQ is a
binary classification dataset based on real user queries. Each
sample provides a passage and a yes/no question. The task is to
determine whether the question can be answered as "yes" based
on the given passage. The dataset features strong semantic
dependencies and natural language expressions. It serves as a
representative task for evaluating fine-tuning strategies.

The BoolQ dataset contains over 12,000 labeled samples. The
training set includes approximately 9,000 examples, while the
development and test sets each contain about 3,000 examples.
The data distribution closely reflects real-world scenarios.
Question formats are diverse, and answers often involve a
degree of subjectivity. The task requires the model to
demonstrate strong contextual understanding and classification
capability. For input construction, the question and passage are
concatenated into a single input sequence. A separator is used
for encoding. The prediction target is a binary output of "True"
or "False."

This dataset is well-suited to evaluating both the performance
of the model on reasoning tasks and the efficiency impact of
the gradient approximation mechanism. Due to its moderate
size, accurate annotations, and inherent difficulty, BoolQ is
widely used for assessing fine-tuning strategies in real-world
QA contexts. It is considered one of the key benchmarks for
measuring task adaptation ability in language models.

5. Experimental Results
In the experimental results section, this paper first presents the
corresponding findings from a set of comparative experiments.
These experiments are designed to evaluate the effectiveness of
the proposed method in relation to other mainstream
approaches under consistent conditions. The comparative test
serves as a foundation to assess multiple aspects of model
performance, including efficiency, adaptability, and parameter
update scale. The results from this comparative analysis are
organized and illustrated in Table 2 to provide a clear and
structured overview of the evaluation outcomes.

Table 2: Comparative experimental results

Method Parameter
update ratio
(%Params)

Training
duration
(Time)

Accuracy
after fine-
tuning

LoRA[8] 0.20% 0.76x 84.2
Full parameter
fine-tuning[9] 100% 1.00x 85.5

LISA[10] 0.35% 0.88x 84.9
BERT4ST[11] 1.50% 0.91x 83.7
Splitlora[12] 0.12% 0.68x 84.1
Ours 0.17% 0.59x 86.0

The experimental results in the table show that the proposed
fast fine-tuning method based on gradient approximation
demonstrates significant advantages across multiple
dimensions. Compared with traditional full-parameter fine-
tuning, this method achieves an accuracy of 86.0% using only
0.17% of trainable parameters. This even surpasses the 85.5%
accuracy of full-parameter fine-tuning. These results indicate
that a well-designed gradient approximation mechanism allows
lightweight modules to efficiently capture task-relevant
information. This enables stable performance transfer and
confirms that the method achieves a good balance between
parameter efficiency and predictive capability.

In terms of training time, the proposed method also shows clear
improvements. The training duration is only 0.59x, which is
notably lower than other parameter-efficient fine-tuning
methods, such as 0.76x for LoRA and 0.88x for LISA. This
efficiency gain comes from the approximate modeling of
gradient paths. It avoids large-scale backpropagation and
redundant parameter updates during optimization, which
effectively reduces training overhead. This feature is especially
important for deployment in environments with low latency
and limited resources.

When compared with other representative methods such as
SplitLoRA and LISA, although they also use a small
proportion of parameter updates, their accuracy does not reach
the level achieved by the proposed method. This suggests that
simply reducing the number of parameters is not sufficient to
ensure model performance. The key lies in preserving
information about the optimization direction through effective
mechanisms. The proposed gradient approximation strategy not
only reduces parameter size but also guides parameter updates
in a structured way. This maintains both efficiency and
accuracy.

This paper also presents a sensitivity analysis focusing on how
variations in the depth of the gradient approximator affect the
fine-tuning accuracy of the proposed method. The goal of this
test is to investigate the relationship between the structural
complexity of the approximator and its ability to guide
effective parameter updates during the fine-tuning process. By
systematically adjusting the number of layers within the
approximator module, the study aims to explore the impact of
architectural depth on optimization performance. The
corresponding experimental results are visually summarized
and illustrated in Figure 2 for clarity and comparison.

Figure 2. Sensitivity test of approximator depth change on
fine-tuning accuracy

The results shown in the figure indicate that the depth of the
approximator has a significant impact on fine-tuning accuracy.
As the number of approximator layers increases from 1 to 3
and 4, model performance shows a clear upward trend. This
suggests that increasing the depth of the approximator helps
improve its ability to model the gradient direction, thereby
enhancing the overall fine-tuning effect. This trend aligns with
the design goal of the gradient approximation mechanism,
which aims to strengthen information representation and update
capability through structural enhancement.

In particular, with 3-layer and 4-layer architectures, the model
reaches peak fine-tuning accuracy. This indicates that the
approximator at this depth has a strong representation ability
and can generate approximate gradients that benefit the
optimization process. It confirms that a moderately deep
approximator can achieve a good balance between fine-tuning
performance and resource efficiency. This further supports the
practicality and scalability of the proposed method.

However, when the approximator depth increases to 5 layers,
model accuracy decreases. This may result from excessive
computation and representation noise introduced by a deeper
structure. These factors may reduce the stability of gradient
estimation and weaken the directionality of parameter updates.
This finding suggests that in gradient approximation strategies,
deeper is not always better. A proper balance must be found
between representation power and the risk of overfitting.

This paper also presents a model stability test under varying
input sequence lengths, and the experimental results are shown
in Figure 3.

Figure 3.Model stability test under changing input
sequence length

The figure shows that input sequence length has a clear impact
on the model's fine-tuning performance. At shorter lengths,
such as 128, the model achieves relatively low accuracy. This
suggests that limited information expression constrains
semantic modeling ability. The gradient approximation
mechanism struggles to capture complete semantic structures
when the context is compressed. In such cases, the lightweight
parameter updates may lack sufficient context, affecting the
stability and convergence speed of fine-tuning.

When the sequence length increases to 256 and 384, the
model performance improves significantly, reaching a peak
near length 384. This indicates that a moderate input length
provides rich contextual information without introducing too
much redundant noise. This benefits the gradient
approximation module by allowing it to reconstruct the
optimization direction more accurately. Within this range, the
match between model representation capacity and
approximator structure is well maintained, leading to stable and
efficient fine-tuning.

As the input length further increases to 512 and 640, model
accuracy begins to decline. This may be due to the introduction
of irrelevant information from long texts, which interferes with
the modeling process of the gradient estimator. In addition,
overly long sequences can increase gradient sparsity and
computational cost, which may reduce the overall stability of
fine-tuning. These results suggest that longer input sequences
do not always support better task adaptation. Proper length
control is especially important in lightweight frameworks.

This paper also provides an analysis of how deviations in data
distribution influence the robustness of the proposed model
during the fine-tuning process. The objective of this test is to
assess the model ’ s ability to maintain stable performance
when exposed to varying levels of distributional shift, which
commonly occur in real-world scenarios. By simulating
different degrees of input distribution change, the study
examines the extent to which such perturbations interfere with
the model's capacity to generalize. The structure of the
corresponding evaluation setup and the observed robustness
trends are illustrated in Figure 4 to facilitate intuitive
understanding and comparative analysis.

Figure 4. The degree to which data distribution deviation
interferes with model robustness

The figure shows the trend of accuracy for the proposed fast
fine-tuning model under different levels of data distribution
shift. Overall, as the degree of distribution shift increases from
none to mild, moderate, and then severe, model performance
gradually declines. This indicates that distribution changes
have a clear disruptive effect on lightweight fine-tuning
strategies. The trend reflects that the fine-tuned model relies on
a certain level of consistency between training and testing
distributions. Under the gradient approximation mechanism,
changes in input feature distribution directly affect the quality
of the approximate gradients.

Under mild distribution shifts, the model shows only minor
performance fluctuations. This suggests that the gradient
approximation mechanism has some robustness against small
perturbations. It indicates that the proposed method has a
certain level of distribution generalization in real-world
scenarios. It can tolerate slight shifts in corpus or sample
differences. Lightweight parameter updates in this case still
manage to absorb these changes and maintain a relatively
stable optimization path.

When the distribution shift reaches moderate or severe levels,
model performance degrades more significantly. The accuracy
drops noticeably. This may be because the lightweight modules
fail to fully capture the new feature patterns under the shifted
distribution. This increases gradient approximation error and
causes the optimization direction to deviate from the target. In
addition, freezing the backbone parameters limits the model's
ability to adapt structurally to environmental changes. This
makes the fine-tuning modules more sensitive to distribution
shifts and weakens the overall robustness. In summary, the
experiment reveals the robustness boundary of the gradient
approximation fine-tuning strategy under specific distribution
shifts. This provides important insights for future method
extensions. To improve model stability in complex
environments, future work may consider integrating
distribution-aware modules or using multi-distribution training
for robust fine-tuning. These approaches can help enhance the
model's resistance to distribution noise and improve
generalization in real-world deployment.

6. Conclusion
This paper proposes an efficient fine-tuning strategy based on a
gradient approximation mechanism, aiming to enable fast
adaptation of large language models to specific tasks. The

method models gradient directions in a structured way and fits
task objectives through lightweight modules without updating
the backbone parameters. Compared to traditional full-
parameter fine-tuning, this approach offers clear advantages in
training efficiency and computational cost. It demonstrates the
ability to balance parameter efficiency with task performance.
The study provides a low-cost and highly controllable solution
path for the practical deployment of large models, with strong
engineering feasibility.

Through systematic design and comparative experiments, the
paper demonstrates the adaptability of the gradient
approximation mechanism under various settings. These
include different hyperparameter configurations, changes in
data scale, and input feature perturbations. Experimental results
show that the proposed method achieves stable convergence
and high task accuracy. It also exhibits strong potential in terms
of robustness and scalability. These findings offer new insights
for addressing challenges in real-world model deployment,
especially in scenarios with limited computation such as edge
computing, online learning systems, and multitask
collaborative environments.

The fine-tuning framework introduced in this study is suitable
not only for general tasks such as text classification and
question answering but also for more complex tasks involving
language generation and semantic reasoning. Due to its simple
structure, strong generality, and modular design, the method
can be further integrated with other efficient parameter update
techniques, reinforcement learning strategies, or knowledge
distillation frameworks. This would help build more flexible
and controllable intelligent fine-tuning systems. In addition, its
potential in cross-domain applications such as multilingual
processing and adaptive dialogue systems deserves further
exploration.

7. Future work
Looking ahead, as the application boundaries of large language
models continue to expand, the tension between adaptation
efficiency and resource constraints will become increasingly
critical. This study provides both theoretical support and
empirical evidence for the development of intelligent,
transferable, and lightweight large models. Future work may
extend the framework by focusing on distributional robustness,
gradient modeling accuracy, and multi-task transfer capability.
These directions will help meet the demands of real-world
applications and promote sustainable intelligent deployment in
fields such as education, finance, healthcare, and law.

References
[1] Ding N, Qin Y, Yang G, et al. Parameter-efficient fine-tuning of large-

scale pre-trained language models[J]. Nature Machine Intelligence, 2023,
5(3): 220-235.

[2] Xu R, Luo F, Zhang Z, et al. Raise a child in large language model:
Towards effective and generalizable fine-tuning[J]. arXiv preprint
arXiv:2109.05687, 2021.

[3] Chen Y, Qian S, Tang H, et al. Longlora: Efficient fine-tuning of long-
context large language models[J]. arXiv preprint arXiv:2309.12307,
2023.

[4] da Silva Júnior, E. M., & Dutra, M. L. (2021). A roadmap toward the
automatic composition of systematic literature reviews. Iberoamerican
Journal of Science Measurement and Communication.

[5] Ding, R., Han, X., & Wang, L. (2022). A unified knowledge graph
augmentation service for boosting domain-specific NLP tasks. arXiv
preprint arXiv:2212.05251.

[6] Zong Y, Bohdal O, Yu T, et al. Safety fine-tuning at (almost) no cost: A
baseline for vision large language models[J]. arXiv preprint
arXiv:2402.02207, 2024.

[7] Kim J, Lee J H, Kim S, et al. Memory-efficient fine-tuning of
compressed large language models via sub-4-bit integer quantization[J].
Advances in Neural Information Processing Systems, 2023, 36: 36187-
36207.

[8] Hu E J, Shen Y, Wallis P, et al. Lora: Low-rank adaptation of large
language models[J]. ICLR, 2022, 1(2): 3.

[9] Lv K, Yang Y, Liu T, et al. Full parameter fine-tuning for large language
models with limited resources[J]. arXiv preprint arXiv:2306.09782,
2023.

[10] Zhang, L., Zhang, L., Shi, S., Chu, X., & Li, B. (2023). Lora-fa:
Memory-efficient low-rank adaptation for large language models fine-
tuning. arXiv preprint arXiv:2308.03303.

[11] Lai Z, Wu T, Fei X, et al. BERT4ST:: Fine-tuning pre-trained large
language model for wind power forecasting[J]. Energy Conversion and
Management, 2024, 307: 118331.

[12] Lin Z, Hu X, Zhang Y, et al. Splitlora: A split parameter-efficient fine-
tuning framework for large language models[J]. arXiv preprint
arXiv:2407.00952, 2024.

	2.1 Background
	2.1 Motivation
	3.1 Overall Framework
	3.2 Optimization Objective
	3.3 Training Strategy
	4.1 Experimental setup
	4.2 Dataset

