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Abstract: In this paper, a detection method based on a causal discrimination mechanism is proposed to improve the fault
identification ability of the system in the complex dynamic environment to solve the modeling problem of service fault detection
tasks in the cloud computing environment. This method explicitly models the causal dependency between multi-dimensional input
features by constructing a structured representation module and causal path extraction mechanism and then generates intermediate
representation with structural semantics for fault state discrimination. The overall architecture consists of input encoding, causal
encoder, structure selector, and unified discriminator, which can effectively capture the key interaction paths between service
components and enhance the perception ability of the fault propagation chain. In the process of structural modeling, the method
combines causal graph information and structure selection function to extract stable and interpretable features for final prediction,
which significantly enhances the robustness and transferability of the model under input perturbation and distribution change. In
order to fully verify the effectiveness of the proposed method, this paper designs multiple experimental tasks, covering the
sensitivity evaluation of multiple key variables such as the number of candidate paths, encoding dimension, noise perturbation,
etc., and compares them with representative methods in recent years. Experimental results show that the proposed method
performs well in multiple indicators such as accuracy, structural consistency, and stability, verifying the applicability and

effectiveness of causal modeling mechanisms in cloud service fault detection.
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1. Introduction

With the rapid development of digital infrastructure, cloud
computing has become a key platform for supporting various
applications and services. Its elasticity, high availability, and
on-demand scalability bring unprecedented flexibility to
enterprises and institutions[1]. However, as cloud architectures
become more complex, the underlying resource scheduling,
multi-tenant concurrent access, and coordination among
heterogeneous components exhibit increasing dynamics and
uncertainty. This makes system failures more frequent and
harder to detect. A single failure in cloud services may affect
more than one component and even trigger cascading effects at
the system level. In severe cases, it can cause large-scale
service interruptions and data loss, resulting in significant
economic and reputational damage. Therefore, accurately and
promptly detecting potential failures in cloud services is critical
to ensuring the stable operation of cloud computing systems[2].

Traditional failure detection approaches in cloud services
often rely on statistical thresholds, rule matching, or machine
learning models to identify anomalies based on monitoring
indicators. These methods can be effective for isolated
components or clear anomaly patterns. However, they lack
generalization and robustness in complex distributed systems
with highly dynamic environments. On one hand, traditional
models often fail to capture the underlying causal relationships
within systems and are prone to false positives triggered by
non-fault factors. On the other hand, failures in cloud
environments do not always manifest through a single

observable feature. They are often caused by interactions
among multiple latent factors, which are difficult to represent
using static models. As a result, relying solely on surface-level
observations is no longer sufficient to meet the growing
demand for system stability in modern cloud infrastructures[3].

In recent years, with advances in causal inference theory,
more research has focused on incorporating causal modeling
into anomaly detection. This approach aims to better
understand the driving mechanisms behind system behavior.
Causal discrimination models build causal dependencies
between variables. They enable a more accurate distinction
between true faults and superficial anomalies, even under noise
disturbances or representation shifts. This improves both
reliability and interpretability[4]. In cloud service scenarios,
where components involve complex invocation paths and
resource contention, causal modeling helps identify the root
causes of failures. It can reconstruct potential propagation
chains from multi-dimensional data, revealing the internal logic
behind failures. Introducing a causal perspective provides a
new theoretical and technical foundation for designing more
generalizable and stable fault detection algorithms.

Applying causal discrimination models to cloud failure
detection carries significant research and practical value. First,
these models break the dependency on labeled data and pattern
memorization. They maintain high recognition performance
even on unseen anomaly types. Second, they offer inherent
interpretability, providing system operators with clearer
diagnostic paths and actionable intervention suggestions. This



reduces the time needed for fault localization and recovery.
More importantly, causal modeling can effectively handle data
imbalance and observational bias, which are common in cloud
environments. It helps build a more fair and robust detection
system. By constructing causal structures among metrics,
events, and services, the approach improves model
generalization and supports downstream tasks such as root
cause analysis, autonomous recovery, and preventive
strategies[5].

With the widespread deployment of large-scale distributed
systems and multi-tenant hybrid architectures, traditional
statistical feature-based detection mechanisms can no longer
meet the dual requirements of timeliness and accuracy in cloud
failure response. Developing intelligent detection methods with
causal discrimination capabilities has become a key technical
direction to enhance cloud service availability and user
experience. This direction supports a paradigm shift from
observing anomalies to understanding failures. It also facilitates
the transformation of cloud operation from experience-driven
to mechanism-driven, and from data centralization to causal
logic. As causal learning techniques continue to evolve, their
role in cloud failure management will become increasingly
important. They are expected to serve as a foundational
component in building intelligent and autonomous cloud
infrastructure.

2. Background & Motivation

2.1 Background

In modern cloud computing systems, service components
are highly distributed and strongly interdependent. Frequent
interactions and resource sharing among services make failures
more complex and harder to localize. Different types of
abnormal behaviors may originate from the underlying
hardware, virtualization platforms, middleware, or business
logic. These sources interact with each other, creating coupled
effects that obscure the root cause of failures. Monitoring data
from a single dimension is often insufficient to capture the true
cause. In addition, frequent updates to service deployments and
continuous changes in system state introduce significant
temporal variations in runtime data. As a result, traditional
detection mechanisms based on fixed patterns are easily
disturbed and lack stability in real-world scenarios[6].

In practice, most mainstream anomaly detection methods
rely on unsupervised learning or statistical feature extraction.
Although these methods offer a degree of automation, they lack
a deep understanding of the internal relationships among
multidimensional data. Judgments based on representation bias
tend to misclassify transient resource fluctuations or non-
critical anomalies as serious faults. This leads to high false
alarms and miss rates. Moreover, current methods struggle to
model the dynamic evolution of cross-node and cross-service
anomaly chains. The resulting diagnostic view is often
fragmented, and observations of the system lack coherence.

Furthermore, in multi-tenant shared environments, implicit
conflicts frequently arise between system load fluctuations and
resource scheduling strategies. These conflicts often do not
produce obvious metric anomalies. Instead, they affect service
stability through indirect effects. Such hidden causal

relationships are often overlooked by existing monitoring
systems, leading to root cause analysis that deviates from the
real issue. In addition, data incompleteness, limited labels, and
annotation delays are common in cloud systems. These
challenges reduce the effectiveness of traditional data-driven
methods and significantly limit the applicability and scalability
of detection models.

2.2 Motivation

In highly dynamic and structurally complex cloud service
environments, existing fault detection techniques face critical
limitations in generalization and interpretability. Most
approaches work well only under specific conditions. When the
environment or business logic changes, their performance often
drops sharply. This lack of adaptability limits their
effectiveness in real-world operations. Researchers have started
to introduce structural modeling and semantic-level
understanding to maintain stable identification of abnormal
patterns, even when service behavior changes unexpectedly.
Therefore, it is urgent to explore a detection path that can
understand internal system mechanisms and support
transferability, to handle diverse failure characteristics under
complex conditions[7].

From a practical perspective, the maintenance burden of
cloud platforms continues to grow. Manual rule updates and
model retraining are costly and cannot meet the demands of
large-scale systems for low-latency and highly interpretable
automated detection. In this context, building detection
frameworks with causal discrimination ability has become an
important direction. This approach makes judgments based on
the influence between events rather than relying on isolated
anomalies. It helps reduce false alarms and improves fault
localization accuracy. The core idea is to transform the
question of why a failure occurs into a systematic reasoning
process. This enhances both the adaptability and depth of
inference, aligning with the engineering requirements of large-
scale deployment.

At the same time, in real deployments, traditional models
often rely on large amounts of labeled data. However, in
practical environments, high-quality labels are scarce. This is
especially true for rare or novel faults, which are difficult to
detect. As a result, there is an urgent need to develop a more
general model architecture that can perform anomaly detection
under weak supervision or even in unsupervised settings. By
building task-independent causal identification mechanisms, it
is possible to break the dependency on labeled data and
maintain strong robustness in complex conditions. This not
only improves the overall fault tolerance of the system but also
provides a theoretical foundation and practical path toward
more intelligent fault management.

3. Method

3.1 Overall Framework

This study constructs a causal discrimination modeling
framework for cloud service fault detection tasks, aiming to
improve the ability to identify fault behaviors in complex
environments by modeling the causal dependencies between
key variables within the system. The overall approach takes



multidimensional monitoring indicator sequences and system
event logs as inputs, first constructs a structured variable
representation, and extracts candidate causal paths based on
structural assumptions. Subsequently, the relationship between
variables is modeled by introducing a causal encoder to
generate an intermediate representation with causal semantics
to support subsequent fault discrimination and relational
reasoning. This framework not only supports the location of
abnormal behaviors in time series, but also reveals the
potential mechanism of action between variables, improving
the interpretability and generalization of the detection model
from a structural perspective. The overall model architecture is
shown in Figure 1.
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Figure 1. The overall model architecture diagram of this
algorithm

In the causal modeling layer, let the variable set be
V={X,,X,,.,Xn} , and the
G=V,e)
directed graph structure, which & represents the causal edge

set. The framework maps the original input into a causal
representation space by constructing a function family

f 1 X — Z , which is then used for predicting the fault state:

causal relationship

between the variables is represented by a

Z=f(X,.X,,..X,)

At the same time, the structural selection function g(:) is

introduced in the reasoning stage to screen and integrate the
candidate causal paths to form the final representation vector
for discrimination:

H=g(Z,G)

This mechanism enables the model to dynamically perceive
the key causal factors in the structure, thereby achieving stable
fault identification capabilities under complex system states.

3.2 Optimization Objective

In the causal discrimination framework constructed in this
study, the input consists of a multidimensional monitoring

indicator sequence {X,,X,,..., X} andasystem event log.
First, the original input is uniformly encoded to form a basic
feature vector set X =[x, X,,..., X, 1" e R™ . These input
features are processed by the structured mapping module and
projected into the potential causal representation space, thereby

establishing an initial structure diagram for subsequent
modeling. To capture the action path between variables, the

() to X to

nxn

obtain a preliminary structure candidate set S € {0,1}"" ,

framework applies the structure function f,,_

where each element s, ; represents the possibility of causal

influence of X, on X;.

Next, the candidate structure S is mapped into a high-order
causal representation vector Z € R™" through the causal

encoding module [, . (-), thatis:

causa.

Z = f;'au.cal (XB S)

This representation not only retains the contextual
information of the original input but also incorporates structural
dependency information, which facilitates accurate recognition

of downstream tasks. Subsequently, the framework maps Z
to a unified representation H € R™" through the relational
abstraction function g, () to express potential failure

modes or system behavior states in a global dimension:
H = g proj (Z )

In the causal reasoning module, based on the aggregation
operation of the reasoning path in the structure graph, the

causal decision representation C € R™ s further generated,
which is calculated as follows:

C= Z a, -z,
i=1
Where @, represents the path weight calculated by the

structure selection mechanism. This aggregation process
strengthens the role of key causal paths in the final reasoning,
enabling the model to understand and abstract potential
anomalies or failures around the causal backbone structure.

Finally, the
representation  C

Sprea )

y € R™  namely:

discriminant layer inputs the causal
into the nonlinear mapping module

and outputs the fault state prediction result

Y= S prea (€)

The prediction vector can be used for multi-category
classification or status scoring, providing the system with real-
time risk indication and fault judgment basis. The overall
process maintains structural explicitness and representation



traceability at each stage, ensuring that the model has clear data
flow and structural perception capabilities.

4. Experimental setup & Dataset

4.1 Experimental setup

All experiments in this study were conducted in a high-
performance computing environment. The system was
configured with 128 GB of memory, a 32-core CPU, and an
NVIDIA A100 GPU. The operating system was Ubuntu 22.04
based on Linux. The model was implemented using PyTorch.
All experiments were run with the same random seed to ensure
reproducibility.

The input data were uniformly preprocessed and then
divided into training, validation, and test sets with a ratio of
7:1:2. During training, early stopping was applied to prevent
overfitting. Each training iteration used mini-batch inputs, with
a batch size of 64. The optimizer was Adam, and the initial
learning rate was set to le-4.

To comprehensively evaluate the applicability and stability
of the proposed method, experiments were conducted under
various parameter settings. These included different structure
selection depths, causal encoding dimensions, and
representation aggregation strategies. All models were trained
with the same number of epochs and under identical
initialization conditions. Performance comparisons were made
using unified evaluation metrics.

The core hyperparameter settings used in the experiments
are summarized in the table. These details are provided to
ensure the method can be accurately reproduced by others.
Detailed experimental settings are presented in Table 1.

Table 1: Experimental detailed parameter settings

Configuration items Value
Batch size 64
Learning rate le-4
Encoder hidden size 256
Structure candidates 20
Aggregation method Weighted sum
Training/Validation/Test 70% / 10% / 20%
Early stopping patience 10
4.2 Dataset

This study uses the publicly available Alibaba Cluster
Trace 2018 dataset as the primary experimental data source.
The dataset was collected from real production environments
of Alibaba Cloud. It contains multi-dimensional operational
information on resource scheduling, container lifecycles, and
service state changes in large-scale distributed systems. It is
widely used in research on fault prediction and resource
optimization in cloud computing scenarios. The dataset
exceeds 400 GB in total size and provides rich traces of system
state changes and diverse patterns of abnormal behavior. It
offers a strong basis for validating causal modeling algorithms
under complex conditions.

The dataset includes millions of structured records related
to containers, machines, and services. It spans eight days and
uses a sampling interval of five seconds. Key indicators include

CPU usage, memory usage, disk I/O, service start and stop
events, container migrations, and machine reboots. Each record
contains detailed timestamps, resource usage values, and
service instance identifiers. These fields provide a complete
foundation for constructing temporal causal structures. Based
on this dataset, it is possible to model system operation and
extract potential abnormal patterns for training and evaluating
detection models.

To facilitate processing and modeling, the raw data were
standardized through several steps. These included outlier
removal, time series alignment, missing value imputation, and
variable normalization. In addition, annotated samples were
created using labels from log records that indicate container
restarts, task failures, and resource overuse events. The entire
processing workflow preserved the original structural and
temporal characteristics of the data. This provides a reliable
basis for subsequent causal modeling and discriminative
reasoning.

5. Experimental Results

In the experimental results section, the relevant results of
the comparative test are first given, and the experimental
results are shown in Table 2.

Table 2: Comparative experimental results

Method Accuracy FPR Structural
Consistency

Deeplog[8] 87.3 12.6 62.1

LogAnomaly[9] 89.1 10.2 65.3

NeuralLog[10] 90.7 9.8 70.4

CausalDetect[11] 92.8 7.4 78.9

Ours 94.5 5.9 85.6

In terms of overall accuracy, the proposed causal
discrimination model achieves the highest detection accuracy
of 94.5% in the fault detection task. This significantly
outperforms existing representative methods. The result shows
that introducing causal structure modeling can effectively
improve the model's ability to distinguish fault behaviors.
Compared with traditional approaches based on log pattern
matching or neural encoding, causal modeling captures the
underlying mechanisms between variables more deeply. It
enhances the ability to identify complex anomaly patterns,
especially in environments with highly nonlinear system states
and multivariable interference.

Regarding false positive rate (FPR), the proposed model
also demonstrates strong robustness, reaching only 5.9%,
which is the lowest among all compared methods. Traditional
models often misclassify anomalies under multi-tenant
resource fluctuations or transient abnormal states due to the
lack of structural awareness. In contrast, the causal
discrimination model identifies abnormal paths and avoids
noise that is irrelevant to actual faults. The model not only
detects fault states but also avoids classifying sporadic
fluctuations as anomalies. This is essential for maintaining the
operational stability of cloud platforms.

For the structural consistency metric, the proposed method
reaches 85.6%, which is significantly higher than CausalDetect



and other non-causal models. This indicates that the model not
only focuses on the final classification result but also
emphasizes maintaining the true structural logic among input
variables. Structural consistency reflects the model's ability to
preserve the system's operational mechanisms. A high score
shows that the method is more suitable for operation scenarios
where interpretability of internal system behavior is required. It
adds practical value in terms of model traceability and
debugging convenience.

This paper also provides a detailed analysis of how varying
the dimensionality of causal encoding influences the overall
performance of the model. The discussion focuses on the
relationship between encoding capacity and the model's ability
to capture underlying structural dependencies among input
variables. By examining different dimensional settings, the
paper explores how the richness of causal representation affects
the model's reasoning ability and generalization in complex
environments. The corresponding experimental results are
illustrated in Figure 2.
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Figure 2. Analysis of the impact of different causal encoding
dimensions on model performance

As shown in the figure, the detection accuracy of the model
increases significantly when the causal encoding dimension
rises from 64 to 256. This trend indicates that with a small
encoding dimension, the model has a limited ability to
represent causal structures. It fails to fully capture the
dependencies and underlying mechanisms among input
variables. However, as the dimension increases, the model
gains richer representation capacity. This leads to stronger
generalization and deeper reasoning in both structural modeling
and fault discrimination tasks.

When the encoding dimension reaches 256, the model
achieves its highest accuracy. This suggests that the causal
representation is most complete at this dimension, and the
structural relationships are effectively captured. The
intermediate representation space at this point balances
information density and discriminative power. It represents an
optimal structural point in the causal modeling process. This
result further confirms the positive impact of introducing causal
modeling mechanisms on fault detection in cloud services. The

improvement is especially notable in scenarios with complex
variable interactions.

However, when the encoding dimension continues to
increase to 384 and beyond, the model performance shows a
slight decline. This suggests that overly high-dimensional
representations may introduce redundant features or noise.
Such interference can affect causal path aggregation and reduce
the stability of final predictions. This phenomenon shows that
causal structure modeling is sensitive to dimensional settings. It
is necessary to find a balance between complexity and
expressiveness to ensure effective use of information.

In addition, the paper conducts a sensitivity evaluation on
how the number of candidate causal paths influences detection
accuracy. This analysis investigates the trade-off between
structural coverage and redundancy, aiming to understand how
varying the number of causal paths affects the model's ability
to capture meaningful interactions within the system. By
assessing different path quantities, the paper highlights the
importance of structural selection in maintaining effective and
focused causal reasoning. The related experimental results are
presented in Figure 3.
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Figure 3. Sensitivity evaluation of the number of candidate
causal paths on detection accuracy

As shown in the figure, the number of candidate causal
paths has a significant impact on the model's detection
accuracy. When the number of candidate paths is small, such as
between 5 and 10, the model shows lower accuracy. This
indicates that the causal modeling information is insufficient at
this stage. The structural space is limited and fails to cover
important potential variable relationships in the system. As a
result, the overall discrimination performance is affected. This
reflects that overly sparse structural awareness reduces the
ability to identify fault propagation chains in cloud service
environments.

When the number of candidate paths increases to 20, the
model reaches its highest accuracy. This suggests that, in this
range, the number of causal paths achieves a balance between
modeling capacity and redundancy control. At this point, the
structural graph covers most of the key interaction
dependencies. The model can more comprehensively extract
latent causal features for reasoning. This trend confirms the



importance of structural richness in enhancing model
discrimination. It is also one of the core mechanisms behind the
accuracy improvement observed in this study.

However, when the number of candidate paths continues to
increase to 30 and above, the accuracy begins to decline. This
indicates that too many paths introduce structural redundancy.
Non-critical paths may interfere with the reasoning process and
reduce the focus of causal feature extraction. In high-
dimensional causal graphs, redundant paths not only degrade
representation quality but may also cause the model to over-
attend to irrelevant variables. This reduces the precision of
reasoning.

Moreover, the paper introduces a disturbance experiment
designed to assess the model's ability to recognize input
structures under varying levels of noise injection. This
evaluation aims to examine how external perturbations affect
the stability and reliability of the structural perception module.
By simulating noisy conditions, the study explores the
sensitivity of causal modeling to input quality and highlights
the role of structural integrity in maintaining accurate fault
reasoning. The corresponding experimental results are
illustrated in Figure 4.
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Figure 4. Experiment on the disturbance of input structure
recognition ability by noise injection

As shown in the figure, the model's ability to recognize
input structure decreases steadily as the level of noise injection
increases. This trend indicates that the model's perception of
the causal structure among original variables is significantly
disturbed when handling noisy data. The decline becomes more
pronounced when the noise intensity exceeds 0.2. This result
reveals the sensitivity of the structural perception module to
input quality. It is one of the key factors affecting the
effectiveness of causal modeling.

When the noise level is low, in the range of 0.0 to 0.1, the
model still maintains a high structural recognition score. This
suggests that the proposed causal representation mechanism
shows robustness under mild perturbations. In this stage, the
model relies on stable causal features for reasoning. Local
noise in the input structure does not break the overall variable
dependencies. The structure preservation remains in a “stable”

region, which aligns with expectations in cloud environments
with minor resource fluctuations.

As noise increases to a moderate level, between 0.15 and
0.25, the structural score begins to decline rapidly. The model
output gradually enters a “degraded” state. This shows that
with accumulating noise, the influence of key paths or variables
becomes weakened or distorted. The model struggles to
accurately model the system behavior. This type of interference
is common in complex distributed service environments. It
reflects the model's strong dependence on structural
completeness in real applications.

When the noise level reaches a high intensity of 0.3 or
above, the structural recognition drops into an ‘“unstable”
region. The model can no longer maintain its ability to model
the causal structure of input variables. The recognition of fault
propagation paths becomes confused or disrupted. This result
further confirms the central role of structural constraints in
ensuring model robustness in causal modeling. It highlights the
need for structure-enhancing mechanisms and noise-
suppression strategies during real deployment. These are
essential for preserving reliable structural recognition under
unstable operating conditions.

6. Conclusion

This study addresses the core challenge of service failure
detection in cloud computing environments by proposing a
detection algorithm framework based on causal discrimination
modeling. The method explicitly models the causal
relationships among multi-dimensional input variables. It
enables accurate recognition of fault states and structural
awareness. This approach overcomes the limitations of
traditional methods, which often rely heavily on predefined
anomaly patterns and lack generalization. The model focuses
not only on semantic-level representation learning but also
emphasizes structural consistency and interpretability of system
behavior. This significantly enhances its adaptability and
stability in complex environments.

The proposed method integrates structural representation
generation, causal path construction, and discriminative
encoding into a unified modeling process. This forms a
complete structure-aware pathway that allows the model to
maintain effective fault chain modeling under information
perturbation and data drift. Experimental results show
significant improvements in accuracy, structural consistency,
and robustness. These findings demonstrate the potential of the
causal modeling paradigm for intelligent operations in cloud
services. In addition, sensitivity experiments reveal the model's
dependence on key structural hyperparameters. This provides
theoretical and empirical support for the stable deployment of
causal discrimination mechanisms in engineering systems.

Methodologically, this study achieves a paradigm shift
from feature awareness to structural awareness. The model
focuses on learning mechanism-level logic rather than fitting
surface-level patterns. This aligns with the operational
characteristics of cloud computing systems, which are highly
dynamic, strongly coupled, and heterogeneous. Therefore, the
work contributes directly to improving fault detection
performance. It also provides practical value for integrating



causal reasoning into intelligent operations. The method offers
a new path for building detection models that are more
interpretable, more transferable, and more stable. It also
presents a feasible reference for introducing causal modeling
into related fields.

For future work, several directions are worth exploring.
One direction is to further enhance the model's ability to
integrate multi-source heterogeneous data. This would improve
the adaptability of causal structures in complex data
environments. Another direction is to couple causal
discrimination mechanisms with modules for root cause
localization and anomaly prediction. This would support a
more comprehensive intelligent fault management system for
cloud computing. As automatic causal structure learning
continues to advance, how to construct graphs directly from
raw observational data and use them to drive efficient detection
will also become an important research topic. Overall, this
study provides a systematic framework, methodology, and
empirical foundation for applying causal reasoning in
intelligent cloud operations. It holds strong theoretical value
and engineering potential.
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