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Abstract: This paper addresses the challenges of long-term stock price prediction, including complex temporal structures,
diverse information granularities, and cross-scale dependencies. It proposes a prediction framework based on a multi-granularity
hybrid attention mechanism. The method incorporates a Granularity-Aware Fusion module to deeply integrate short-term local
fluctuations with long-term trend features. This enhances the model's ability to represent structural characteristics across different
temporal scales. On this basis, a Cross-Level Hybrid Attention mechanism is further introduced. By employing an inter-layer
attention coupling strategy, the model builds contextual interactions across multiple semantic layers. This improves its capacity to
perceive dynamic structural changes and potential trend signals. The model is implemented using a modular deep network
architecture, which ensures strong scalability and adaptability. It maintains stable prediction performance under different time
window settings, feature dimension configurations, and data perturbations. Comprehensive comparative experiments and ablation
studies are conducted across multiple evaluation metrics. The results validate the proposed method's advantages in terms of
prediction accuracy, robustness, and structural awareness. In addition, visualization results reveal the model's ability to fit real
stock price trajectories. These findings demonstrate the effectiveness of the proposed approach for complex financial time series
modeling tasks.
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1. Introduction
In today's highly dynamic and complex financial markets,

stock prices, as key indicators of economic activity, continue to
attract extensive attention from both academia and
industry[1,2]. The fluctuations in stock prices are influenced by
a wide range of interacting factors, including macroeconomic
indicators, industry trends, company fundamentals, and market
sentiment. These dynamics exhibit strong nonlinearity,
temporal dependency, and multi-scale characteristics. Such
complexity not only increases the difficulty of accurate
prediction but also raises the bar for traditional modeling
techniques. Especially in long-term forecasting tasks, models
are expected to not only understand historical trends but also
capture long-range patterns and structural shifts, thereby
providing forward-looking support for asset allocation, risk
management, and trading decisions[3].

With the advancement of artificial intelligence, deep
learning has shown remarkable advantages in time series
modeling, emerging as a central approach in stock prediction.
Compared to traditional statistical methods and conventional
machine learning algorithms, deep neural networks are
inherently more capable of modeling high-dimensional,
complex, and nonlinear relationships. However, many existing
models still face significant limitations, particularly in
capturing long-term dependencies and integrating multi-
granularity information. On one hand, many models focus only
on short-term local patterns and fail to capture long-term trends
and structural changes[4]. On the other hand, most mainstream

architectures adopt a single-granularity representation, which
restricts their ability to integrate features across different
temporal scales, often resulting in information loss and
inference bias in long-term forecasting[5,6].

The integration of multi-granularity information is regarded
as a critical approach to enhance predictive performance. In
financial time series, short-term volatility and long-term trends
coexist and interact, forming a multi-level temporal structure.
Joint modeling of features across different granularities
enhances the model's capacity to identify cyclical patterns,
abrupt events, and turning points. In this context, the multi-
granularity hybrid attention mechanism has gained increasing
attention as a structural design strategy. By assigning
differentiated attention weights across layers, this mechanism
enables the model to dynamically focus on the most relevant
time segments and feature dimensions for the current prediction
task. It allows the model to more comprehensively capture and
utilize the semantic and structural information in time series
data[7].

At the same time, financial markets are characterized by
high instability and heterogeneity, often exhibiting significant
pattern drift and semantic shifts across different periods. This
requires models to possess not only strong representation
learning abilities but also sufficient adaptability and robustness.
The introduction of a multi-granularity hybrid attention
mechanism can help mitigate overfitting to specific
granularities or local patterns. By integrating both global and
local contextual information, it enhances the model's ability to
learn long-term complex patterns. Moreover, attention



mechanisms offer strong interpretability, which contributes to
improving the transparency and controllability of financial
models, providing a foundation for understanding model
behavior and optimizing investment strategies[8,9].

In conclusion, the development of a long-term stock price
prediction algorithm based on a multi-granularity hybrid
attention mechanism holds both theoretical and practical
significance. Theoretically, it advances the field of time series
modeling in financial scenarios. Practically, it supports the
construction of more robust, interpretable, and forward-looking
financial forecasting systems. This research addresses core
challenges in time series modeling by integrating multi-scale
feature modeling, structural perception mechanisms, and deep
representation learning. It aims to improve model performance
in long-term forecasting tasks and expand the application
boundaries of deep learning in financial intelligence.

2. Related work
2.1 Attention Mechanism

The attention mechanism was originally proposed as a
modeling strategy to simulate the human visual focus process.
It has demonstrated strong capabilities in feature extraction and
information filtering when dealing with complex inputs. Its
core idea lies in learning trainable weight parameters that allow
the model to automatically identify and focus on the most
relevant parts of the input sequence for the current task[10,11].
This helps avoid redundant information and interference from
noise. In time series modeling, the attention mechanism is
widely used to assess the importance of temporal segments. It
effectively mitigates issues such as gradient vanishing or
memory loss in traditional sequential models, thereby
significantly improving model expressiveness and stability.

In financial time series forecasting, the introduction of
attention mechanisms provides models with greater flexibility
and adaptability. It enables the model to automatically identify
the most relevant time windows and feature dimensions from
large volumes of historical data. Unlike traditional sliding
window methods or fixed weighting strategies, the attention
mechanism dynamically adjusts its focus based on changes in
the input[12]. This adaptive modeling approach not only
enhances generalization but also improves the model's
responsiveness to nonlinear patterns such as sudden events and
structural changes. Furthermore, attention weights offer a
certain level of interpretability, which helps improve the
transparency and trustworthiness of model outputs in high-risk
financial environments[13].

As modeling demands continue to expand, attention
mechanisms have also evolved into various structural forms.
Variants such as unidirectional, bidirectional, and multi-head
attention exhibit specific advantages in different tasks. In
particular, multi-head attention has shown unique strengths in
modeling representations across multiple subspaces. By
computing several attention heads in parallel, the model can
capture contextual associations from multiple perspectives.
This improves its ability to handle diverse information and
structural complexity[14,15]. Such mechanisms are especially
important for financial data, which are highly heterogeneous

and time-varying. They help describe nonlinear couplings and
multi-level interactions among factors more precisely.

To better address the complexity of long-term forecasting
tasks, recent research has explored combining attention
mechanisms with multi-scale modeling strategies. These
approaches aim to model sequential information across
different temporal granularities in parallel[16]. They use
attention mechanisms to fuse and reconstruct information
across scales. This improves the model's ability to detect trends,
cyclic patterns, and local anomalies. In financial time series,
market signals are often embedded in multi-level dynamics.
Simple single-scale models are not sufficient to extract their
latent structures[17]. Therefore, modeling strategies based on
multi-granularity hybrid attention not only provide a technical
pathway for capturing multi-dimensional dependencies but also
serve as key components in building efficient and robust
forecasting models.

2.2 Stock Price Prediction
Stock price prediction has long been one of the core

research tasks in the financial field. In essence, it is a complex
time series modeling problem[18]. Due to the openness and
uncertainty of financial markets, stock prices are often affected
by a combination of internal and external factors. These include
company fundamentals, macroeconomic fluctuations, industry
news, market sentiment, and policy adjustments. The nonlinear
relationships among these factors make stock price movements
highly complex and unstable. Traditional forecasting methods,
such as linear regression, moving averages, and autoregressive
models, offer theoretical foundations and interpretability.
However, they show significant limitations when dealing with
high-dimensional, heterogeneous, noisy, and structurally
shifting financial data. These models struggle to capture the
dynamic evolution over long time spans[19].

In recent years, with the advancement of computing power
and the rise of data-driven paradigms, deep learning has
become a mainstream approach for stock prediction tasks[20].
Models such as recurrent neural networks, long short-term
memory networks, and their variants can capture short-term
dependencies in the time domain of stock prices. These models
have achieved promising results in various forecasting tasks.
However, they still fall short in modeling long-term
dependencies and handling multi-scale pattern variations. They
often fail to fully capture hidden trend signals and macro
behavior patterns in financial markets, which limits prediction
stability and generalization. In addition, deep models usually
rely on large-scale training data and are sensitive to outliers and
noise. Enhancing their robustness and interpretability remains a
major challenge[21].

With the progress of research, multimodal fusion, and
structure-enhanced modeling have become important directions
for improving stock prediction performance. On one hand,
beyond basic time series data such as price and volume, more
studies are integrating unstructured data sources such as news
texts, social media, and corporate announcements. This
enriches the semantic space of model inputs. On the other hand,
advanced techniques like graph structures, attention
mechanisms, and multi-scale modeling help bridge semantic
gaps between information layers. These techniques also



enhance the model's ability to understand potential causal
relations and long-term structural evolution. Multi-granularity
modeling has gradually attracted attention in this context. It
allows the model to describe the layered dependencies between
local fluctuations and long-term trends across different time
scales, thereby improving overall modeling capability[22].

In general, stock price prediction is moving from single-
dimensional and static modeling to a deeper stage involving
multi-dimensional integration, structural awareness, and
dynamic adaptation. Research on how to incorporate multi-
granularity temporal features, dynamic attention mechanisms,
and deep semantic fusion strategies into modeling has become
a major focus in the field. This not only complements
traditional time series modeling frameworks but also offers
new perspectives to improve the interpretability, stability, and
generalization of predictions. In the context of high financial
risk sensitivity and frequent data changes, building a predictive
model that can perceive multi-scale structures and adaptively
adjust its modeling focus will be key to achieving further
breakthroughs in this field.

3. Model Architecture

This study proposes a Multi-Granularity Hybrid Attention
Modeling (MG-HAM) framework for long-term stock price
forecasting, which aims to effectively characterize the
dynamic dependencies and structural patterns across scales in
financial time series. The core innovations of this method are
reflected in two aspects: first, a granularity-aware fusion
mechanism (GAF) is designed, which can simultaneously
model the key features of time series from two dimensions:
local short-term fluctuations and global long-term trends,
thereby enhancing the model's ability to understand
heterogeneous time structures; second, a cross-level hybrid
attention module (CLHA) is introduced, which dynamically
allocates attention weights between different granularities and
different semantic layers to achieve multi-level perception and
adaptive focusing of complex market signals, effectively
improving the prediction model's ability to capture time series
changes and structural evolution. The overall structure of this
method has strong generalization, expressiveness, and
adaptability, providing a new path for time series modeling in
highly volatile financial environments. The detailed structure
of the proposed model is illustrated in Figure 1.

Figure 1.Multi-Granularity Hybrid Attention Modeling model architecture diagram

3.1 Granularity-Aware Fusion
The Granularity-Aware Fusion module aims to achieve

structured integration of multi-time scale features and improve
the model's ability to express temporal patterns by jointly
modeling short-term and long-term coding representations.
Specifically, this module is designed to capture local
fluctuations and global trends simultaneously by aggregating
temporal information from different granularities into a
unified representation space. It enables the model to
dynamically balance the influence of short-range and long-
range dependencies, allowing for more comprehensive
temporal feature extraction. The architectural design of this
module ensures that distinct temporal scales are effectively
aligned and fused through learnable transformation layers and

adaptive weighting strategies. Its detailed structure is
illustrated in Figure 2.

Figure 2. GAF module architecture



Considering the input sequence },...,,{ 21 TxxxX  ,
we first send it to the short-term encoder and the long-term
encoder respectively to obtain two sets of feature
representations dT

s RH  and dTRH  '
1 , where

TT ' represents the time step after the long-term feature is
downsampled, and d is the feature dimension. This operation
extracts local fine-grained fluctuations and global trend
structures respectively, providing basic representations for
subsequent fusion operations.

In order to achieve structural alignment of multi-
granularity features, a time scale mapping function is
introduced to align representations at different time resolutions
to a unified context space. Let the mapping function be

dTdT RR  ': , and the long-term features are expanded
by linear interpolation or parameterized convolution to obtain

)(~
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to construct a joint representation dT
f RH 2 ,

which can be calculated as:
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Where ]1,0[ is a trainable gating coefficient,

which is used to dynamically balance the contributions of
different granularities.

In order to further enhance the recognition and
adaptability of the fused features, we introduce a context-
aware gating mechanism to apply nonlinear selective filtering
to the joint features. This mechanism is based on a gating
function dTdT RRG  2: , defined as follows:
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g
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activation functions. The final output fusion is expressed as:
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Where  represents element-by-element multiplication
and zz bW , is the linear transformation parameter. This
structure effectively retains significant information and
suppresses redundant features.

3.2 Cross-Level Hybrid Attention
The Cross-Level Hybrid Attention module is designed to

model the interactive relationships between different semantic
levels and time scales and enhance the model's ability to
dynamically aggregate multi-granular features. Its module
architecture is shown in Figure 3.

Figure 3. CLHA module architecture

Based on the joint representation dTRZ  obtained by
Granularity-Aware Fusion, we designed a multi-level hybrid
attention stacking structure, which enables the model to have
the ability of cross-granularity perception and selective
information extraction while maintaining temporal consistency.
Each layer of attention units combines local dependencies and
global context signals to transmit multi-scale representations
between different levels, thereby improving the hierarchy and
expressiveness of feature abstraction.

In the specific implementation, each layer of the hybrid
attention module consists of a self-attention mechanism and a
gated feedforward module. Given an input representation
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Where )()()( ,, lll VKQ is the query, key, and value

matrix obtained by linear transformation, and kd is the
scaling factor used to control gradient stability. This attention
mechanism can dynamically learn the information association
between different time steps and capture important long-term
dependency patterns in the sequence.

In order to enhance the interaction between the semantics
of different granularities, we further introduce a cross-layer
gating mechanism to weightedly fuse the attention results of
different levels. Assuming that the output of the current layer
is )(~ lZ , its fusion with the previous layer )1(~ lZ is
expressed as:

)1()()()()( )1(  lllll ZZZ 
)(l is a learnable gating parameter that controls the flow

ratio of information between layers. This inter-layer fusion
method allows the model to capture high-level semantic
representations while retaining underlying detail information,



forming a semantically coherent and structurally rich
intermediate representation.

In addition, to improve the modeling ability of different
attention heads for multi-granular structures, we adopt a multi-
head attention mechanism and introduce task-related semantic
projections between heads. Suppose there are h attention heads,
and the output of the i-th head is ihead , then the overall
output is:

O
h WHeadHeadConcatZMultiHead ),...,()( 1

Where dhdO RW  is the output transformation
matrix, which is used to unify the dimensions of different
heads. Finally, all the level outputs are stacked and
compressed through a nonlinear projection function to obtain
the final representation:

)( )(
p

L
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Where L is the total number of layers, pW and pb are

projection layer parameters, and  represents the activation
function (such as GELU or ReLU). The module as a whole
builds a cross-scale, cross-level, and cross-semantic dynamic
modeling framework, which strengthens the model's ability to
understand and represent complex financial time series
structures.

4. Model Evaluation
4.1 Dataset

The dataset used in this study covers 25 years of
historical stock market data for Amazon, spanning from 2000
to 2025. It includes key financial indicators such as daily
opening price, highest price, lowest price, closing price,
adjusted closing price, and trading volume. This daily
granularity dataset comprehensively records the company's
market performance across different economic cycles. It
reflects the dynamic impact of macroeconomic fluctuations,
industry changes, and corporate strategy shifts on stock prices.
This provides a rich historical foundation for building high-
precision time series models.

The dataset exhibits typical non-stationary characteristics
and is subject to strong noise interference. Price fluctuations
show clear patterns of phase shifts, sudden changes, and long-
term trends. The statistical properties vary significantly across
different periods. In addition, the data contains multiple cycles
of bull and bear markets, the effects of financial crises, the
influence of technological innovation, and policy interventions.
These complex factors place higher demands on modeling
strategies. The trading volume data also provides insights into
the underlying relationship between market behavior and price
movement. It serves as an important reference for constructing
multi-dimensional representations and auxiliary features.

Structurally, the dataset maintains a standardized and
consistent format, making it suitable for various time series
modeling tasks. It supports both traditional supervised
forecasting and deep learning methods under unsupervised or

semi-supervised frameworks. Due to its long temporal
coverage and high information density, this dataset provides
an ideal empirical foundation for exploring multi-granularity
modeling, multi-scale fusion, and trend reasoning in long-term
forecasting scenarios. It holds significant value for evaluating
model generalization and robustness in long-horizon time
series modeling.

4.2 Experimental setup
In the experimental setup, we used Amazon's daily stock

data from 2000 to 2025 as the primary data source and
conducted modeling for long-term price prediction. To ensure
the stability and learnability of model inputs, the features
including opening price, highest price, lowest price, and
trading volume were normalized. The closing price was
selected as the target variable. The data were split into training,
validation, and testing sets based on chronological order. This
strictly follows the time sequence to avoid future information
leakage and ensures the rationality and rigor of the prediction
task.

During model training, a sliding window approach was
used to construct input sequences. A fixed-length historical
window was set to capture temporal dependencies, and a
prediction horizon was defined to support multi-step future
price forecasting. An adaptive optimizer was employed for
parameter updates. The mean squared error (MSE) was used
as the main loss function. An early stopping mechanism was
applied during training to prevent overfitting. To improve
model stability and generalization, dropout and normalization
techniques were applied to key modules.

For the experimental platform, all models were
implemented in a deep learning environment with GPU
acceleration. The entire network architecture and training
pipeline were built using the PyTorch framework. To ensure
reproducibility and fairness, all models were tested under
consistent data splits, preprocessing procedures, and training
epochs. Multiple mainstream performance metrics were used
to quantitatively evaluate prediction accuracy and robustness
to fluctuations, providing a comprehensive assessment of
model performance in long-term time series modeling tasks.

4.3 Experimental Results

1) Comparative experimental results

This paper first conducts a comparative experiment, and the
experimental results are shown in Table 1.

Table 1: Comparative experimental results

Method MSE MAE R2

LSTM[23] 0.0148 0.0893 0.872
1D-CNN[24] 0.0132 0.0837 0.884
GRU[25] 0.0126 0.0812 0.891
Transformer[26] 0.0111 0.0789 0.902
ITransformer[27] 0.0094 0.0725 0.916
TimeMixer[28] 0.0091 0.0706 0.921
Ours 0.0073 0.0658 0.937



From the overall trend, the experimental results clearly
show that as the model structure evolves from traditional
recurrent neural networks to more advanced temporal modeling
architectures, performance on MSE, MAE, and R ² metrics
improves progressively. This performance gain highlights the
importance of capturing long-range dependencies, temporal
structures, and cross-scale information in modeling complex
financial time series. For long-term stock price prediction tasks,
in particular, model generalization and structural awareness are
key factors affecting predictive accuracy.

When compared with traditional methods, LSTM and GRU
show some capacity for temporal modeling but remain limited
in handling long-term dependencies and extracting multi-
granularity structures. This results in relatively higher
prediction errors. Although 1D-CNN performs well in
extracting local patterns, it cannot model across time scales,
leading to limited improvement on the R ² metric. These
findings further confirm the limitations of single-granularity
modeling when dealing with complex temporal patterns in
financial markets.

With the introduction of Transformer-based models,
prediction performance improves significantly. The global
attention mechanism in Transformer enhances the model's
ability to represent long-range dependencies. iTransformer and
TimeMixer further incorporate enhanced temporal modeling
capabilities into their structures, which leads to notable
improvements in error metrics. These enhancements
demonstrate the effectiveness of attention mechanisms and
hybrid temporal architectures in adapting to long-term
forecasting within a multi-granularity modeling framework.

The proposed method in this study achieves the best results
across all three evaluation metrics. This indicates superior
performance in structural fusion and cross-granularity
modeling for long-term financial sequence forecasting. The
designed Granularity-Aware Fusion module and Cross-Level
Hybrid Attention module allow the model to flexibly capture
the interaction between short-term local fluctuations and long-
term global trends. This significantly improves both prediction
accuracy and stability. These results validate the effectiveness
of the proposed method in dynamic structure modeling and
multi-granularity information integration, offering a new
perspective on addressing non-stationarity and structural drift
in long-horizon financial forecasting.

2) Ablation Experiment Results

This paper also gives the ablation experiment results, which
are shown in Table 2. These results are used to evaluate the
contribution of each core component within the proposed
model framework. By systematically removing or modifying
individual modules, the study analyzes how different
architectural elements affect the overall model performance.
The ablation settings are carefully designed to ensure fair
comparisons and to isolate the specific impact of each
mechanism, such as multi-granularity fusion and hierarchical
attention. This provides deeper insights into the role and
effectiveness of each structural element in the model design.

Table 2: Ablation Experiment Results

Method MSE MAE R2

Baseline 0.0106 0.0752 0.905
+GAF 0.0091 0.0703 0.918
+CLHA 0.0085 0.0684 0.926
Ours 0.0073 0.0658 0.937

The results show that under the baseline model without any
structural enhancement mechanism, the model exhibits only
basic temporal modeling capability. Its performance across all
three metrics remains relatively limited. This indicates that in
the context of financial time series tasks involving multiple
scales and dependencies, the lack of structural awareness and
granularity fusion leads to insufficient capture of long-term
trends and fine-grained variations. In particular, the R² metric
still shows significant room for improvement.

After integrating the Granularity-Aware Fusion (GAF)
module, the model performance improves noticeably, with
reductions in both MSE and MAE. This change suggests that
incorporating multi-granularity representations and fusing
short-term and long-term features enhances the model's ability
to perceive temporal signals at different scales. It effectively
alleviates the modeling conflict between trend shifts and local
fluctuations in financial sequences. The GAF module improves
the model's overall capacity for multi-scale temporal dynamics.

With the additional introduction of the Cross-Level Hybrid
Attention (CLHA) module, the model shows enhanced
capability in modeling interactions across hierarchical levels.
The R ² metric increases significantly. This suggests that the
module helps capture deep structural dependencies and
semantic couplings within the sequence. It is particularly
effective for handling structural drift and complex relationships
in financial markets. The selective focus ability provided by the
attention mechanism improves both the discriminability and
robustness of feature representations.

The final model, which integrates both GAF and CLHA
modules, achieves the best overall performance. This
demonstrates the synergy between the two mechanisms. The
combination of multi-granularity modeling and cross-level
structural awareness enhances the model's representational
power. It also improves its stability and generalization ability in
long-term prediction. The experimental results confirm that
incorporating structural awareness and granularity fusion into
time series modeling is an effective strategy for addressing
long-horizon forecasting challenges in the financial domain.

3) The impact of different time window lengths on
prediction performance

This paper also gives the impact of different time window
lengths on prediction performance, and the experimental
results are shown in Figure 4. The analysis involves varying
the length of historical input sequences to examine how the
model responds to changes in temporal context. This setting is
intended to investigate the role of time window size as a key
hyperparameter in capturing short-term fluctuations and long-
term dependencies. By comparing model behavior under



different window configurations, the study aims to reveal the
relationship between input granularity and the model's ability

to learn meaningful temporal patterns in financial time series
data.

Figure 4. The impact of different time window lengths on prediction performance

As shown in the figure, the model's prediction performance
exhibits clear fluctuations in both MSE and R² as the time
window length changes. This phenomenon indicates that the
time window, as a core hyperparameter in modeling, has a
direct impact on the ability to capture patterns in long-term
stock price sequences. Shorter windows are more sensitive to
local fluctuations but may fail to construct stable trend
representations due to insufficient historical context, leading to
higher prediction errors.

When the time window increases from 10 to 30, MSE
gradually decreases while R² increases accordingly. This
suggests that the model benefits from richer historical
information within this range. The multi-granularity modeling
mechanism can thus better exploit its fusion capability. The
improvement also reflects that the Granularity-Aware Fusion
module achieves the best coupling effect between long-term
and short-term features in mid-range sequences. It effectively
enhances both modeling ability and performance stability.

However, when the window size extends to 40 and 50,
MSE begins to rise and R² slightly declines. This indicates that
longer inputs may introduce redundant or noisy information.
As a result, the Cross-Level Hybrid Attention mechanism
struggles to maintain focus in high-dimensional space. The
model becomes more responsive to irrelevant features,
weakening its ability to detect critical structural changes. This
suggests that relying solely on longer historical data does not
necessarily lead to better prediction. A balanced design
between window length and model structure is essential.

Overall, this experiment validates the influence of time
window settings on the performance of the proposed multi-
granularity structure-aware model. Within a reasonable range,
more historical information enhances the advantage of
hierarchical attention mechanisms. However, exceeding this
range may cause feature compression to fail due to information
redundancy. Therefore, dynamically selecting an appropriate
window length is crucial for improving model performance in
complex financial scenarios.

4) The impact of hidden layer dimension changes on
model performance

This paper further gives the impact of hidden layer
dimension changes on model performance, and the
experimental results are shown in Figure 5. The analysis is
conducted by adjusting the dimensionality of the hidden layers
to observe how the model's representation capacity and
learning ability respond to variations in feature space size.
This setting helps explore the balance between model
complexity and expressive power, as well as the potential
influence of overparameterization or underfitting. The
comparison provides a clearer understanding of how hidden
layer dimensionality affects temporal modeling in the context
of long-term stock price prediction.



Figure 5. The impact of hidden layer dimension changes on model performance

This experiment focuses on the impact of hidden layer
dimensions on model performance. The results show that
different feature space sizes lead to significant differences in
the effectiveness of multi-granularity structural modeling.
When the dimensionality is low, the model's representation
capacity is limited. It fails to extract complex cross-scale
features adequately, resulting in higher MSE and lower R ² .
This suggests that excessive compression harms the model's
ability to capture long-term dependencies and semantic
interactions, often causing feature loss.

As the hidden layer dimension increases, the model's
learning capacity improves. Specifically, at 128 dimensions,
MSE reaches its lowest value and R² its highest. This indicates
that this dimensionality achieves optimal information
representation and structural alignment under the current
architecture. The trend confirms that the Cross-Level Hybrid
Attention module performs better in high-dimensional space,
where the multi-head attention mechanism can focus on finer-
grained features. At the same time, it forms a positive synergy
with the dynamic feature fusion in the Granularity-Aware
Fusion module.

However, when the dimension is further increased to 192
and 224, model performance degrades. MSE rises and R ²
declines. This suggests that an overly large hidden space
introduces redundant features or noise, disrupting the semantic
structure. The overfitting trend implies that high-dimensional
representations without effective feature selection can interfere
with the attention module's ability to model selectively. As a
result, both prediction stability and generalization performance
are negatively affected.

Therefore, this experiment shows that hidden layer
dimensionality must be carefully balanced in multi-granularity
temporal modeling. The model should have sufficient capacity
to represent complex patterns, enabling it to capture both fine-
grained details and high-level temporal structures across
different time scales. At the same time, it is necessary to avoid
introducing excessive redundancy, which can lead to noise
accumulation, increased computational cost, and degraded
feature selectivity. Maintaining an appropriate representation
dimensionality not only supports stable learning but also
preserves the model's ability to focus on relevant structural
signals. This balance is essential for achieving reliable
performance and strong structural awareness in dynamic
financial prediction scenarios.

5) Comparison of actual value and predicted value

This paper also gives a comparison between the true value
and the predicted value, and the experimental results are shown
in Figure 6. The comparison is conducted by aligning the
predicted stock prices with the corresponding ground truth over
a continuous time horizon. This setting is designed to assess the
model's ability to track the underlying trends and directional
changes in the financial time series.

By visualizing the predicted and actual trajectories, the
analysis provides an intuitive understanding of how well the
model captures dynamic behaviors in real market conditions.
This also allows for the observation of the model's
responsiveness to local fluctuations and its consistency in
following broader temporal patterns across different stages of
the input sequence.



Figure 6. Comparison of actual value and predicted value

This figure presents the fitting results between the model
predictions and the actual closing prices of the stock. From the
overall trend, the model successfully captures both upward and
downward movements across multiple periods. This indicates
that the proposed multi-granularity modeling mechanism is
effective in identifying key structural patterns in financial time
series. Especially during phases of significant price changes,
the predicted curve remains aligned with the trend of the actual
values, demonstrating strong dynamic response capabilities.

It is worth noting that in certain local regions, the predicted
curve appears smoother than the ground truth. This is
particularly evident near points of sharp price fluctuation. Such
behavior may be related to the model's conservative strategy
when handling high-frequency variations. Although the
Granularity-Aware Fusion module can effectively integrate
long-term trends and short-term changes, it may exhibit mean-
reversion tendencies under the influence of anomalies or
sudden events. This often leads to delayed responses, which is
a common phenomenon in financial modeling and reflects the
balance between model stability and sensitivity.

In the later part of the series, the model maintains an
accurate representation of the overall upward trend. It also
adjusts the prediction direction promptly around multiple
turning points. This reflects the significant advantage of the
Cross-Level Hybrid Attention module in multi-level semantic
modeling and contextual focus. By dynamically selecting
features of different granularities, the model becomes more
adaptable to structural shifts and trend reversals, which
enhances its ability to depict the trajectory of price changes.

Overall, the experiment demonstrates that the proposed
method can achieve stable prediction in long-term stock price
modeling tasks. The model maintains consistent trend
alignment while also showing a degree of structural sensitivity.
Although there are slight deviations at points of extreme
fluctuation, the overall fitting performance remains strong. This
highlights the practical value of multi-granularity fusion and
structure-aware attention mechanisms in financial time series
forecasting.

5. Conclusion
This paper focuses on the task of long-term stock price

prediction and proposes a deep modeling framework based on a
multi-granularity hybrid attention mechanism. The aim is to
address the limitations of traditional models in capturing long-
range dependencies, cross-scale structures, and local
fluctuations. By introducing the Granularity-Aware Fusion
module, the model can perceive both short-term local
variations and long-term global trends. This enhances its ability
to represent features across multiple temporal scales. In parallel,
the Cross-Level Hybrid Attention module connects semantic
interactions between different granularity layers, improving the
model's capacity to detect complex structures and evolving
patterns in financial time series.

Experimental results show that the proposed method
outperforms mainstream baseline models across multiple
evaluation metrics, demonstrating strong stability and
generalization. The model maintains robust performance under
different input structures, hyperparameter settings, and data
sampling frequencies, indicating high adaptability in practical
applications. In fitting tests using real stock price trajectories,
the method not only preserves trend consistency but also shows
strong structural sensitivity at key inflection points. These
characteristics enable the model to extract potential decision
signals from complex financial time series, making it
promising for use in risk warning, strategy development, and
asset allocation.

This study contributes to both methodology and empirical
analysis. It explores multi-granularity modeling and structural
attention mechanisms in depth and systematically examines the
model's behavior under varying parameter settings and
environmental perturbations. The findings enhance the current
understanding of structure awareness and scale coupling in
financial time series modeling. The results suggest that relying
solely on single-scale inputs or shallow attention mechanisms
is insufficient for long-horizon forecasting in complex financial
systems. Instead, a structured and hierarchical fusion approach
provides a stronger foundation for expressive and decision-
oriented modeling.



Future research can be extended in two directions. First,
multi-source heterogeneous information such as graph
structures and event evolution can be introduced to build
higher-level frameworks for modeling financial causality. This
may improve the model's ability to recognize nonlinear
feedback mechanisms in complex economic systems. Second,
integrating explainable learning with decision support systems
could enable risk assessment and behavior tracing of model
outputs, further enhancing the practical value and
trustworthiness of the model in financial regulation, investment
assistance, and intelligent trading.
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