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Abstract: This paper addresses the challenges of multi-source heterogeneous data fusion and multi-indicator joint modeling in
macroeconomic forecasting. It proposes a model framework based on multi-domain sample representation and joint prediction
mechanisms. The goal is to improve both the prediction accuracy and structural modeling capability for key economic indicators
such as CPI and GDP. The proposed method introduces a Domain-aware Representation Compression module. It encodes
structured economic data and unstructured text data in a unified way. This enables efficient compression and alignment of multi-
domain features. In parallel, a Joint Indicator Alignment mechanism is designed. Under a multi-task learning framework, it
performs trend alignment and feature decoupling on the prediction outputs. This enhances the dynamic relationship modeling
between different economic indicators. To validate the effectiveness of the proposed approach, a joint sample set is constructed. It
integrates multi-domain information, including structural economic variables, news texts, and policy indicators. Multiple
comparative experiments and ablation studies are conducted. The experimental results show that the proposed method
outperforms mainstream models across various macroeconomic forecasting tasks. It demonstrates clear advantages in accuracy,
robustness, and generalization. In particular, it maintains stable performance in cross-country transfer and multi-step forecasting
scenarios. These findings confirm the model's adaptability and effectiveness in complex economic systems.
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1. Introduction
Amid frequent fluctuations in the global economic cycle

and rising geopolitical uncertainties, accurate forecasting of
macroeconomic indicators has become a critical foundation for
national governance, monetary policy formulation, and capital
market regulation. Among these indicators, the Consumer Price
Index (CPI) and Gross Domestic Product (GDP) are central.
They reflect inflation levels and economic growth, and they
serve as anchors for fiscal and monetary policy decisions. In
the era of financial globalization and digital economy
integration, the nonlinear nature of economic operations and
the dynamic relationships among variables have grown
increasingly complex. Traditional statistical models are no
longer sufficient to capture the underlying mechanisms and
cross-domain effects in economic activities[1,2].

With rapid advancements in data acquisition and artificial
intelligence, macroeconomic modeling is shifting. It now
moves beyond single-dimensional time series forecasting
toward integration of multi-source and heterogeneous
information[3]. Economic indicators are influenced by complex
time-lag relationships and interactions across domains. These
include financial market fluctuations, changes in industrial
structures, policy signals, and the spread of public sentiment.
Relying solely on a single data domain often leads to
suboptimal models. These models fail to capture the coupled
features among multidimensional economic signals. Therefore,

building a joint forecasting framework that integrates multi-
domain information and enhances sample representation is
crucial for accurate modeling of macroeconomic indicators[4].

Artificial intelligence methods, especially deep learning,
have shown great potential in solving high-dimensional
nonlinear problems. Cutting-edge approaches such as multi-
domain learning, multimodal fusion, and self-supervised
representation learning have been widely applied in fields like
healthcare, finance, and transportation. In macroeconomic
forecasting, integrating data from multiple domains— such as
financial markets, commodity prices, search behavior, and
policy sentiment — into a unified feature space for joint
modeling of CPI and GDP can overcome the limitations of
single-indicator models. This approach provides a more
comprehensive understanding of economic systems. It also
emphasizes the co-evolution of data, offering more forward-
looking and interpretable insights for policymakers and market
participants[5].

Economic systems are highly dynamic and regionally
heterogeneous. Economic drivers and policy sensitivities vary
significantly across countries and regions. Joint modeling based
on multi-domain samples can capture these heterogeneous
signals. This enhances the model’s adaptability and
transferability under economic fluctuations. It is particularly
valuable for building robust forecasting systems that address
cross-cycle and cross-regional economic shocks. Moreover,
jointly modeling CPI and GDP reveals the structural link



between price levels and output capacity. This deepens the
understanding of the dual-objective policy framework that
balances growth and inflation from a macroeconomic
regulation perspective[6].

Against this backdrop, developing a CPI and GDP joint
forecasting model that integrates multi-domain sample
information and offers deep representation capabilities
addresses real-world demands for modeling precision and
stability in support of high-quality economic development. It
also aligns with the growing integration of artificial intelligence
into economic research. By breaking the isolation between
indicators at the modeling level and improving information
integration, this research provides a theoretical and
methodological basis for building intelligent decision-support
platforms tailored to complex economic systems. Hence, this
study holds both theoretical significance and practical value in
terms of methodological innovation and real-world economic
application.

2. Related work
2.1 Multi-domain sample representation

In macroeconomic modeling, a single data source often
fails to capture the complexity and multi-layered nature of real
economic activities. Traditional forecasting models rely
mainly on structured time series data, such as quarterly GDP
or monthly CPI changes[7,8]. These models are stable and
interpretable. However, they often respond slowly to sudden
events, policy shifts, or irrational market behaviors. To
improve sensitivity to dynamic features of the economic
system, recent studies have increasingly introduced multi-
domain information. They attempt to integrate signals from
financial markets, industrial performance, commodity prices,
and international trade data. This helps build richer and more
forward-looking forecasting frameworks[9].

Beyond structured economic and financial data,
unstructured information such as news articles, policy
announcements, online public opinion, and social media
sentiment also holds unique value. These data capture
economic expectations and market behavior in real time. They
are nonlinear, unstable, and high-dimensional. They reflect
how the market responds to economic events and anticipates
future trends. By incorporating natural language processing
into economic forecasting systems, researchers can model
implicit variables like policy context, market sentiment, and
macroeconomic risk signals. This complements the static
nature of traditional variables and enhances model flexibility
and responsiveness[10,11].

The core challenge of multi-domain sample
representation lies in the heterogeneity of the data. Different
domains vary in dimensionality, representation, and temporal
alignment[12]. Modeling high-order relationships between
structured and unstructured data within a unified feature space
has become a key direction. Current approaches use shared
encoders, multimodal attention mechanisms, or graph-based
structures to integrate domain-specific information. These
methods aim to extract latent patterns relevant to economic
decision-making. Building a unified multi-domain

representation framework can improve the prediction
efficiency and generalization of models for key indicators such
as CPI and GDP. It also promotes the development of
intelligent, data-driven, and cross-domain economic
forecasting methods.

2.2 Regression prediction model
Regression-based forecasting models are among the most

fundamental and widely used methods in macroeconomic
indicator modeling[13]. Traditional approaches, such as linear
regression, autoregressive models, and vector autoregression,
have been extensively applied in early economic research.
These methods are favored for their clear structure and strong
parameter interpretability. However, they rely heavily on linear
assumptions[14,15]. As a result, they struggle to capture the
complex nonlinear relationships and dynamic interactions
among economic variables. Their predictive accuracy and
stability often decline significantly when facing abrupt
economic changes, structural breaks, or policy shocks.

With the development of machine learning, nonlinear
regression models have been gradually introduced into
macroeconomic forecasting. These include decision tree
regressors, ensemble learning models, and neural network
regressors[16]. By learning features automatically and
approximating complex functions flexibly, these models
overcome the limitations of traditional linear methods. They
perform more robustly when dealing with high-dimensional,
noisy data and intricate variable correlations[17,18]. In
multivariable and multi-input settings, nonlinear regression
models can effectively integrate multi-source information. This
significantly improves the accuracy and responsiveness of
predictions for key indicators such as CPI and GDP.

Despite their performance advantages, nonlinear regression
models still face several challenges. These include sensitivity
to data scale and quality, the risk of overfitting due to
redundant features, and a lack of economic interpretability in
the model outputs[19]. In practical applications, designing
regression models with generalization ability, controllable
structure, and support for multi-task joint modeling is crucial.
This is key to advancing macroeconomic forecasting from
simple model fitting to strategic decision support. Therefore,
there is still considerable room for development in regression
forecasting models. Integrating them with techniques such as
deep representation learning and multi-domain fusion shows
new potential for future research.

3. Method
This study proposes a joint forecasting model for CPI and

GDP based on multi-domain sample representation. The goal
is to integrate heterogeneous data sources and improve the
prediction accuracy and generalization of macroeconomic
indicators. First, a Domain-aware Representation Compression
(DRC) module is constructed. It uses a multi-channel encoder
to model structured economic data and unstructured text data
in a unified way. This allows the model to capture hidden
associations and economic drivers across different data
sources. Second, a Joint Indicator Alignment (JIA) mechanism
is introduced. During training, it dynamically adjusts task



weights and shares features between the CPI and GDP
prediction tasks. This helps to capture their co-evolution
patterns during economic cycles. Through this dual innovation,
the proposed method achieves coordinated optimization at

both the data fusion layer and the task prediction layer. It
enhances the model's adaptability and interpretability in multi-
task and multi-source input settings. The model architecture is
shown in Figure 1.

Figure 1. Overall model architecture diagram

3.1 Domain-aware Representation Compression
In order to effectively integrate the potential information

of multi-domain heterogeneous data, this study constructed a
Domain-aware Representation Compression (DRC) module to
solve the inconsistency problem between structured and
unstructured data in feature dimensions, distribution forms and
expressions. Its module architecture is shown in Figure 2.

Figure 2. DRC module architecture
Assume that the input data consists of two parts, the

structured data domain is represented as dn
s RX  , and the

unstructured data is represented as dn
u RX  after

embedding. We first use two independent encoders to learn the
representation and obtain the corresponding intermediate
feature representation )(),( uuusss XfHXfH  , where

sf and uf are the deep feature extraction functions of the
structured and unstructured domains.

To achieve cross-domain feature compression and
alignment, the DRC module introduces a domain-aware
attention mechanism to measure the importance and relevance
of features between different domains. We define a shared
fusion mapping function )( to construct a unified
representation space Z. The fused representation is calculated
using the following formula:

)( uuss HHZ  
Among them, s and u represent the attention

weights of the structured and unstructured domains
respectively, satisfying 1 us  , which is dynamically
generated through a softmax gating network:

)];[(softmax],[ gusgss bHHW 

gW and gb are learnable parameters, and the

semicolon “;” represents the feature concatenation operation.
In order to further improve the discriminative ability of

the compressed representation for prediction tasks, the DRC
module introduces a reconstruction alignment objective during
the training process to ensure that the compressed



representation retains the key information of each domain. We
construct two reconstructors sg and ug respectively to
reconstruct the fused representation Z in the domain, and the
loss function is defined as follows:

22 ||)(||||)(|| ZgXZgXL uussrec 
This loss term forces the compressed representation to

restore the original multi-domain information as much as
possible while keeping the dimension compact, thereby
achieving semantically preserved dimensionality reduction.

Finally, to enhance the discriminability of the model for
future time step predictions, we input the compressed
representation Z into the joint prediction module and introduce
multi-task supervision signals. The joint loss function consists
of the prediction error and the reconstruction error, and is as
follows:

rec
GDP
pred

CPI
predtotal LLLL  

 is the importance coefficient for adjusting the
reconstruction loss, and GDP

pred
CPI
pred LL 、 represents the

prediction loss for CPI and GDP respectively. This design
ensures that multi-domain feature compression is not only
aimed at structural simplification, but also serves the accuracy
and stability of multi-task economic indicator prediction.

3.2 Joint Indicator Alignment
In order to fully explore the dynamic correlation between

macroeconomic indicators, this study designed a Joint
Indicator Alignment (JIA) module to provide structural
support for the joint modeling of CPI and GDP. This module
is based on the idea of ​ ​ multi-task learning and
simultaneously learns the prediction mapping functions of two
types of targets through shared representation and
differentiated supervision mechanisms. Its module architecture
is shown in Figure 3.

Figure 3. JIA module architecture
Assuming the compressed fusion is represented by

zdnRZ  , the forecasts for CPI and GDP are defined as:
)(Zfy CPICPI 


, )(Zfy GPDGDP 


Where CPIf and GPDf represent the specific
regression forecast heads for CPI and GDP respectively.

In order to model the co-evolution characteristics of two
economic indicators in the time series dimension, the JIA
module introduces a coupling loss function to explicitly
constrain the structural similarity of the two types of forecast
outputs. The coupling loss is defined as:

2|||| GDPtCPItalign yyL  

t represents the difference operation of the time series,
which is used to capture the first-order changes in economic
trends. By aligning the predicted change trends, the model will
be more inclined to learn the structural synergy patterns
between indicators during training.

In addition, to prevent the shared feature space from
excessively interfering with the differences between tasks, JIA
further introduces a task-specific decoupling term to maintain
the expression independence of the two types of prediction
targets. The form of this term is as follows:

2|||| FGDP
T
CPIdecouple WWL 

Where CPIW , GDPW is the parameter matrix of the

prediction head, and F||||  represents the Frobenius norm.
The purpose is to minimize the linear correlation between the
two task mapping spaces, thereby achieving a balance between
sharing and independence.

Finally, the total loss function of the JIA module
integrates the basic prediction loss, multi-task alignment loss
and structural decoupling regularization term, and is in the
form of:

decouplealignGDPCPIJIA LLLLL  

Where  , is a hyperparameter that controls the
weight of structural alignment and decoupling. By jointly
optimizing the above objective function, the JIA module can
coordinately capture the common driving factors and
differential dynamics of CPI and GDP in the time series,
thereby achieving a deeper modeling of the internal structure
of the economic system.

4. Experimental Results
4.1 Dataset

The dataset used in this study is sourced from the
publicly available OECD macroeconomic indicator database.
It covers key economic variables across multiple countries and
regions. We select CPI (Consumer Price Index) and GDP
(Gross Domestic Product) as the core target variables. The
data are quarterly and span from the first quarter of 2000 to the
fourth quarter of 2023. This ensures full coverage of economic
cycles and major policy intervention periods.

To construct multi-domain samples, we integrate
structured economic data from the OECD financial market
module, including interest rates, unemployment rates, and
industrial production indices. We also include unstructured
text signals extracted from external sources, such as news



sentiment indices and policy uncertainty measures. These
heterogeneous data are standardized and time-aligned. They
are then combined with the target variables to support feature
extraction and relational modeling in a multi-domain setting.

During data preprocessing, we exclude regional samples
with severe missing values. Only countries with complete CPI
and GDP records are retained. This results in a cross-regional
and cross-temporal economic sample set. The dataset has
strong temporal structure, high coupling among variables, and
significant time lags between indicators. These characteristics
provide a solid foundation for evaluating the adaptability and
generalization of the joint forecasting model in real
macroeconomic contexts.

4.2 Experimental setup
To validate the effectiveness of the proposed model in

macroeconomic forecasting, experiments are conducted on a
multi-domain sample dataset constructed from OECD data.
All input features are normalized before being fed into the
model. The target variables are the quarterly growth rates of
CPI and GDP. The input window consists of the past four time
steps (one year), and the model predicts the change at the next
time step. The data are split into 70 percent for training, 15
percent for validation, and 15 percent for testing. The time
order is preserved to simulate real-world forecasting scenarios.

Model training is performed on a deep learning server
equipped with an NVIDIA GPU. The optimizer is Adam. The
loss function is a weighted combination of prediction error,
alignment term, and decoupling term. Model hyperparameters
are selected through grid search on the validation set. Early
stopping is applied during training to prevent overfitting. All
experiments are repeated five times to ensure stable
performance. The main training configuration is shown in
Table 1.

Table 1: Training Configuration
Parameter name Setting Value
Enter the time window length 4 (quarterly)
Forecast time span 1 (quarterly)
Batch Size 32
Learning Rate 0.001
Optimizer Adam
Epochs 100
Early Stopping patience=10
Weight decay (L2) 1e-5
Loss function weight  =0.3 (reconstruction),  =0.5

(alignment),  =0.1 (decoupling)

4.3 Experimental Results

1) Comparative experimental results

First, this paper gives the comparative experimental results
with other models. The experimental results are shown in Table
2.

Table 2: Comparative experimental results
Method MSE MAE RMSE R2

1DCNN[20] 0.024 0.117 0.155 0.823

LSTM[21] 0.021 0.108 0.145 0.846
BILSTM[22] 0.020 0.106 0.141 0.852
GRU[23] 0.019 0.102 0.138 0.860
CNN+LSTM[24] 0.018 0.099 0.134 0.867
Transformer[25] 0.016 0.093 0.126 0.881
Ours 0.012 0.085 0.110 0.906

The experimental results show significant differences in
performance across models on the joint forecasting task of
macroeconomic indicators. The baseline 1D CNN model
performs the worst due to its shallow structure and limited
ability to model temporal information. It achieves an MSE of
0.024 and an R² of only 0.823. This indicates clear limitations
in capturing the dynamic relationships among economic
variables. In contrast, recurrent neural network architectures
such as LSTM, BiLSTM, and GRU demonstrate steady
improvements. These models have a natural advantage in
handling time dependencies.

Furthermore, CNN+LSTM and Transformer models show
strong capabilities in feature extraction and sequence modeling.
In particular, the Transformer benefits from a global attention
mechanism. It better captures long-range dependencies
between CPI and GDP under multi-task inputs. It achieves an
R² of 0.881 and reduces RMSE to 0.126. These results suggest
that such models can simulate the complex evolution of
macroeconomic systems with reasonable accuracy. However,
they still lack structural designs specifically tailored to handle
heterogeneous multi-domain data. This limits their final
performance.

The proposed model in this study introduces two core
mechanisms: Domain-aware Representation Compression
(DRC) and Joint Indicator Alignment (JIA). With these
components, it achieves the best results across all evaluation
metrics. The MSE drops to 0.012, MAE is only 0.085, RMSE
reaches 0.110, and R² improves to 0.906. These results
demonstrate the model's clear advantage in both prediction
accuracy and stability. They also suggest that integrating multi-
domain representation compression and task alignment can
enhance the model’s understanding of co-movement patterns
among economic variables. Overall, the experimental findings
confirm the superiority of the proposed method in complex
economic forecasting tasks. It shows stronger generalization
and interpretability when dealing with multi-source inputs and
dual-indicator outputs. Compared with traditional deep learning
models, the proposed approach reflects a deeper sensitivity to
the dynamic nature of economic systems through its
architectural design. This highlights its strong potential for
practical application and broader adoption.

2) Hyperparameter sensitivity experiment results

Furthermore, this paper gives the experimental results of
hyperparameter sensitivity. First, the experimental results of
learning rate are given as shown in Table 3.

Table 3: Hyperparameter sensitivity experiment
results(Learning Rate)

Learning Rate MSE MAE RMSE R2



0.004 0.019 0.105 0.138 0.861
0.003 0.016 0.096 0.126 0.880
0.002 0.014 0.089 0.118 0.894
0.001 0.012 0.085 0.110 0.906

The results of the learning rate sensitivity experiment show
that model performance varies significantly across different
learning rate settings. A clear pattern is observed. When the
learning rate is relatively high (e.g., 0.004), both MSE and
MAE remain at higher levels. The R² is 0.861. This suggests
that training may suffer from oscillation or incomplete
convergence, which limits prediction accuracy.

As the learning rate decreases gradually, model
performance improves. Especially at the 0.003 and 0.002 levels,
MSE and RMSE decrease steadily, and R² increases
consistently. This indicates smoother training and better
learning of the mapping between input features and target
variables. These results also confirm that smaller learning rates
are more favorable for convergence in complex multi-task
models.

When the learning rate is set to 0.001, the model achieves
optimal results on all evaluation metrics. MSE drops to 0.012,
MAE reaches 0.085, and R² rises to 0.906. This suggests that
0.001 strikes a good balance between convergence speed and
optimization precision. Compared to other settings, it better
activates the model’s expressive capacity. This is especially
important for handling the complex representation space
resulting from the integration of DRC and JIA modules. In
summary, learning rate has a significant impact on model
performance. Proper tuning can greatly enhance prediction
accuracy and stability. The learning rate of 0.001 is optimal for
the current architecture. It provides a strong foundation for
model generalization and stability. It also ensures effective
coordination of multi-domain feature compression and task
alignment mechanisms.

This paper also gives the experimental results of the
optimizer, as shown in Table 4.

Table 4: Hyperparameter sensitivity experiment
results(Optimizer)

Optimizer MSE MAE RMSE R2

AdaGrad 0.018 0.101 0.134 0.868

SGD 0.021 0.108 0.145 0.847
AdamW 0.014 0.091 0.118 0.892
Adam 0.012 0.085 0.110 0.906

The results of the optimizer sensitivity experiment show
that different optimizers have a significant impact on model
performance in macroeconomic forecasting tasks. When using
the SGD optimizer, the model achieves an MSE of 0.021 and
an MAE of 0.108, with an R² of only 0.847. This indicates that
basic gradient descent methods face challenges in high-
dimensional, multi-domain, and joint modeling settings. These
include slow convergence and a tendency to get stuck in local
minima, which limits their suitability for optimizing complex
network structures.

In comparison, AdaGrad performs better than SGD due to
its adaptive learning rate mechanism. However, it suffers from
rapid learning rate decay in the later stages of training, which
limits further performance improvement. Although its MAE is
slightly lower than that of SGD, its RMSE and R² still lag
behind. This suggests limitations in capturing global trends and
long-term dependencies.

AdamW improves prediction accuracy by combining
adaptive gradient updates with weight decay. The model
reaches an MSE of 0.014 and an R² of 0.892. This shows
strong convergence stability and good generalization. AdamW
achieves a balanced trade-off between controlling model
complexity and preserving expressive capacity. It is well suited
for scenarios requiring moderate regularization.

Finally, the Adam optimizer yields the best results across
all metrics. It achieves the lowest MSE of 0.012 and the highest
R² of 0.906. This demonstrates its clear advantage in
dynamically adjusting both the direction and magnitude of
gradients. It adapts well to the complex coupling between DRC
and JIA modules in multi-task learning. These results further
confirm Adam's high adaptability and robustness in deep multi-
module economic modeling.

3) The impact of different multi-domain feature
combinations on prediction performance

This paper further gives the impact of different multi-
domain feature combinations on prediction performance, and
the experimental results are shown in Figure 4.



Figure 4. The impact of different multi-domain feature combinations on prediction performance

The experimental results show that different combinations
of multi-domain features have a significant impact on model
performance. When using only economic and news data
(Economic + News), both MSE and RMSE remain high. This
indicates that relying solely on market or media information is
not sufficient for accurate prediction of macroeconomic
variables. While such features can reflect certain trend changes,
they lack support from deeper policy context and economic
expectations.

When policy text features are added (Economic + Policy),
the model shows noticeable improvements across all metrics.
The MSE and R ² become more stable. Policy data reflect
government actions and macro-level regulation signals. These
help the model understand the long-term trends of GDP and
CPI. As a result, this combination offers advantages in
capturing global driving factors.

After introducing sentiment features (Economic +
Sentiment), MAE and RMSE continue to decline. This shows
that market sentiment adds value for short-term prediction of
economic variables. These unstructured text features reflect
micro-level behavioral signals. They improve the model ’ s
sensitivity and responsiveness, especially under high-frequency
fluctuations.

When all three types of features are combined (All
Combined), the model achieves its best overall performance
across all evaluation metrics. Specifically, it reaches the lowest
values for MSE and MAE, and the highest R ² , indicating a
clear improvement in prediction accuracy and model fit. This
suggests that integrating economic data, policy texts, and
sentiment signals allows the model to capture both short-term
fluctuations and long-term economic trends more effectively.
The strong results demonstrate that joint modeling of multi-
domain information fully leverages the complementary
strengths of each data type. By enriching the feature space with
diverse signals, the model is able to construct more
comprehensive and informative representations. This leads to
improved generalization and better adaptability to complex
macroeconomic patterns. These findings validate the proposed
model's ability to manage heterogeneous, multi-source data and

underscore the importance of multi-domain fusion strategies in
enhancing forecasting performance in macroeconomic
applications.

4) Loss function changes with epoch

Furthermore, the graph illustrating how the loss function
changes over training epochs is provided, as shown in Figure 5.
This visual representation offers a clear view of the model’s
convergence behavior during the training process.

By observing the curve, readers can better understand the
dynamics of the optimization process, including how quickly
the model reduces error and reaches a stable state. This also
helps to evaluate the overall training effectiveness and the
stability of the model under the designed architecture.

Figure 5. Image of loss function changing with epoch

The trend of the loss function shows that the model
converges well during training. The prediction loss decreases
rapidly within the first 20 epochs. This indicates that the model
effectively extracts information relevant to CPI and GDP
forecasting from the fused multi-domain features. It further
confirms the effectiveness of the DRC module in compressing
high-dimensional inputs while retaining key features. The
alignment loss shows a slower but steady decline throughout
training. This suggests that the Joint Indicator Alignment



mechanism gradually guides the model to learn the co-
evolution relationship between CPI and GDP. By enforcing
trend alignment, this mechanism imposes structural constraints
on the output sequences. It helps the model capture the
underlying coupling between macroeconomic variables.

The decoupling loss fluctuates slightly at the beginning of
training and then slowly decreases. This reflects the gradual
effect of the task decoupling mechanism in learning separable
feature spaces. It ensures that the model preserves task-specific
representations while learning shared features. This helps
reduce redundancy and improves prediction robustness. The
total loss shows a consistent and steady downward trend. This
indicates that under multi-objective optimization, the model
balances prediction accuracy, task alignment, and feature
separation effectively. These results validate the rational design
of the DRC and JIA modules. They provide both structural and
convergence guarantees for joint macroeconomic modeling
under multi-domain inputs.

5) Experimental results on generalization ability
evaluation of multi-country macro data migration

Next, this paper also presents the experimental results
evaluating the model’s generalization ability when applied to
macroeconomic data from multiple countries, as shown in
Figure 6. These results are used to assess how well the
proposed model can adapt to different regional economic
structures under the same predictive framework. By examining
the model’s performance across various national datasets, the
evaluation highlights its capacity to handle structural shifts,
regional policy differences, and varying data distributions. This
provides important evidence of the model’s robustness and
transferability in cross-country scenarios, further supporting its
practical value in global macroeconomic forecasting tasks.

Figure 6. Experimental results on generalization ability evaluation of multi-country macro data migration

The figure shows that the model exhibits varying degrees of
transferability across different countries' macroeconomic data.
This reflects the adaptability of multi-domain features in cross-
regional applications. In the U.S. transfer experiment, the
prediction error decreases steadily over time. This indicates
that the proposed model can extract stable economic signals
from fused features that generalize well in this region. It also
suggests a high level of structural consistency between U.S.
data and the model’s training data.

In contrast, the results for Germany show greater
fluctuations, especially in the early time steps. These may be
related to policy adjustments or short-term market disturbances
within the economic data. While the overall error trend
decreases, the model remains sensitive to local volatility. This
indicates ongoing adaptation to regional distribution
differences and highlights the need for further optimization of
adversarial feature alignment.

The transfer performance in Japan is relatively strong. The
prediction error drops quickly and remains low. This suggests
that the model achieves efficient feature transfer in this region.

Given the stability of Japan’s economic structure and policy
continuity, this result confirms that the DRC module
effectively preserves stable driving factors during multi-domain
compression. It also shows that the model can capture shared
features across national economic indicators to a certain extent.

The transfer curve for Canada displays some oscillation and
a slower decline. This suggests that structural changes or noise
in the economic variables may exist in this region, making
model adaptation more complex. This phenomenon
underscores the importance of building joint forecasting
models with regional adaptation capabilities in multi-country
settings. It also confirms the critical role of the Joint Indicator
Alignment module in enhancing cross-domain modeling
robustness.

6) Experimental results on generalization ability
evaluation of multi-country macro data migration



Finally, this paper also gives an experiment on the
adaptability of the model to different prediction step sizes, and
the experimental results are shown in Figure 7.

Figure 7. Experiments on the adaptability of the model to
different prediction step sizes

The figure shows that the model’s performance varies
significantly under different prediction step sizes. A clear trend
is observed. As the step size increases from 1 to 5, error metrics
such as MSE, MAE, and RMSE rise steadily. This indicates
that in long-term forecasting, error accumulation becomes
more pronounced. Such a pattern is common in
macroeconomic modeling. It reflects the weakening
dependence of future economic states on historical inputs. It
also confirms the increased uncertainty in long-horizon
predictions.

In particular, the 1-step prediction task yields the best
results across all metrics. The R² approaches 0.91. This
suggests that the DRC and JIA modules are highly effective in
short-term forecasting. They fully utilize multi-domain features
and support task coordination. In this case, the model can make
accurate predictions with minimal information drift. This
confirms its reliability in stable, short-term forecasting
scenarios.

However, when the prediction step extends to 3 or more,
the errors increase significantly. RMSE, in particular, shows
nonlinear growth. This suggests that the model faces dual
challenges in long-sequence reasoning: feature degradation and
misleading inputs. Although R² remains relatively high, its
downward trend shows that the model’s fitting ability weakens.
This places greater demands on temporal modeling for the joint
prediction of CPI and GDP. Overall, the results indicate that
the model adapts well to different step sizes. However, in mid-
and long-term forecasting, it still requires improved capacity to
capture long-range dependencies. These findings define the
model’s application boundaries in tasks such as economic trend
forecasting and policy simulation. They also point toward
future directions, such as incorporating Transformer-based
memory mechanisms or multi-scale temporal modeling
strategies.

5. Conclusion
This paper addresses key challenges in macroeconomic

forecasting and proposes a novel framework that integrates
multi-domain sample representation with task-coordinated

modeling. The aim is to improve both prediction accuracy and
generalization for critical indicators such as CPI and GDP. To
handle the fusion of structured and unstructured data, a
Domain-aware Representation Compression (DRC) module is
designed. It enables unified encoding and information
compression of heterogeneous data sources. In addition, the
Joint Indicator Alignment (JIA) mechanism is introduced. By
leveraging task alignment and decoupling strategies, it
enhances the structural modeling of the underlying economic
connections between CPI and GDP. Experimental results show
that the proposed method outperforms baseline models across
multiple metrics, demonstrating strong robustness and
adaptability under multi-task and multi-source conditions.

This study provides both theoretical innovation in algorithm
design and significant practical value. The proposed framework
offers a technical path for building high-quality
macroeconomic forecasting models. It is particularly applicable
to key scenarios such as financial market analysis, policy
evaluation, and inflation trend prediction, which heavily rely on
economic indicator forecasting. By jointly modeling multi-
domain information, the framework significantly improves the
model's sensitivity to changes in macro variables. It offers a
forward-looking decision support tool for governments,
research institutions, and financial organizations.

Moreover, cross-country transfer experiments validate the
model’s ability to adapt to different regional economic contexts.
This provides a practical foundation for international economic
forecasting and global market analysis. The step size sensitivity
experiment reveals the model’s boundaries in handling mid-
and long-term forecasting tasks. These findings offer insights
for future structural improvements in modeling long-term
economic fluctuations. An in-depth analysis of loss function
dynamics further explains the optimization behaviors of
different modules, supporting interpretable modeling. Future
research can extend the model’s application to more
macroeconomic indicators, heterogeneous spatiotemporal data,
and event-driven economic forecasting. Graph neural networks,
cross-modal attention mechanisms, or large language models
may be introduced as extension modules to improve the
modeling of complex economic structures and semantic-driven
factors. As economic data become more real-time and diverse,
building a unified forecasting framework for multi-domain,
multi-task, and multi-temporal settings will be a key direction
in intelligent economic research. This study offers both
theoretical foundations and engineering insights for future
work along this path.
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