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Abstract: This paper addresses the highly dynamic access patterns and complex temporal dependencies in microservice
architectures. It proposes a prediction method based on the Transformer architecture. The goal is to improve the modeling and
forecasting accuracy of request traffic in microservice systems. The method builds a multi-layer Transformer network with
positional encoding and multi-head attention. It enables efficient modeling of historical access sequences. Service embedding is
incorporated to enhance the model's understanding of different service invocation behaviors. In model design, the paper considers
a fusion strategy for multi-scale temporal features. This helps extract access patterns at different granularities. Service semantic
information is also introduced into the input. These designs improve the model's ability to adapt to service heterogeneity and
dynamic fluctuations. In addition, a series of experiments are conducted to systematically evaluate the effects of time window
selection, service embedding, input noise disturbance, and multi-scale modeling on prediction performance. The results
demonstrate the proposed method's superiority in accuracy, robustness, and stability. The model consistently outperforms existing
representative methods across several mainstream evaluation metrics. It captures both access trends and sudden fluctuations more
precisely. This provides reliable data support for intelligent management and resource scheduling in microservice systems.
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1. Introduction
In the era of rapid digitalization and intelligent system

development, microservice architecture has become a widely
adopted design pattern for large-scale distributed systems[1].
As business scales continue to grow and system components
become increasingly complex, the interactions among
microservices are becoming more frequent. The dynamic and
uncertain nature of service access has also significantly
increased. Accurate prediction of microservice access volume
can improve resource scheduling efficiency and help prevent
system bottlenecks and performance degradation. This holds
both practical value and research significance[2].

The variation in microservice access volume is influenced
by multiple factors. These include user behavior fluctuations,
changes in business scenarios, and network conditions. As a
result, access data often shows strong temporal characteristics
and nonlinear patterns. Traditional statistical models perform
poorly when handling such data. They struggle to capture
complex long-term dependencies and hidden feature
correlations. Therefore, there is a growing need for models that
can effectively utilize temporal information and have strong
nonlinear modeling capabilities[3].

With the rapid development of deep learning, the
Transformer architecture, especially attention-based
mechanisms, has shown excellent performance in natural
language processing. This has led to increasing interest in
applying it to time series forecasting tasks. The Transformer

model uses multi-head self-attention to capture long-range
dependencies in sequences. This provides unique advantages in
modeling complex time series. Applying this model to
microservice access prediction has the potential to overcome
the limitations of existing methods and improve both accuracy
and stability[4].

In microservice architectures, service access frequencies
vary significantly. There are also complex interdependencies
among services. A single prediction method often fails to adapt
to these varied service behaviors. Transformer-based models
not only have strong sequence modeling capabilities but also
offer a modular design. This makes them well-suited for
deployment and scaling in distributed systems. These features
make Transformer-based approaches highly promising for
microservice access prediction, both theoretically and
practically[5].

This study focuses on predicting microservice access
volume using Transformer-based architectures. It aims to
explore the advantages of this method in handling high-
dimensional, dynamic, and complex time series data. The goal
is to support practical deployment in modern distributed
systems. By modeling access patterns more accurately, it is
possible to achieve precise traffic forecasting. This can support
key functions such as resource allocation, load balancing, and
elastic scaling. It contributes to intelligent system management
and service quality improvement. It also lays a solid foundation
for more efficient cloud and edge computing architectures in
the future.



2. Related work
Early studies in microservice access prediction mainly

focused on traditional time series models. These methods
typically relied on statistical tools such as Autoregressive
Moving Average (ARMA) and Exponential Smoothing (ETS).
They performed short-term forecasting by applying stationarity
processing and lag-term analysis to historical access data.
These models work reasonably well for sequences with clear
periodicity and small fluctuations[6]. However, in microservice
architectures, traffic volume is often bursty and highly non-
stationary. Traditional models struggle to respond effectively to
sudden changes and nonlinear trends. This significantly limits
their prediction accuracy.

To address the variability in access patterns, researchers
have explored machine learning approaches for predicting
microservice access volume. Methods based on Support Vector
Regression, Decision Trees, and Random Forests use statistical
features of traffic and external contextual information, such as
time and holidays, as input. These models can capture
nonlinear relationships and improve performance to some
extent[7]. However, they often suffer from high feature
engineering costs and limited ability to extract hidden temporal
dependencies. When dealing with long sequences that rely on
distant historical data, their performance tends to degrade.

In recent years, deep learning has provided new solutions
for time series forecasting tasks. Recurrent Neural Networks
(RNNs) and their variants, including Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU), can
capture short-term and mid-term dependencies using memory
mechanisms. However, they still face challenges such as
gradient vanishing and explosion when processing long
sequences. These models are also structurally limited in terms
of parallel computing and training efficiency. This makes them
less suitable for fast iteration and deployment in large-scale
microservice environments[8].

Attention-based models have emerged as a research focus
in this context. Through self-attention mechanisms, these
models can establish direct connections between any two
positions in a sequence. This greatly enhances their ability to
capture long-term dependencies. They also offer inherent
advantages in parallel computation. With continued
architectural improvements, such as multi-head attention and
multi-layer encoder-decoder designs, these models have shown
excellent performance in natural language processing, image
recognition, and time series prediction. Applying these
techniques to microservice access forecasting can better extract
hidden patterns from access sequences. It also improves
scalability and real-time performance in complex distributed
systems. This provides more accurate predictive support for
microservice management.

3. Method
This study adopts a time series prediction approach based

on the Transformer architecture to effectively model the
dynamic fluctuations in microservice access volumes. The
Transformer model is built upon the self-attention mechanism,

which enables the network to capture long-range dependencies
within the data by computing the relationships between all
time points in the input sequence. This mechanism allows the
model to weigh the relevance of each time step when
generating predictions, thereby enhancing its ability to
understand complex temporal structures. The architecture of
the Transformer facilitates parallel computation and flexible
representation learning, making it well-suited for high-
frequency, irregular, and heterogeneous service request
patterns commonly observed in microservice systems. The
detailed structure of the proposed model is illustrated in Figure
1.

Figure 1. Overall model architecture diagram
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then the time series information is added through the position
encoding TP to form the final input representation:
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Among them, the position code tP usually adopts the
combination of sine and cosine functions to maintain the
model's sensitivity to time order.

In the encoding layer, the model uses a multi-head self-
attention mechanism to process different subspace information
of the input sequence in parallel. For each attention head, after
calculating the linear transformation of the query (Q), key (K),
and value (V) matrices, the attention output is:
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Where kd is the dimension of the key vector, which is
used for scaling to avoid gradient explosion. Multi-head
attention concatenates the results of multiple independent
attention heads and then linearly transforms them, expressed
as:

O
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This mechanism enables the model to focus on the
dependency characteristics between historical data from
multiple perspectives.

In the decoder part of the Transformer, masking is used
to ensure that the prediction at the current moment depends
only on the current and previous historical information. The
decoder input includes the prediction result embedding of the
previous time step, which is processed interactively with the
encoder output to form a context-enhanced representation.
Finally, after processing by the feedforward neural network
module, the access value 1Tx


at the next moment is

predicted, which can be expressed as:

),...,,( 211 TT zzzfx 


Where f represents the nonlinear mapping function of

the entire Transformer network, with a parameter set of  ,
which learns the temporal dependency pattern of the access
sequence.

In order to optimize the prediction effect, the objective
function is to minimize the prediction error. The commonly
used loss function is the mean square error (MSE), which is
defined as follows:
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This loss function measures the average deviation
between the actual number of visits and the predicted value
and guides the model to iteratively update parameters. The
entire method framework is based on Transformer, combining
time position encoding and multi-head attention mechanism to
build an efficient prediction model suitable for microservice
scenarios.

4. Experimental Results
4.1 Dataset

This study uses the open-source microservice log dataset
"Azure Functions Traces Dataset" released by Microsoft. The
dataset originates from a real cloud function platform and
records detailed information on millions of function
invocations. It has been widely used in cloud service
performance analysis and workload modeling research. The
dataset includes invocation records from numerous
microservice instances. It contains multiple dimensions such
as timestamps, response times, function names, associated

applications, and resource consumption. These provide a rich
foundation for studying microservice access patterns.

The dataset exhibits strong temporal characteristics and
service heterogeneity. It accurately reflects the dynamic
patterns of request volume over time in microservice systems.
Request behaviors show clear periodicity and fluctuating
peaks and troughs. There are also sudden traffic bursts. These
patterns make the dataset challenging for modeling. In
addition, services differ significantly in access frequency and
invocation paths. This makes the dataset suitable for
evaluating the generalization and robustness of forecasting
algorithms.

During data preprocessing, the original logs were
aggregated using a time window approach to support model
training and prediction. The number of function calls was
counted at the minute level to generate uniform time series
data. Core functions with high activity were retained after
filtering. Outliers were smoothed to improve data quality and
model training stability. The processed dataset enables
effective modeling of microservice access patterns and
supports deeper analysis of multi-service traffic trends.

4.2 Experimental Results

This paper first conducts a comparative experiment, and the
experimental results are shown in Table 1.

Table1: Comparative experimental results

Method MSE MAE R2

Informer[9] 0.0278 0.1192 0.921
Autoformer[10] 0.0253 0.1134 0.937
FEDformer[11] 0.0221 0.1057 0.947
Ours 0.0186 0.0963 0.958

The experimental results show significant performance
differences among various models in the task of microservice
access volume prediction. Overall, Transformer-based models
outperform traditional time series forecasting methods.
Informer, Autoformer, and FEDformer are representative
models in recent time series forecasting research. These models
perform well across MSE, MAE, and R ² metrics. This
indicates that attention-based architectures have a natural
advantage in capturing long-term dependencies and nonlinear
patterns in microservice access data. Compared to early
recurrent neural network models, they also show improved
parallel computing ability and modeling efficiency. This makes
them more suitable for high-frequency invocation scenarios in
microservice environments.

Specifically, Autoformer introduces a trend decomposition
mechanism. It achieves lower MSE and MAE than Informer.
This suggests that it has a better fitting ability when dealing
with underlying periodic patterns in access data. FEDformer
further incorporates frequency-domain information into the
modeling process. This allows the model to understand
invocation patterns from the perspective of frequency features.
As a result, its overall performance improves, reaching an R ²
of 0.947. This value shows that the model can accurately fit the



changes in microservice access volume. These findings suggest
that for access data with complex periodic structures and multi-
level dependencies, time-domain modeling alone is not
sufficient. Frequency-domain modeling becomes a key
technique for improving prediction performance.

The improved Transformer model proposed in this study
outperforms all baseline methods across all evaluation metrics.
It achieves the lowest MSE of 0.0186 and MAE of 0.0963,
along with the highest R ² of 0.958. This shows that the
proposed method has a stronger ability to capture fine-grained
variations in microservice access behavior. The results also
demonstrate that structural enhancements such as service-
specific embedding and multi-scale attention mechanisms,
when built on the original Transformer architecture, are
essential for improving prediction accuracy. These designs help
address the heterogeneous distribution of access volume across
time and services more effectively.

Overall, the experimental results confirm the applicability
and advantages of Transformer-based models in microservice
access volume prediction. Compared to other models, the
proposed method not only achieves better error metrics but also
demonstrates superior capability in fitting access patterns. This
provides more reliable predictive support for service
scheduling and resource optimization in real-world systems.
Based on these findings, future work may explore prediction
mechanisms that are more deeply integrated with microservice
architectures, further advancing the development of intelligent
service management systems.

This paper further gives the impact of different time
windows on prediction performance, and the experimental
results are shown in Figure 2.

Figure 2. The impact of different time windows on prediction
performance

The figure shows that different time windows have a clear
impact on the performance of microservice access volume
prediction models. Overall, the model performs best under the
15-minute time window. Both MSE and MAE reach their
lowest values, at 0.0186 and 0.0963 respectively. This indicates
that at this temporal resolution, the model can effectively
capture periodic patterns and trend changes in access data. It
strikes a balance between noise and information density,
providing the Transformer architecture with an optimal input
granularity.

Smaller time windows, such as 5 minutes, offer higher
temporal resolution. However, they introduce more short-term
fluctuations and noise. This makes it harder for the model to
detect stable access patterns, leading to higher prediction errors.
When the time window increases to 60 minutes, short-term
disturbances are partially smoothed. Yet, this also results in the
loss of fine-grained behavioral information. The model then
struggles to capture rapid changes in invocation patterns, which
significantly reduces prediction performance.

The 30-minute and 10-minute windows show intermediate
performance. They outperform the extreme settings in both
MSE and MAE but remain less stable than the 15-minute
window. This suggests that access volume in microservice
systems exhibits strong local correlations and bursty behavior.
Only at an appropriate time scale can the model accurately
perceive dynamic changes in service requests.

These results confirm that time window selection plays a
crucial role in the performance of Transformer-based
microservice access prediction models. Choosing the right
temporal granularity is key to improving prediction accuracy.
In practical deployment, time window strategies can be
dynamically adjusted based on service type and workload
characteristics. This enables more refined traffic modeling and
predictive scheduling.

This paper further gives an analysis of the robustness of the
model under noisy data, and the experimental results are shown
in Figure 3.

Figure 3.Model robustness analysis under noisy data

The results in the figure show that as the proportion of
noise in the data increases, the model performance in
microservice access volume prediction gradually deteriorates.
Specifically, the MSE rises from 0.0186 in the noise-free
condition to 0.0372 at the 30 percent noise level. This almost
doubles the error, indicating the significant impact of noise on
prediction accuracy. This trend reflects the sensitivity of the



Transformer model when handling noisy information. In
scenarios where historical patterns are crucial, data fluctuations
directly interfere with the attention mechanism's ability to
capture valid temporal relationships.

Despite this, the model maintains relatively stable
performance under low to moderate noise levels, from 0
percent to 15 percent. The increase in MSE remains controlled,
showing that the designed architecture has a certain level of
tolerance to input disturbances. This behavior demonstrates the
positive effect of residual connections and normalization
operations in the Transformer architecture. These features
contribute to numerical stability and provide a foundation for
handling naturally fluctuating request data in microservice
environments.

When the noise level exceeds 20 percent, the error
increases rapidly. At this point, the model struggles to
distinguish between true trends and noise in the data. This leads
to a significant drop in prediction performance. This
observation is relevant in real-world microservice systems.
During peak usage periods, frequent anomalies, or monitoring
failures, input data uncertainty increases sharply. Under such
conditions, model robustness needs to be enhanced or
supported by external denoising mechanisms. In summary, this
experiment evaluates the robustness of the Transformer-based
prediction structure under multiple noise levels. The results
show that the method remains stable under mild data
perturbations. However, in high-noise environments, additional
optimizations are needed. Enhancing the model's ability to cope
with data quality fluctuations is essential for deployment in
complex real-world systems. This paper also presents an
experiment on the effect of introducing service embedding
representation on improving prediction performance. The
experimental results are shown in Figure 4.

Figure 4. Experiment on the effect of service embedding
representation on prediction performance

The experimental results show that introducing service
embedding significantly improves the model's prediction
performance. The MSE decreases from 0.0237 to 0.0186. This
change indicates that service embedding enhances the model's
ability to capture semantic-level features of microservices. The
model no longer focuses solely on temporal fluctuations. It also
becomes aware of differences in invocation structures and
behavioral patterns across services. This leads to more targeted
and accurate predictions.

Service embedding serves as a structured semantic
enhancement. It integrates static attributes or historical
behavior distributions of services into the input sequence. This
allows the Transformer model to access richer contextual
information during attention computation. Such semantic prior
knowledge reduces ambiguity in sequence modeling and
addresses its limitations. It helps the model better distinguish
heterogeneous service behaviors. The effect is especially
noticeable in multi-service collaboration or traffic disturbance
scenarios.

The results also show that significant performance gains
can be achieved without modifying the model structure. Simply
introducing high-quality service representation vectors
improves accuracy. This suggests that the deployment cost of
service embedding is relatively low, while the benefit is
substantial. It is highly practical in cloud-native platforms and
function computing services that handle diverse request types.
In environments where service invocation patterns are complex
and context changes frequently, service embedding becomes a
key method to improve model generalization. In summary, the
results confirm the effectiveness of service embedding in
microservice access prediction. The performance improvement
includes both error reduction and enhanced recognition of
service behaviors. Future work may explore various embedding
methods, fusion strategies, and cross-service representation
learning techniques. These directions aim to further expand the
model's predictive capabilities.

This paper also gives an evaluation of the effect of multi-
scale temporal feature fusion, and the experimental results are
shown in Figure 5.

Figure 5. Evaluation of multi-scale temporal feature fusion
effect

The experimental results show that different combinations
of time scales have a significant impact on prediction
performance. In terms of MSE, the model performs poorly



under the single 5-minute scale, with the highest error observed.
When the 5-minute and 15-minute scales are combined, the
MSE decreases significantly. This indicates that the model
benefits from capturing both short-term and mid-term temporal
features. It helps the model better identify the patterns and
trends in service invocation, improving its ability to model
microservice access volume.

When longer time scales such as 30 minutes and 60 minutes
are added, the MSE increases slightly. This suggests that
introducing too many scales may cause information
redundancy or feature interference. When signals from
different scales vary greatly, and the model lacks an effective
feature selection mechanism, the fusion may dilute important
information and reduce model stability. This highlights the
need for more advanced feature integration methods when
dealing with multi-granularity traffic data in microservice
prediction.

In terms of MAE, a different trend is observed. When
extending from the 5-minute scale to the 5+15-minute
combination, the error slightly increases. As longer time scales
are added, the MAE gradually decreases. This suggests that
simple combinations of short and mid-term scales may cause
local overfitting. In contrast, deeper fusion across multiple time
scales helps capture long-term dependencies and periodic
patterns in service access. This improves the overall robustness
and accuracy of the prediction model. In summary, the results
emphasize the importance of multi-scale feature fusion
strategies in microservice access prediction tasks. Properly
designed time scale combinations can enhance the model's
perception of various temporal dynamics. This also improves
prediction stability and generalization. Future research may
explore attention-based weighting or scale selection
mechanisms to optimize the integration of multi-scale
information.

Finally, a comparison chart between the true value and the
predicted value is given, as shown in Figure 6.

Figure 6. Comparison between actual and predicted values

As shown in Figure 6, the predicted values closely follow
the actual values in terms of overall trend. The model
accurately tracks the main fluctuations and periodic changes in
microservice access volume. This indicates that the model has a
strong fitting ability for global access patterns. It can
effectively extract temporal features from service invocation
data and shows good adaptability and generalization in
dynamic microservice environments.

In periods with large fluctuations, such as the dense peaks
observed in the later stage of the figure, the predicted values
are relatively smooth. Although not all sudden spikes are fully
captured, the prediction range remains close to the actual
values. This suggests that the Transformer-based model has an
advantage in maintaining stability. However, it still shows
some delay in responding to short-term extreme variations.
Overall, this visualization result further confirms the practical
value of the model in microservice access prediction. It can
provide accurate forecasts of request load and offer useful
references for strategies such as resource allocation and elastic
scaling. Future work may focus on enhancing the modeling of
abnormal fluctuations and developing mechanisms for burst
detection. These improvements can help increase the model's
responsiveness to extreme access behaviors.

5. Conclusion
This study focuses on the task of access volume prediction

under microservice architectures. It proposes a time series
modeling method based on the Transformer architecture to
address challenges such as high request dynamics and service
heterogeneity. By introducing positional encoding, multi-head
attention, and a decoder structure, the model can accurately
capture both long-term dependencies and local fluctuation
patterns in service requests. This enables high-precision
forecasting of future access trends. Experimental results show
that the proposed method performs well across multiple
evaluation metrics, demonstrating its effectiveness and
applicability in real-world microservice environments.

Through a series of comparative experiments, the study
further analyzes the effects of time window selection, service
embedding, robustness variation, and multi-scale temporal
feature fusion on prediction performance. The results reveal
that incorporating service-level semantic features and
hierarchical time information significantly improves prediction
accuracy and stability. It also enhances the model's ability to
detect bursty access behavior. These findings provide strong
predictive support for key tasks such as resource scheduling,
fault warning, and elastic scaling in microservice systems.



This research offers an innovative modeling solution for
microservice access prediction. It also presents a scalable and
deployable approach for intelligent service management. The
proposed model shows strong performance and stability,
making it suitable for a wide range of applications. It holds
practical value in cloud platforms, container orchestration
systems, and edge computing nodes. The method contributes to
improving resource utilization, optimizing service quality, and
reducing system latency. Additionally, it provides a general
framework reference for other high-frequency time series
prediction tasks, such as IoT traffic forecasting and API call
volume prediction.

6. Future work
Future work can further expand and refine this research

from multiple perspectives. One direction is to incorporate
graph neural networks or hybrid structures to strengthen the
modeling of invocation dependencies among services. Another
is to integrate external variables and user behavior sequences to
improve the model's understanding of complex behavioral
patterns. At the same time, lightweight model design can be
pursued to support real-time deployment in edge devices or
resource-constrained environments. These efforts will help
build more intelligent, efficient, and sustainable microservice
systems.
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