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Abstract: Scientific discovery and physical simulation have traditionally relied on domain-specific numerical solvers and
handcrafted feature design. In this paper, we propose a unified AI framework that integrates multimodal scientific representations,
physics-aware neural architectures, and task-specific supervision strategies to enable accurate, interpretable, and generalizable
simulation across diverse domains. The framework supports structured inputs such as molecular graphs, crystal lattices, and
continuous physical fields, and leverages graph neural networks, neural operators, and Transformer-based modules to model
system dynamics. Experimental results on molecular property prediction, field simulation, and inverse materials design
demonstrate superior accuracy and efficiency compared to classical and deep learning baselines. Ablation studies further validate
the importance of geometric encoding and physics-guided regularization. The proposed system enables scalable and transferable
AI-driven scientific modeling, offering new opportunities for cross-domain discovery and computational reasoning.
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1. Introduction
The convergence of artificial intelligence (AI) and scientific

discovery is transforming the way researchers formulate
hypotheses, interpret data, and simulate complex physical
systems. While traditional scientific inquiry relies on a
combination of theoretical reasoning, empirical observation,
and computational modeling, the rapid growth of machine
learning provides new opportunities to accelerate and expand
this process. From predicting molecular properties to
simulating climate dynamics, AI systems are now able to
uncover patterns and generate approximations that were
previously inaccessible due to computational or analytical
limitations.

Recent advances in deep learning have particularly impacted
domains where data is high-dimensional and governed by
partially known physical laws. Unlike classical simulators
which are constrained by predefined equations and rigid
discretization schemes, modern AI models can learn
representations directly from data, capturing nonlinearities and
cross-scale interactions in scientific systems. For instance,
graph neural networks (GNNs) have demonstrated strong
performance in modeling molecular graphs and crystal
structures, while transformer-based models have shown
promise in learning from grid-based physical fields, including
fluid flow and electromagnetic wave propagation.

Despite these advances, the integration of AI into scientific
pipelines remains an open challenge. Many machine learning
models exhibit poor generalization to out-of-distribution
scientific inputs, lack interpretability from a mechanistic
perspective, and may violate conservation laws or boundary
conditions inherent in physical systems. Moreover, there is a

growing need to ensure that AI systems contribute not only as
approximators of simulators but also as engines of novel
scientific insight.

This paper proposes a unified framework for data-driven
scientific discovery and simulation that combines
representation learning, physics-informed modeling, and cross-
domain generalization. We present a modular architecture
capable of encoding complex scientific structures and learning
dynamics under physical constraints. The framework is
evaluated across multiple scientific disciplines — including
materials science, biological systems, and theoretical physics—
demonstrating competitive accuracy, simulation fidelity, and
transferability. Through quantitative results and qualitative case
studies, we show that AI-based simulation can serve as a
powerful complement to traditional modeling, providing
pathways for hypothesis generation, accelerated
experimentation, and theory refinement.

2. Scientific Discovery in the Age of AI
The application of artificial intelligence to scientific

problems has emerged as a transformative paradigm, enabling
researchers to analyze, simulate, and even hypothesize over
complex phenomena across physics, chemistry, biology, and
engineering. Unlike traditional numerical methods that require
explicit formulations of governing equations, AI systems can
operate in data-driven regimes where explicit models are
unavailable, incomplete, or computationally prohibitive.

One of the earliest and most visible successes of AI in
science lies in molecular property prediction and drug
discovery. Machine learning models, particularly those based
on graph neural networks (GNNs), have been employed to



model molecular graphs and accurately predict properties such
as solubility, binding affinity, and toxicity. These models
surpass traditional QSAR methods by learning hierarchical
representations of atomic interactions [1]. The open-source
MoleculeNet benchmark has become a standard testbed for
such applications.

In physics and fluid dynamics, AI-based surrogates for
partial differential equations (PDEs) are increasingly replacing
traditional solvers. Neural operators, Fourier neural operators
(FNOs), and physics-informed neural networks (PINNs) have
demonstrated strong potential in modeling spatiotemporal
systems, such as Navier – Stokes flows, electromagnetic
propagation, and elasticity fields [2][3]. These models reduce
simulation costs dramatically and enable real-time inference in
scenarios where iterative solvers are infeasible.

In the field of material science, deep learning methods have
been used to model crystalline structures, predict phase
transitions, and even generate new alloy compositions with
desirable properties. Diffusion models, originally developed for
image generation, have recently been repurposed to explore
chemical space and design stable compounds under
thermodynamic constraints [4]. AI-driven materials discovery
platforms such as Open Catalyst Project [5] have demonstrated
how graph-based neural models can guide high-throughput
screening and accelerate catalysis research.

Moreover, in biological systems, AI models have achieved
significant breakthroughs. AlphaFold, developed by DeepMind,
has revolutionized protein structure prediction, demonstrating
how transformer-based architectures trained on sequence data
can achieve atomic-level accuracy [6]. Similarly, variational
autoencoders and graph-based simulators have been deployed
to understand protein folding kinetics, metabolic networks, and
cellular signaling pathways.

Despite these advances, challenges persist. Scientific data is
often limited, noisy, or biased toward well-studied regimes.
Many models struggle to extrapolate beyond the training
distribution or to honor underlying physical laws. Addressing
these limitations requires hybrid approaches that combine
neural approximators with mechanistic constraints, embed prior
scientific knowledge, and encourage interpretability through
disentangled or symbolic representations[7][8].

By surveying these trends and technical foundations, this
section sets the stage for the modeling framework we propose
in the next section — one that seeks to balance data-driven
flexibility with domain-specific structure[9][10].

3. Modeling Framework
The proposed framework for AI-driven scientific simulation

is composed of three primary modules: (A) scientific
representation encoding, (B) physics-aware model design, and
(C) task-specific training and supervision strategies. Each
module is tailored to capture the structural, physical, and
statistical properties of scientific data, enabling the system to
generalize across domains such as materials, biology, and
physics.

Figure 1. Scientific AI simulation framework

3.1 Scientific Representation Encoding

Scientific data spans multiple modalities and topologies—
from molecular graphs and 3D crystal lattices to multi-
dimensional physical fields. We adopt a flexible encoding
scheme that supports both discrete structures and continuous
tensor fields. For molecular and crystalline systems, input data
is represented as attributed graphs, where nodes correspond to
atoms and edges denote chemical bonds or spatial proximity.
For physical systems such as heat diffusion or wave
propagation, we discretize the spatial domain into structured
grids or unstructured meshes, allowing for efficient spatial
encoding.

To unify these heterogeneous inputs, we define a composite
feature embedding:

where ϕnode, ϕedge , and ϕgeom are learnable encoders for
atomic, relational, and geometric information respectively. This
formulation ensures the model captures local structure while
preserving spatial invariance.

3.2 Physics-Aware Model Architecture

At the core of the framework lies a deep learning model that
approximates scientific phenomena while respecting physical
constraints. We explore two complementary architectures:

a. Graph Neural Networks (GNNs): Used for systems with
discrete relational structure, GNNs iteratively aggregate
neighborhood features to capture local and global
dependencies. Message-passing mechanisms are adapted
to incorporate edge directionality and bond strength,
allowing fine-grained control over propagation.

b. Neural Operators and Transformers: For grid-based
simulations, we employ neural operator models such as
the Fourier Neural Operator (FNO) and physics-informed
Transformers. These models learn to approximate the
solution operator of a PDE, mapping boundary and initial
conditions to full-field solutions without iterative
computation.

To ensure physical consistency, we introduce inductive
biases such as conservation-aware layers and symmetry-
preserving kernels. We also incorporate differentiable
constraints during model design, guiding the architecture
toward physically plausible outputs.



3.3 Simulation Objective and Supervision Strategy

Different scientific tasks require distinct learning objectives.
For forward simulation, the model is trained to minimize
discrepancy between predicted and ground-truth fields:

In inverse problems — where the goal is to infer latent
physical parameters or inputs — we use a supervised or
variational inference objective, depending on task observability.
For generative tasks such as material discovery or molecular
generation, diffusion-based models or conditional VAEs are
used, trained with cross-entropy and reconstruction loss.

Finally, for scenarios requiring strong physical fidelity, we
incorporate soft physics loss terms:

By integrating flexible representations, physically grounded
architectures, and task-specific objectives, the proposed
modeling framework provides a robust and adaptable approach
for scientific simulation tasks across diverse domains.

4. Applications Across Scientific Domains
To evaluate the effectiveness and generality of our proposed

framework, we deploy it across several representative scientific
domains. Each application demonstrates how the model adapts
to unique data structures, simulation targets, and domain-
specific constraints. The case studies span molecular science,
physical simulation, and materials discovery, highlighting the
flexibility and fidelity of the approach.

4.1 Molecular Property Prediction

In molecular science, accurate prediction of quantum
mechanical properties such as dipole moments, HOMO –
LUMO gaps, and molecular energy levels is critical for drug
discovery and reaction optimization. We apply our framework
to the QM9 dataset, encoding molecules as graphs with spatial
coordinates. The GNN-based variant of our model achieves
competitive performance with established models such as
SchNet and DimeNet, while requiring fewer training epochs.
Furthermore, the physics-informed loss function improves
generalization to out-of-distribution molecular sizes.

4.2 Physics-Based Field Simulation

In continuum physics, simulating spatiotemporal fields like
fluid velocity or temperature is traditionally performed with
finite difference or finite element solvers. We benchmark our
neural operator–based model on a 2D heat transfer problem,
where initial conditions are drawn from random field
distributions. As shown in Figure 2, our model not only
accelerates simulation speed by over 50 × compared to
standard solvers, but also achieves accurate long-horizon
predictions. The inclusion of physics-based regularizers
reduces spurious oscillations near boundary regions, improving
solution stability.

4.3 Inverse Material Design

In materials science, one of the most critical challenges is
inverse design—predicting atomic configurations that exhibit
target physical properties. Using the Open Catalyst 2020
dataset, we train our model to generate stable catalyst surfaces
with desired adsorption energies. The conditional generator
component, coupled with a differentiable forward simulator,
allows for iterative refinement of candidates. As reported in
Table 1, our model surpasses baseline generators in both
prediction accuracy and physical plausibility, as judged by
DFT (density functional theory) post-evaluation.

4.4 Cross-Domain Generalization

To test generalization, we evaluate our model on protein-
ligand binding and electromagnetic field simulation without
domain-specific re-training. Thanks to modular encoders and
transferable neural kernels, the framework maintains strong
accuracy despite differences in data modality. In particular, the
Transformer-based variant adapts well to sequence-based data
in bioinformatics, offering potential use in genomics and
proteomics.

These results demonstrate the capability of the framework to
function across scientific settings with minimal architectural
modification. Its generalization ability and physical compliance
suggest utility as a unified foundation for AI-augmented
scientific simulation and discovery.

5. Evaluation and Analysis
To validate the performance of the proposed framework, we

conduct comprehensive experiments across three scientific
domains: molecular property prediction, physical field
simulation, and materials inverse design. The evaluation
focuses on predictive accuracy, computational efficiency, and
cross-domain transferability. We benchmark against
established baselines and perform ablation studies to assess the
contribution of key architectural components.

5.1 Benchmark Settings and Metrics

For molecular prediction, we evaluate on QM9 using
standard metrics including mean absolute error (MAE) for
energy-related targets. For field simulation, we use the 2D heat
equation and assess normalized root mean square error
(NRMSE) across time steps. In inverse material design, both
regression accuracy and DFT-based validation are used to
judge candidate quality. All experiments are conducted on
NVIDIA A100 GPUs, and training configurations are
standardized to allow fair comparison.

5.2 Quantitative Results

As shown in Table 1, our model achieves competitive or
superior performance compared to domain-specific baselines
across tasks. For example, in the QM9 dataset, the GNN-based
variant attains an MAE of 0.043 eV, outperforming traditional
physics-informed graph models. In heat field prediction, the
Fourier neural operator backbone reduces simulation error by
21% relative to FDM (finite difference method) while offering
50 × inference speedup. In material generation, our
conditional simulation model achieves a DFT-validated success



rate of 73%, significantly higher than diffusion-based
generative methods.

Table 1: Quantitative comparison of simulation performance
across tasks

Task Metric Baseline
Model

Our
Model

Relative
Gain

QM9
Molecular
Prediction

MAE
(eV)

0.056
(DimeNet) 0.043 23.20%

Heat Field
Simulation NRMSE 0.078

(FDM) 0.062 20.50%

Catalyst
Surface
Design

Valid (%) 54.3%
(DiffGen) 73.00% 34.40%

In Figure 2, we visualize predicted vs. ground-truth
temperature fields from the 2D simulation task. Our model
preserves boundary smoothness and avoids divergence at later
time steps, confirming the benefit of the physics loss term. The
consistency across spatial domains highlights the generalization
potential of the learned operator.

Figure 2. Predicted and ground-truth heat fields in a 2D
simulation task.

We conduct an ablation study to quantify the effect of each
module. Removing the physics-informed loss results in a 12%
increase in simulation error, while omitting geometric
encodings in molecular graphs degrades MAE by 15%. These
results underscore the importance of domain-specific inductive
biases in achieving both performance and robustness.

To test generalization, we apply a model trained on
molecular data to unseen reaction types and a model trained on
thermal fields to solve electromagnetic propagation problems.
Despite shifts in data distribution and task objectives, the
modular architecture retains 85% of its original accuracy,
demonstrating effective parameter reuse and representational
robustness.

The results confirm that the proposed framework not only
achieves high task-specific accuracy, but also scales across
scientific domains without architecture retraining or
handcrafted feature engineering.

6. Conclusion and Outlook
This work presents a unified modeling framework for

scientific discovery and simulation, leveraging advances in

deep learning to address domain-specific challenges in physics,
chemistry, and materials science. Through a combination of
flexible representation encoding, physics-aware neural
architectures, and task-specific supervision strategies, the
proposed system demonstrates strong accuracy, physical
consistency, and generalizability across diverse scientific
applications.

Experimental results show that our method outperforms
classical numerical solvers and domain-specific baselines in
molecular property prediction, field simulation, and inverse
materials design. The framework not only improves
computational efficiency, but also facilitates cross-domain
transfer with minimal architectural adjustments. These
outcomes affirm the potential of AI to serve not merely as a
surrogate model, but as an active agent of scientific hypothesis
generation and discovery.

Nevertheless, several limitations remain. First, the
dependence on data availability constrains performance in low-
resource domains, where transfer learning or domain
adaptation methods may be required. Second, the
interpretability of deep models continues to lag behind
traditional physical models, posing challenges for mechanistic
insight extraction. Lastly, integration with established scientific
workflows—such as experimental validation and simulation–
experiment iteration — requires further refinement and
standardization.

Future work may explore tighter integration between
symbolic and neural reasoning systems, enabling hybrid
models that embed physical laws while retaining flexibility. In
addition, reinforcement learning or active learning strategies
could be incorporated to optimize simulation policies or
experimental sampling. The emergence of large-scale
foundation models trained on multimodal scientific data also
offers promising avenues for zero-shot generalization and
automated hypothesis formulation.

By bridging data-driven learning and physics-based
modeling, the proposed framework contributes to a growing
body of work that positions AI not merely as a computational
tool, but as a scientific collaborator. As AI continues to evolve,
its role in shaping the future of discovery and simulation is
poised to expand across disciplines.
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