
Journal of Computer Technology and Software

ISSN:2998-2383

Vol. 3, No. 8, 2024

Transferable Load Forecasting and Scheduling via Meta-Learned
Task Representations
Tao Yang
Illinois Institute of Technology, Chicago, USA
tyang28@hawk.iit.edu

Abstract: This paper addresses the problems of low prediction accuracy and poor generalization of scheduling strategies in
multi-tenant cloud environments. It proposes a meta-learning-based method for cross-scenario load prediction and adaptive
scheduling. The method consists of two core modules: a task-aware representation embedding mechanism and a meta-optimized
scheduling strategy. First, a task-level representation learning model is constructed to extract transferable structural features from
historical load sequences. This improves the model's ability to understand heterogeneous tasks. Then, a scheduling policy
generator is designed based on a meta-learning framework. It optimizes the initialization of policy parameters through multi-task
training, enabling the scheduler to quickly adapt and efficiently allocate resources when new tasks arrive. Comprehensive
experiments are conducted on a real-world cloud workload dataset. The results show that the proposed method outperforms
existing representative approaches in terms of prediction error, scheduling violation rate, and response latency. It demonstrates
good generalization and stability, and effectively enhances resource utilization and service quality in cloud platforms.
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1.Introduction
With the rapid development of cloud computing

technologies, the demand for computing resources has become
increasingly dynamic and complex. Cloud platforms have
become a critical infrastructure for supporting compute-
intensive tasks. From high-concurrency transaction processing
in e-commerce to dynamic load scheduling in AI inference
services, cloud infrastructure is responsible for meeting the
growing needs of elastic computing[1]. A core capability of
cloud services lies in the on-demand allocation of computing,
storage, and network resources, which enables efficient
resource utilization and cost control. However, in practical
applications, cloud resource demands often exhibit high
temporal correlation, burstiness, and diversity. These
characteristics make traditional static or experience-driven
approaches to load prediction and scheduling insufficient in
complex and volatile environments. This can result in delayed
resource allocation, increased service latency, and SLA
violations. Therefore, developing more intelligent, flexible, and
generalizable load prediction and scheduling mechanisms has
become a key challenge in current cloud computing research[2].

Most existing cloud load prediction methods are designed
for single scenarios or fixed-tenant environments. These
models typically rely on large volumes of homogeneous data
and cannot quickly adapt to new environments or tasks[3]. This
limitation is particularly evident in multi-tenant cloud
platforms. Different tenants often have significantly different
business models, workload characteristics, and resource usage
patterns, making it difficult for a single prediction model to
generalize well across scenarios. Meanwhile, the cloud
environment is highly dynamic, with frequent changes in task
types and tenant requests[4]. Models trained offline quickly

become obsolete. In this context, there is an urgent need to
explore intelligent modeling methods with strong
transferability and high learning efficiency. Such methods
should enable rapid adaptation and enhance the resilience and
service quality of cloud platforms in complex environments[5].

Meta-learning, also known as "learning to learn," has
emerged as a promising approach in recent years. It offers
natural advantages such as fast transfer and few-shot adaptation.
This makes it a suitable theoretical foundation for addressing
multi-scenario cloud load prediction problems. By learning
shared knowledge from multiple tasks, meta-learning models
can quickly adjust their parameters when encountering new
tasks[6]. This enables fast prediction and scheduling decisions,
significantly reducing adaptation time. Compared to traditional
deep learning models, meta-learning demonstrates stronger
robustness and generalization in the face of data distribution
shifts and frequent task switching. Introducing meta-learning
into cloud load modeling can potentially overcome the
limitations of current methods, such as high retraining cost,
long latency, and poor adaptability. It enables a shift from static
response to dynamic learning in resource prediction and
scheduling[7].

In cloud systems, the accuracy of load prediction directly
impacts the effectiveness of resource scheduling.
Underestimation may lead to degraded service performance
and increased request queuing delays. Overestimation may
cause resource waste and higher operational costs. In scenarios
involving multiple tenants or applications running
simultaneously, the uncertainty of workloads increases
significantly. This further complicates the design of scheduling
strategies[8]. Traditional approaches often rely on rule-based or
historical average methods, which fail to dynamically capture



hidden patterns in complex business behaviors. In contrast,
load prediction models based on meta-learning can infer the
resource demand characteristics of current tasks using training
experience from historical tasks. They can quickly adapt across
tenants and business scenarios, providing strong support for
building intelligent scheduling strategies.

In summary, research on meta-learning-based cross-
scenario cloud load prediction and adaptive scheduling has
significant theoretical and practical value. On one hand, it
offers effective solutions to the poor adaptability of current
scheduling systems in dynamic environments. On the other
hand, it lays a foundation for building future cloud platforms
with self-aware, self-adaptive, and self-optimizing capabilities.
As cloud computing evolves toward larger scale, more complex
architectures, and higher intelligence, predictive and scheduling
algorithms with rapid generalization capabilities will become
essential to delivering high-quality cloud services. This
research will not only improve resource utilization and service
stability in cloud platforms but also provide key algorithmic
and technical support for the evolution of intelligent cloud
infrastructure.

2. Related work
2.1 Research on Load Forecasting Method

In cloud computing systems, load prediction is a critical
prerequisite for resource management and task scheduling. It
has long been a key research direction in the intelligent control
of cloud platforms. Traditional load prediction methods often
rely on time series analysis and statistical modeling. Common
techniques include sliding windows and autoregressive moving
average models to fit historical data[9]. These methods are
simple in structure and easy to implement. However, they show
significant limitations when dealing with highly bursty
workloads, lack clear periodicity, or are influenced by multiple
dimensions. This is especially true in multi-tenant or complex
business scenarios, where prediction errors increase noticeably.
As a result, such methods fail to meet the dual requirements of
real-time response and high accuracy in modern cloud
platforms[10].

To overcome the limited nonlinear modeling capabilities of
traditional methods, researchers have increasingly adopted
machine learning and deep learning techniques for cloud load
modeling. Typical approaches include using regression models
such as support vector regression and random forests to capture
resource usage trends. Other methods apply recurrent neural
networks (RNN), long short-term memory networks (LSTM),
or Transformer architectures to learn temporal dependencies
and multi-scale patterns. Some studies also integrate multi-
source data, including task characteristics, network traffic, and
system logs, to build multimodal inputs that improve prediction
accuracy[11]. These approaches achieve good results in certain
specific scenarios. However, they often suffer from poor
generalization, difficulty in model transfer, and slow adaptation
to new environments. In situations with frequent task switching
or sparse data, deep models typically require retraining. This
makes them unsuitable for deployment across diverse
scenarios[12].

In addition, some studies have explored the use of attention
mechanisms and graph neural networks in load prediction.
These models aim to enhance the ability to capture changes in
workload structure and resource dependencies among tenants.
Nevertheless, most existing methods still rely heavily on well-
labeled training data[13,14]. Their designs are often optimized
for specific platforms or business scenarios, lacking
transferability across environments. This limitation is
especially critical in complex settings such as multi-tenant
cloud platforms and edge-cloud collaborative computing[15].
Under these conditions, prediction model performance often
drops sharply when the environment changes or data
distribution shifts. Therefore, designing a prediction method
with strong task generalization and fast scene adaptation has
become a key development direction in this field. It also
provides the theoretical foundation and practical motivation for
the meta-learning-based approach proposed in this study.

2.2 Meta-Learning

As a learning paradigm designed to improve model
generalization and fast adaptation, meta-learning has shown
broad application prospects in recent years[16.17]. It has been
applied in various fields such as computer vision, natural
language processing, and recommendation systems. The core
idea of meta-learning is to abstract knowledge from training
across many tasks. This allows the model to learn efficiently
when facing a new task, using only a few samples or training
iterations[18]. The introduction of meta-learning breaks the
dependence of traditional supervised learning on large amounts
of labeled data and long training cycles. It is especially suitable
for scenarios where tasks change frequently and data
distributions vary significantly. In cloud computing systems,
the high heterogeneity across tenants, business scenarios, and
application types makes traditional models difficult to
generalize. Therefore, meta-learning offers a natural advantage
in this context[19].

In the area of resource management and system scheduling,
initial research on meta-learning has focused on optimizing
task-scheduling strategies and learning resource allocation
decisions. Most methods adopt model-agnostic meta-learning
frameworks. These frameworks train an initialization model
across multiple scheduling tasks, enabling fast adaptation to
new load types, resource constraints, or quality of service
objectives[20,21]. In these studies, meta-learning not only
improves the convergence speed and adaptability of scheduling
systems but also provides a certain level of generalization over
complex policy spaces. Some research has further combined
meta-learning with reinforcement learning. This approach
trains transferable policy networks, allowing scheduling
systems to migrate strategies across environments and reduce
the need for explicit environment modeling. These efforts pave
the way for deploying general and efficient agents in dynamic
cloud scheduling[22].

Despite its promising performance in system optimization,
research on meta-learning for cloud load prediction remains
limited. Existing methods tend to focus on scheduling policy
optimization while paying less attention to the upstream task of
load modeling[23]. At the same time, cloud load prediction
often exhibits key characteristics such as low task density, large



differences across scenarios, and frequent data updates. These
are typical features of few-shot and multi-task learning
problems, which align well with meta-learning. Applying meta-
learning to load prediction can address the generalization
limitations of traditional methods. It can also significantly
improve modeling efficiency and response speed in new
environments. In the future, exploring how to integrate meta-
learning with time series modeling and graph-based modeling
will be an important direction. This will enhance the model's
ability to perceive and adapt to complex system behaviors.

3. Method
This study addresses the challenges of poor generalization

and slow adaptation in load prediction and scheduling for

multi-tenant and multi-scenario cloud platforms. It proposes a
meta-learning-based method for cross-scenario cloud load
prediction and adaptive scheduling. The core innovation of
this method lies in two components. First, a Task-aware
Representation Embedding (TRE) mechanism is designed. It
extracts transferable structural features from historical
workload data across scenarios, enhancing the model's
representation ability and initialization quality for new tasks.
Second, a Meta-Optimized Scheduling Policy (MOSP)
framework is introduced. It performs meta-training of
scheduling strategies under various resource constraints and
SLA requirements. This enables the scheduling model to
generate near-optimal decisions quickly when facing new
workload patterns. The architecture of the overall model is
illustrated in Figure 1.

Figure 1. Overall model architecture diagram
3.1 Task-aware Representation Embedding

In multi-tenant cloud computing scenarios, the
heterogeneity of task workloads is prominent. Different tasks
often exhibit diverse resource usage patterns, temporal
dynamics, and operational priorities. Traditional unified
modeling approaches, which treat all tasks with a shared
representation space or rely on handcrafted features, are
insufficient to capture the complex, implicit structural
differences that exist between tasks. This lack of fine-grained
differentiation leads to degraded model performance when
applied to new or unseen tasks, especially under varying
resource demands and workload behaviors. To address this
challenge, it is essential to design a representation mechanism
that can encode task-specific load features while preserving
the shared knowledge across tasks.

To enhance the model's ability to generalize across
different tasks, this study introduces the Task-aware
Representation Embedding (TRE) mechanism. TRE is
designed to model and abstract the structured load behavior of
tasks by learning informative task-level representations from
historical load sequences. It captures both temporal patterns
and statistical characteristics of resource consumption,
enabling the meta-learning model to condition its parameter
updates on these embeddings. By integrating TRE into the
learning pipeline, the system can construct discriminative and
transferable representations that reflect the unique load
semantics of each task. This facilitates faster and more
accurate adaptation when the model is exposed to new task
types. The detailed module architecture of TRE is illustrated in
Figure 2.



Figure 2. TRE module architecture
First, the load history sequence of a given task iT is
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represents the resource usage vector at the t-th time step. We
use a differentiable encoder )(f to map this sequence into
a fixed-length task representation vector:
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structural summary of the task, which contains key
information such as load pattern, fluctuation characteristics,
and periodicity.

In order to enhance the perception of key timing features,
we introduce an attention mechanism to perform weighted
aggregation on the payload sequence. Given the intermediate
representation th of each time step, its attention weight is
calculated as follows:

 

 T

k k
T
t

T

t
hw

hw

1
)exp(

)exp(

The final embedding is represented as:





T

t
tti hz

1



This attention aggregation method enables the model to
automatically focus on the key change points in the load
sequence and improve the fine-grained expression capability
of task modeling.

In order to ensure that similar tasks have similar
representation structures in the embedding space, we introduce

a consistency regularization term for task representation. For
two similar tasks ji TT , , we minimize the distance between

their embedding vectors:
2
2|||| jisim zzL 

This regularization term guides the model to learn a
discriminative representation space, which helps to improve
the initialization performance of the meta-learning model on
new tasks.

Finally, the task representation iz will be used as one of
the input features of the meta-learning model to generate
parameters or quickly adapt the scheduler or predictor during
the task initialization phase. By introducing the task-aware
embedding mechanism, the TRE module effectively
introduces the structural information between different tasks
into the training process, providing more discriminative and
generalized support for subsequent scheduling strategy
learning.

3.2 Meta-Optimized Scheduling Policy

In a dynamic and ever-changing cloud computing
environment, scheduling strategies must quickly adapt to
different tasks, resource conditions, and service level
objectives. To address this need, this study proposes a meta-
optimized scheduling policy mechanism (Meta-Optimized
Scheduling Policy, MOSP). This module takes task-aware
representations as input. It learns from scheduling
optimization experiences across multiple historical tasks to
build a scheduling strategy generator with generalization
capability. The core idea of this method is to optimize the
initialization of scheduling policy parameters within a meta-
learning framework. This allows the model to converge
rapidly to a near-optimal strategy for new tasks without
requiring extensive iterations. The detailed module
architecture of SADAN is illustrated in Figure 3.

Figure 3.MOSP module architecture
Assume that the task representation vector of a task iT

is iz , the system state is ts , the scheduling strategy is a

parameterized function ),( it zs , and its output is the



resource allocation decision ta at the current moment. That
is:

),( ttt zsa 
This strategy realizes personalized generation and

dynamic adaptation of scheduling strategies by considering the
joint input of task representation and system status.

In order to obtain policy parameter initialization with
good generalization ability in the training phase, this method
adopts a meta-optimization mechanism based on gradient
update. Assuming that the loss function of the task iT in a

scheduling process is )(
iT

L , its policy update is:
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Where  is the inner learning rate, and i' represents

the strategy parameters after a quick adaptation to task iT .

The meta-optimization goal is to minimize the total loss
after fast updates on multiple tasks and optimize the initial
parameter  . Its objective function is:

 
i

TT
i

iT iii
LLL ))(()'(min  

This objective function reflects the model's ability to
quickly adapt to future tasks and is a direct reflection of the
strategy's generalization ability.

Finally, in the actual deployment phase, for a newly
arrived task newT , the scheduler can quickly generate
resource allocation decisions through a small amount of fine-
tuning or directly based on the initialization strategy B. The
scheduling process is:

),(' newt
new
t zsa 

This design effectively embeds task information into the
scheduling strategy generation process, realizes the rapid
migration and dynamic optimality of the scheduling strategy,
and takes into account resource utilization and service quality
requirements while ensuring system stability.

4. Experimental Results
4.1 Dataset

This study uses the Google Cluster Trace dataset as the
primary data source for load modeling and scheduling policy
learning. The dataset was collected from a large-scale
distributed computing cluster operating in a real production
environment. It contains detailed records of resource requests,
task scheduling logs, and machine status information. With a
long time span and rich dimensions, it is one of the most
widely used public datasets for studying resource management
and scheduling in cloud computing.

Google Cluster Trace covers the scheduling and
execution of tens of thousands of tasks across thousands of

servers. It includes data on the usage and request amounts for
resources such as CPU, memory, disk, and network. It also
provides metadata such as job start time, end time, priority,
and failure reasons. The dataset features high load variability
and task heterogeneity. It effectively simulates complex
scenarios involving multi-tenant and multi-application
workloads in real cloud platforms. It is suitable for task-level
load modeling, predictive analysis, and scheduling policy
research.

In this study, task behavior traces from the dataset are
used to construct time series inputs. These inputs help extract
workload patterns and generate task representations. They also
support the scheduling module in modeling the dynamic
changes of task resource demands. The dataset's realism and
scale provide strong data support for verifying model
generalization and evaluating policy transfer mechanisms.

4.2 Experimental setup

To validate the effectiveness of the proposed method in
cross-task load prediction and scheduling adaptation, the
experiments use task execution logs from the Google Cluster
Trace dataset as the primary data source. After preprocessing,
a multi-task time series sample set is constructed. Tasks are
divided into multiple scenarios based on task types and
resource request characteristics. All tasks are split in
chronological order into training, validation, and test sets.
These are used for meta-training, fast adaptation, and
generalization performance evaluation, respectively.

During model training, the task representation module
uses a standard multilayer perceptron (MLP) as the encoder.
The scheduling policy is built using a two-layer policy
network. Optimization is performed using the Adam optimizer.
All experiments are conducted on a server with 32 GB of
memory and an NVIDIA V100 GPU. Model hyperparameters
are selected through grid search on the validation set. Table 1
summarizes the key experimental parameter settings. The
detailed settings are shown in Table 1.

Table 1: Experimental setup and hyperparameter configuration
Parameter Value
Dataset source Google Cluster Trace
Input sequence length 50
Encoder structure 2-layer MLP, 128 hidden dim
Policy network structure 2-layer MLP, ReLU
Optimizer Adam
Learning Rate 0.001
Inner layer update steps (K) 5
Meta-learning outer batch size 8 tasks/batch
Experimental Platform NVIDIA V100, 32GB RAM

4.3 Experimental Results

1) Comparative experimental results

This paper first gives the comparative experimental results,
as shown in Table 2.



Table2: Comparative Results

Method MAE Scheduling
Default Rate

Average
scheduling delay

Ours 0.083 2.4% 53.7
MAML-
Scheduler[24]

0.097 4.2% 61.5

DeepRM[25] 0.112 5.9% 74.2
K-argued[26] 0.095 3.8% 59.1

The comparison results in the table show that the proposed
meta-learning-based scheduling method demonstrates
significant advantages across all metrics. This validates its
generalization and fast adaptation capabilities in complex and
dynamic cloud environments. Compared to traditional methods,
the proposed approach effectively captures structural
differences between tasks. It can also quickly adjust prediction
and scheduling strategies when facing new tasks, improving
overall system scheduling efficiency and stability.

In terms of load prediction accuracy, traditional deep
learning models have certain abilities for temporal modeling.
However, they often perform inconsistently when data
distribution changes due to the lack of cross-task knowledge
transfer. In contrast, the proposed method introduces task-
aware representations and a meta-learning framework. It
leverages shared structures across historical tasks to generate
high-quality load representations for new tasks. This reduces
prediction errors and improves the model's robustness to task
heterogeneity.

Regarding scheduling violation rates, reinforcement
learning methods can perform well in single scenarios.
However, they often lack adaptability during task switching
across multiple scenarios. This may lead to imbalanced
resource allocation or violations of service level agreements
(SLAs). In comparison, the proposed meta-optimized
scheduling strategy dynamically adjusts scheduling behavior
based on task embedding vectors. This enables policy transfer
and fast adaptation, reducing system risks and improving
resource utilization efficiency.

Finally, in terms of average scheduling delay, traditional
models typically require longer computation and adjustment
times. This makes it difficult to meet real-time response
requirements. The proposed method injects meta-learning
capabilities at the policy initialization stage. This allows the
model to schedule tasks without repeated trial-and-error or
retraining, reducing the response time from task input to
scheduling execution. It highlights the practical advantage of
the method in complex and dynamic environments. These
results demonstrate the importance and value of designing
scheduling strategies with task generalization and fast
adaptation capabilities for cloud computing scenarios.

2) Ablation Experiment Results

This paper also further gives the results of the ablation
experiment, and the experimental results are shown in Table 3.

Table 3: Ablation Experiment Results

Method MAE Scheduling
Default Rate

Average
scheduling
delay

Baseline 0.106 5.7% 71.9
+TRE 0.094 4.3% 63.4
+MOSP 0.089 3.6% 59.2
Ours 0.083 2.4% 53.7

As shown in the ablation results in Table 3, the Task-aware
Representation Embedding (TRE) module and the Meta-
Optimized Scheduling Policy (MOSP) each play important
roles in improving overall system performance. The base
model, without any of these modules, struggles to capture
structural differences between tasks and load fluctuations. This
leads to poor prediction accuracy and unstable scheduling
performance. These results indicate that in multi-task and
multi-scenario cloud environments, shallow representations
and single-strategy approaches cannot meet the high demands
for generalization and adaptability.

After introducing the TRE module, the model gains a
stronger ability to represent task-specific load features. By
abstracting historical load sequences into structured
representations, task-specific information is effectively
captured. This significantly improves prediction accuracy and
enhances the model's sensitivity to input variations. The
inclusion of TRE allows the model to generate differentiated
predictive representations based on task context, improving
both load awareness and the stability of the scheduling
foundation.

With the additional integration of the MOSP module, the
scheduling system gains fast adaptation and optimization
capabilities. MOSP uses a meta-learning approach to initialize
and update the scheduling policy parameters. This allows the
model to generate near-optimal strategies with fewer
adjustment steps when facing new load patterns or resource
constraints. The mechanism reduces reliance on long-term
training and large datasets while maintaining high resource
utilization and stable task execution.

Finally, when TRE and MOSP are combined, the model
achieves the best performance in both prediction and
scheduling. This demonstrates the overall advantage of
constructing an end-to-end task-aware and policy-transferable
framework. The results further confirm the practical value and
broad application potential of the proposed method in complex
cloud computing environments.

3) Cross-scenario prediction capability evaluation under
different task types

This paper further provides an evaluation of cross-
scenario prediction capabilities under different task types,
aiming to investigate the model's adaptability and
generalization in heterogeneous workload environments. In
real-world cloud computing systems, tasks often belong to
various categories, such as compute-intensive, storage-
intensive, and hybrid types, each exhibiting distinct resource
consumption patterns and temporal dynamics. Evaluating
prediction performance across these diverse task types is
essential to understand how well the proposed method can



transfer learned knowledge from one scenario to another. This
evaluation helps assess whether the model can maintain stable
predictive behavior when faced with significant variations in
workload characteristics.

To conduct this evaluation, a comprehensive
experimental design is employed, where the model is tested on
a range of task types that differ in both structure and behavior.
The purpose is to validate the model's ability to construct
meaningful and transferable representations that are not
limited to specific scenarios. Such analysis allows for a deeper
examination of how effectively the model generalizes across
different operational contexts and task demands. The results of
this evaluation are illustrated in Figure 4, which provides a
visual representation of the model's performance across
multiple task categories.

Figure 4. Cross-scenario prediction capability evaluation
under different task types

As shown in the results of Figure 4, the proposed method
demonstrates stable prediction and scheduling performance
across different types of tasks. This reflects strong cross-
scenario generalization ability. For compute-intensive, storage-
intensive, and hybrid tasks, the model accurately captures the
differences in load patterns. This indicates that the task-aware
representation mechanism effectively improves the modeling
quality of heterogeneous task features, providing a solid
foundation for subsequent scheduling.

In terms of prediction error, although task types differ in
time scale and fluctuation range, the model maintains
consistent error levels across all categories. This suggests that
the model learns transferable and shared structural features. It

shows that the meta-learning framework can extract common
knowledge from historical tasks and adapt quickly to new ones.
This addresses the failure of traditional methods during the
initialization phase of unseen tasks.

The trend of scheduling violation rates further shows that
the model maintains low scheduling errors even for complex
tasks such as storage-intensive or hybrid ones. This
demonstrates the stability of the scheduling strategy when
facing resource bottlenecks or concurrent tasks. This advantage
is attributed to the MOSP module, which optimizes policy
initialization. It enables the model to quickly generate effective
scheduling behavior in new environments, reducing resource
allocation bias and SLA violation risks.

Overall, the experiment confirms the generality and
adaptability of the proposed method across different task
structures. It provides additional evidence for the practicality
and robustness of the task-aware and meta-optimized
scheduling mechanism in real cloud environments. It also
suggests a direction for future work, which is to further
improve performance under extreme task types and enhance
the model's generality and integration capability.

4) The generalization ability test of the model under
different load fluctuation modes

This paper also presents a test of the generalization
ability of the model under different load fluctuation modes,
and the experimental results are shown in Figure 5.

As shown in the experimental results in Figure 5, the
proposed method maintains stable prediction and scheduling
performance under different load fluctuation patterns. This
indicates strong generalization capability. When facing stable,
periodic, and bursty load changes, the overall performance
variation remains within a controllable range. This suggests
that the task representation and scheduling policy can adapt to
diverse runtime environments.

For load prediction, the model achieves consistent accuracy
under stable and periodic loads. This reflects that the task-
aware embedding mechanism can extract key temporal
structure features and model regular patterns effectively.
Although performance slightly drops under bursty loads due to
their unpredictability, the model still maintains a competitive
level. This shows its ability to withstand sudden changes and
make rapid adjustments.

In terms of scheduling performance, the increase in
scheduling violation risk under bursty load patterns indicates
more severe resource allocation challenges. However, the
advantage of the MOSP module in policy initialization and fast
adaptation keeps the overall violation rate low. In particular,
under periodic and stable loads, the scheduling policy
dynamically adjusts based on task history. This helps ensure
compliance with service-level agreements.



Figure 5. The generalization ability test of the model under different load fluctuation modes

In summary, this experiment further confirms the
robustness and practicality of the proposed method in handling
diverse load fluctuations. It highlights the importance of meta-
learning strategies and task-aware mechanisms in enhancing
model generalization in cloud computing environments. The
ability to adapt well to changing conditions is a core feature
required for building intelligent cloud scheduling systems
suitable for real-world deployment.

5) Resource fairness scheduling experiment in a multi-
tenant environment

This paper also presents a resource fairness scheduling
experiment in a multi-tenant environment, aiming to evaluate
the ability of the proposed method to maintain balanced
resource allocation among multiple tenants. In practical cloud
computing platforms, ensuring fairness is a critical aspect of
system performance, especially when diverse workloads from
different tenants compete for shared computing resources. Fair
scheduling not only prevents resource monopolization by a
single tenant but also contributes to overall system stability and
service quality. Therefore, this experiment is designed to
analyze how effectively the scheduling strategy distributes
resources under concurrent and dynamic task demands from
multiple tenants.

The experiment involves simulating a multi-tenant
environment where several tenants submit tasks simultaneously,
each with different load characteristics and resource
requirements. The scheduling system must allocate CPU,
memory, and other critical resources while maintaining fairness
across tenants. To assess this, fairness metrics are introduced to
quantify the degree of balance in resource usage. This setup
allows for the observation of whether the scheduling strategy
can provide equitable access to system resources, regardless of
the variability in task types or arrival patterns. The detailed
outcomes of this experiment are visually presented in Figure 6,
which illustrates the resource usage trends and fairness
dynamics over time.

As shown in the experimental results of Figure 6, the
proposed scheduling method achieves balanced resource
utilization in a multi-tenant environment. This reflects good
scheduling fairness. The resource usage curves of the three
tenants remain close to the overall trend. This indicates that the
scheduling strategy effectively prevents resource skew or long-
term occupation of critical system resources by any single
tenant. Such balanced allocation is a direct result of the joint
optimization of task representation and scheduling policy.

Figure 6. Resource fairness scheduling experiment in a
multi-tenant environment

Over time, the fluctuations in resource usage among tenants
remain within a reasonable range. This shows that the proposed



method provides strong tenant isolation and consistent
responsiveness in dynamic systems. Even when the structure of
resource demand changes, the scheduler uses learned task
representations to allocate resources in an orderly manner. This
avoids issues such as resource contention and scheduling
starvation and improves system availability and stability.

In terms of resource fairness metrics, the trend of the Theil
index further reflects the system's ability to regulate scheduling
fairness. As time progresses, the index gradually decreases,
indicating that resource allocation among tenants becomes
more balanced. The system continuously optimizes the
scheduling strategy during operation and achieves fair
scheduling across tasks. This result verifies the self-adjustment
mechanism of the MOSP module during policy transfer and its
sustained ability to enhance system-level fairness.

Overall, the results show that the proposed scheduling
method performs well not only in single-task environments but
also maintains consistent and fair resource usage in complex
multi-tenant scenarios. The model can dynamically perceive
task load features and adjust the resource allocation strategy.
This provides a solid algorithmic foundation for building
efficient and fair cloud resource management frameworks.

5. Conclusion
This paper presents a meta-learning-based cross-scenario

resource control method for cloud environments with multiple
tenants. It addresses the limitations of traditional approaches in
task transfer, model generalization, and fast adaptation. The
proposed method introduces innovations at both the task
modeling and scheduling strategy levels. Specifically, it
designs a task-aware representation embedding mechanism and
a meta-optimized scheduling policy module. Experimental
results show that the proposed method achieves high stability,
low error, and fast response across various load scenarios and
task types, demonstrating its practicality and scalability in
dynamic and complex systems.

The task-aware representation embedding mechanism
structurally models load sequences. This enables the model to
extract transferable and discriminative task features. It
effectively solves the problems of information loss and poor
generalization in multi-task modeling. Meanwhile, the meta-
optimized scheduling strategy uses shared knowledge from
historical tasks to initialize and rapidly fine-tune scheduling
parameters. This allows the model to generate high-quality
scheduling strategies quickly under different task demands and
resource constraints. This end-to-end generalization
mechanism removes the reliance of traditional schedulers on
specific scenarios and offers a practical path toward building
general and intelligent scheduling systems.

From an application perspective, the proposed method
holds significant theoretical value and broad practical potential.
It can be widely applied to elastic cloud services, serverless
computing frameworks, and AI inference deployment
platforms. As enterprise applications increasingly demand
intelligent resource management, adaptability, and service
stability, scheduling algorithms with task transfer learning
capabilities will become key technologies for improving cloud
service quality. In addition, the method has strong

transferability to emerging scenarios such as edge computing,
hybrid clouds, and green computing. It lays a solid algorithmic
foundation for the next generation of intelligent and
collaborative resource scheduling systems.

6. Future work
Future research may explore finer-grained task

representation learning methods to improve model robustness
under extreme workload fluctuations. Integrating federated
learning, multi-agent scheduling, and system feedback
mechanisms could help build more interactive, autonomous,
and secure intelligent resource management frameworks. By
extending the meta-learning approach proposed in this paper to
broader system optimization tasks, it is possible to accelerate
the development of intelligent cloud platforms. This will
support a shift from automation to self-evolving systems aimed
at sustainable and efficient operations.
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