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Abstract: This paper addresses the challenges of data heterogeneity, privacy protection, and task personalization in server node
failure detection within distributed systems. It proposes an intelligent detection algorithm framework that integrates federated
learning and meta-learning. The method uses a task-adaptive meta-learning mechanism to build a transferable meta-model. This
enables fast adaptation to different node failure patterns and improves generalization. At the same time, a personalized
aggregation strategy is introduced to dynamically adjust the model parameter updates based on the local features of each node.
This enhances the personalization of local models and improves overall detection accuracy. During model training, data remain
stored locally to preserve privacy. This avoids the data leakage risks of traditional centralized learning. The method also enables
node-level adaptive optimization while maintaining global collaboration. A series of experiments, including comparative studies,
ablation tests, and robustness evaluations, are designed to validate the effectiveness and advantages of the proposed method from
multiple perspectives. The results show that compared to mainstream federated learning methods, the proposed model achieves
significant improvements in Accuracy, Precision, and Recall. It performs especially well under complex scenarios such as Non-
IID data and inactive nodes. These findings demonstrate the method's strong stability, adaptability, and practical potential for
large-scale distributed environments.
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1. Introduction
With the rapid development of information technology,

distributed systems have become central to modern computing
architectures, especially in emerging areas such as cloud
computing, edge computing, and the Internet of Things[1,2].
Large-scale deployment of server nodes has become common.
However, failures of server nodes remain a critical factor that
limits system reliability, stability, and service continuity. When
a server node fails, system performance may drop significantly
or even lead to service interruptions, causing serious losses to
business operations. Therefore, building an efficient and
accurate server node failure detection mechanism has become a
vital task in maintaining and managing distributed systems[3.4].

Traditional centralized failure detection methods show clear
drawbacks under the growing scale of data and system
complexity[5]. These include slow response, high
communication overhead, and overload at central nodes. New
approaches and techniques are urgently needed to address these
issues.

Federated learning, as an emerging paradigm in distributed
machine learning, enables collaborative model training without
sharing raw data. It offers an effective path to address
challenges in data privacy, communication efficiency, and
system scalability. In server node failure detection scenarios,
each node typically holds heterogeneous and widely distributed
monitoring data. Directly uploading these data to a central

server is neither practical nor safe due to privacy risks.
Federated learning allows each node to train models locally and
improves the global model through parameter aggregation.
This supports efficient collaborative detection while preserving
privacy, greatly enhancing the usability and scalability of
failure detection systems[6].

However, federated learning still faces challenges in real-
world applications. Problems such as non-independent and
identically distributed data among nodes, differences in training
capabilities, and slow model convergence often reduce its
effectiveness. Meta-learning, a learning strategy that has
developed rapidly in recent years, focuses on learning to learn.
It accumulates knowledge across tasks to enable models to
quickly adapt to new ones. Integrating meta-learning into
federated learning can significantly enhance the generalization
and adaptability of models across nodes. It also improves
detection accuracy under limited samples and distribution
differences. This offers a new research direction for failure
detection in heterogeneous server node environments[7].

The combination of federated learning and meta-learning
not only addresses the limitations of each method but also
brings intelligence and personalization to server node failure
detection. Under this framework, each node can learn local
failure features and also acquire generalizable knowledge from
the global model. This forms a detection mechanism that
balances local precision with global insight. It effectively
enhances the model's response to novel or rare failures. It also
helps identify abnormal conditions before faults spread,



reducing system risks, improving maintenance efficiency, and
meeting the demands of modern distributed systems for high
availability and automated management.

Therefore, research on failure detection algorithms for
server nodes based on the combination of federated learning
and meta-learning holds significant theoretical and practical
value. On the one hand, it advances the application of
distributed intelligent learning technologies in system
maintenance. It provides a new paradigm for handling large-
scale heterogeneous data. On the other hand, it offers
intelligent, efficient, and reliable technical support for server
node failure prediction and emergency response systems. This
approach is applicable in critical areas such as finance, energy,
transportation, and healthcare. It contributes to improving the
autonomy and security of national information systems.

2. Related work
2.1 Federated Learning

Federated learning is a distributed machine learning
framework designed to address issues of data privacy and
collaborative computation. In traditional centralized learning,
all participating nodes must upload local data to a central server
for unified modeling[8,9]. This approach carries risks of data
leakage and may lead to high communication overhead and
computational bottlenecks. Federated learning allows each
node to train models independently on local data. Only model
parameters or gradients are uploaded to the server for
aggregation and updating[10]. This mechanism avoids the
centralized transfer of raw data. It shows strong adaptability
and flexibility in multi-source heterogeneous data scenarios. It
is particularly suitable for domains with strict privacy
requirements, such as finance, healthcare, and the industrial
internet. As the demand for data security and intelligent
collaboration continues to grow, federated learning is becoming
a key supporting technology in distributed intelligent
systems[11].

In the context of server node failure detection, the
advantages of federated learning are especially evident. Server
nodes are widely distributed, and their data are heterogeneous
and unevenly sampled. A traditional unified model often fails
to adapt to these differences. Federated learning enables local
modeling at each node, which preserves personalized
information[12]. At the same time, the iterative optimization of
the global model improves overall detection performance. In
real-world systems, some nodes may have unstable network
connections or limited resources and cannot participate
continuously in training. Federated learning supports dynamic
participation through its flexible mechanisms. This ensures the
stability and continuity of model training. As a result, federated
learning is a preferred technical approach for building scalable,
robust, and distribution-aware failure detection systems[13].

Although federated learning has shown promising
applications in many fields, it still faces challenges in the
specific task of server node failure detection. First, large
differences in data distribution among nodes may affect model
generalization and slow down convergence[14,15]. Second,
uneven computational resources and varying willingness to

participate can lead to instability or even failure during training.
In addition, issues such as setting aggregation weights,
controlling communication frequency, and designing security
mechanisms require further optimization in real applications.
Therefore, to extend the use of federated learning in failure
detection, it is necessary to integrate other advanced learning
paradigms. These may include meta-learning and adaptive
optimization strategies. Such combinations can fully leverage
the collaborative and intelligent potential of federated learning
in heterogeneous distributed environments.

2.2 Meta-Learning

Meta-learning is a machine-learning approach aimed at
improving model adaptability and generalization[16]. Its core
idea is to train a model across multiple tasks so that it can
quickly adapt to new tasks. In traditional supervised learning,
models often rely on large amounts of labeled data to perform
well[17]. This is impractical in certain tasks or environments,
especially when samples are scarce or data distribution changes
frequently. In such scenarios, the efficiency and accuracy of
traditional methods are limited. Meta-learning extracts shared
knowledge structures from multiple learning tasks. This allows
the model to rapidly fine-tune with only a few samples when
faced with new tasks[18]. It significantly improves learning
efficiency and generalization. This ability to "learn to learn" is
highly valuable in many real-world applications. It shows
strong flexibility and adaptability, especially when intelligent
systems face dynamic environments and personalized
requirements[19].

In the task of server node failure detection, the introduction
of meta-learning provides a new modeling approach. Server
nodes differ significantly in operating environments, business
logic, and hardware configurations. These differences lead to
highly heterogeneous failure data distributions. Such
inconsistency reduces the generalization of models across
nodes and lowers the accuracy and robustness of the overall
detection system. Meta-learning can conduct cross-task training
over multiple failure detection tasks from different nodes. It
extracts common features and builds a meta-model with fast
adaptation ability[20]. This model can quickly adjust when
encountering new nodes or new failure patterns. It improves
generalization and offers clear advantages over traditional
methods in situations like cold starts and limited samples.

Despite theoretical and algorithmic advances, applying
meta-learning to server node failure detection still faces
technical challenges. First, meta-learning relies on proper task
partitioning. In real systems, the classification of failure types
is often ambiguous and uncertain, which increases the
difficulty of constructing meta-tasks[21,22]. Second, training
meta-learning models is resource-intensive. When dealing with
multiple tasks and high-dimensional parameter spaces, the
demand for computational resources is high. In addition,
differences in task similarity among nodes can affect the
transfer efficiency of the meta-model. Therefore, for practical
applications, it is essential to design efficient task generation
mechanisms, optimize model update strategies, and manage
training resource consumption. These are key steps to
improving the usability of meta-learning in failure detection.



3. Method
This study proposes a server node failure detection method

that integrates Federated Learning (FL) and Meta-Learning
(ML). The goal is to address the challenges of strong data
heterogeneity and high personalization demands in distributed
environments. The first major innovation lies in the
introduction of a task-adaptive meta-learning mechanism. This
mechanism builds a fast and transferable meta-model. It
enables rapid fine-tuning and efficient generalization when
facing diverse failure data from different server nodes. This
significantly enhances the model's ability to adapt to node-
specific differences. The second innovation is the design of a
Personalized Aggregation Strategy (PAS). Unlike the unified

model aggregation in traditional FL, this strategy dynamically
adjusts aggregation weights based on each node's feature
distribution and training feedback. It strengthens local
detection performance and personalized representation while
maintaining global collaboration. It ensures that the model
balances global consistency with local sensitivity. The overall
framework retains the privacy protection and distributed
coordination advantages of FL. At the same time, it
incorporates the fast adaptation capabilities of ML. This
provides an efficient, intelligent, and scalable solution for
server failure detection in complex and heterogeneous
environments. The architecture of the overall model is
illustrated in Figure 1.

Figure 1. Overall model architecture diagram

3.1 Meta-learning mechanism based on task adaptability
In this study, we introduced a meta-learning mechanism

based on task adaptability to enhance the model's ability to
generalize and adapt in heterogeneous server node fault
detection tasks. This mechanism is grounded in the principles
of multi-task learning, where each server node is treated as a
distinct task due to differences in data distribution, operational
behavior, and failure patterns. By optimizing across multiple
such tasks simultaneously, the approach aims to learn a model
initialization that captures shared knowledge across tasks. This
initialization serves as a foundation from which the model can
rapidly adapt to the specific characteristics of new or unseen
nodes with minimal computational effort.

The core of the meta-learning strategy lies in the
optimization of a meta-objective function. This function is
designed to enable the model to achieve fast convergence on
new tasks through just a few gradient steps, using limited data.
It effectively equips the model with a form of inductive bias
that reflects commonalities across different server nodes,
while maintaining flexibility for task-specific adaptation. The
structure and workflow of this meta-learning module are
illustrated in Figure 2, which outlines the relationship between

task-level training, meta-optimization, and model parameter
updates.

Figure 2.Meta-learning mechanism module architecture
based on task adaptability



Specifically, let the task set be },...,,{ 21 NTTTT  ,
each task corresponds to a fault detection subtask of a server
node. We define the model parameter as  , and the goal is to
learn a shared initialization parameter * on multiple tasks
so that it has good migration performance when facing new
tasks.

For each task iT , we first perform one or more gradient

updates on the local training dataset iD to obtain the task-

specific model parameters i' :

)('   iTi L

Where  is the learning rate and )(
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the loss function on task iT . Subsequently, the performance
of the task-specific parameters is fed back to the meta-model
to update the shared initialization parameter  . The meta-
update process is as follows:
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Among them,  is the meta-learning rate. This process
realizes the transfer and sharing of knowledge between tasks,
thereby building a meta-model that can quickly adapt to the
new node failure distribution.

To further enhance task adaptability, we introduced a
regularization mechanism in the model optimization process to
guide the model parameters to maintain consistency with the
global optimal direction when the meta-task is updated.
Specifically, a parameter offset term is added to the meta-loss,
and the optimization objective becomes:
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Among them,  controls the weight of the
regularization term, which helps prevent overfitting between
tasks and maintain parameter stability. In addition, we also
consider the impact of task importance on meta-updates and
use the weight coefficient iw to reflect the

representativeness and influence of task iT . The optimization
objective is further expanded to:
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This task-weighted optimization method effectively
enhances the model's focus on core tasks while retaining its
adaptability to edge tasks.

Combining the above mechanisms, task-adaptive meta-
learning not only improves the model's ability to quickly learn
heterogeneous node fault characteristics but also strengthens
the flexibility of the model's personalized expression while
maintaining overall generalization capabilities. By
constructing a unified optimization path between tasks, this

method provides a core learning engine with global
transferability and local adaptability for fault detection under
the federated learning framework.

3.2 Personalized Aggregation Strategy

To further enhance the personalized performance of the
model on each server node, this study designs a Personalized
Aggregation Strategy (PAS) to replace the traditional global
model parameter aggregation used in federated learning. The
core objective of this strategy is to build a local model with
personalized features for each node. It considers task
characteristics, adaptive learning capabilities, and differences
in data distribution. This leads to higher detection accuracy
and improved robustness. During the federated optimization
process, we do not directly use the averaging strategy for
model merging. Instead, we apply personalized weighting to
adjust each node's contribution to the aggregation. This
enables the global model to achieve both generalization and
customization. Its module architecture is shown in Figure 3.

Figure 3. PAS module architecture
Assume that the local model parameter of the jth node is

t
j , its training loss is )( t

jjL  , and the aggregation goal is to

build a customized global update based on the task
performance of each node and the weight distribution
coefficient jw . The basic form of the personalized

aggregation strategy is defined as follows:
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Where  is a hyperparameter that adjusts the
consistency between the local model and the global model.

During the parameter update process, each node fine-
tunes according to its customized loss function and uploads
the optimized model parameters to the center. The server then
completes the next round of aggregation based on the
personalized strategy. To ensure the stability and fairness of
weight distribution, we introduce a dynamic weighting



mechanism based on gradient similarity, which is defined as
follows:
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This mechanism enables nodes whose gradient directions
are more consistent with the global objective to obtain greater
weights, thereby enhancing the convergence and performance
stability of the overall model.

In addition, considering the different task complexity and
model expression capabilities of each node, we designed a
personalized scheduling strategy to dynamically choose
whether to use the global model or the local fine-tuned model
for the final prediction. The final hybrid output model is as
follows:
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]1,0[j controls the degree of personalization and

can be adjusted adaptively through the performance of the
validation set. This strategy not only improves the
generalization ability of the model in a non-independent and
identically distributed (Non-IID) data environment but also
effectively solves the different requirements of different nodes
on the degree of model sharing, thus achieving a more robust
and adaptable distributed fault detection system.

4. Experimental Results
4.1 Dataset

This study uses the Alibaba Cluster Trace 2018 dataset as
the validation source for the server node failure detection
algorithm. The dataset was collected from a real large-scale
distributed system. It contains server operation data from
Alibaba's production environment and reflects high levels of
realism and complexity. The data include machine status,
resource usage (such as CPU, memory, and disk), task
scheduling information, and node-level event logs. These
provide rich feature dimensions and behavioral patterns for
failure detection tasks.

A key characteristic of this dataset is its time series nature
and typical non-independent and identically distributed (Non-
IID) properties. Different server nodes show varying load
states and behavior patterns over time. The dataset includes a
portion of labeled failure events, which can be used to train
and evaluate anomaly detection and prediction models. The
data distribution is highly imbalanced. Most periods represent
normal states, while only a few indicate failures. This poses
challenges to model robustness and detection capability and
better reflects real-world scenarios.

To support the distributed detection framework of
federated learning and meta-learning, this study divides the
dataset into multiple subsets. Each subset corresponds to an
individual server node. This partitioning preserves the
personalized operational characteristics of each node. It also

follows the data isolation principle in distributed training. It
helps simulate the independence and heterogeneity of nodes in
real environments. This allows for the effective evaluation of
personalized aggregation and task adaptation mechanisms.
The dataset is widely representative in cloud computing and
resource scheduling research and serves as an ideal foundation
for node-level failure detection studies.

4.2 Experimental setup

In the experimental setup of this study, a distributed
simulation environment was built based on the Alibaba Cluster
Trace 2018 dataset. The goal is to evaluate the performance of
the proposed server node failure detection algorithm that
combines federated learning and meta-learning. The data were
divided into multiple subsets, with each subset representing a
server node. This simulates the heterogeneity and isolation of
data in real distributed systems.

During each round of federated training, each node
performs local model training. Parameter exchange with the
server is conducted based on predefined communication
rounds and aggregation intervals. All models use the same
initial architecture and hyperparameter configuration. This
ensures fairness in comparison. The experiments were
conducted in a Python environment using PyTorch as the deep
learning framework. Federated communication was
implemented through a custom lightweight message-passing
module. The main hardware configuration includes multi-core
CPUs and NVIDIA GPUs. Detailed specifications are shown
in the table below. Its detailed configuration is shown in Table
1.

Table 1: Specific parameter diagram
Parameter name Setting Value
Number of Nodes 20 simulated server nodes
Model Architecture 3-layer MLP (input-128-64-

output)
Loss Function Cross Entropy
Optimizer Adam
Learning Rate 0.001
Meta-Learning Rate 0.0005
Communication Rounds 100
Batch Size 64
Hardware Intel Xeon CPU, NVIDIA Tesla

V100 GPU

4.3 Experimental Results

1) Comparative experimental results

This paper first gives the comparative experimental results,
as shown in Table 2.

Table2: Comparative experimental results
Method Accuracy Precision Recall
FedAvg[23] 86.9 85.2 82.1
FedProx[24] 88.3 86.1 83.4
PFedMe[25] 89.6 87.8 85.0
Ditto[26] 90.4 88.7 86.2
Ours 93.1 91.3 89.6



As shown in the comparative results in Table 2, the
proposed method, which combines the Personalized
Aggregation Strategy and Task-Adaptive Meta-Learning,
achieves the best performance in the task of server node failure
detection. It consistently outperforms existing mainstream
federated learning models. In particular, the method reaches
93.1% in Accuracy, which is 6.2 percentage points higher than
the baseline FedAvg. This clearly demonstrates the superior
modeling capability and fault recognition accuracy of our
approach in complex and heterogeneous environments.

Further analysis of the Precision metric shows that our
method achieves 91.3%, significantly higher than 85.2% for
FedAvg and 86.1% for FedProx. This indicates that the model
is more effective in distinguishing between normal and
abnormal states when identifying faulty samples, thus reducing
the false positive rate. In server failure detection, false alarms
can lead to unnecessary resource scheduling and even system
intervention. Therefore, higher precision is critical for practical
system deployment. It highlights the practicality and stability
of our method in real-world applications.

Regarding Recall, our method also achieves an excellent
score of 89.6%, outperforming all comparison methods. This
improvement means the model has greater sensitivity in
capturing potential faults. It can effectively identify more real
failure events. Higher recall is especially important in
production environments, as missed detections may lead to
system crashes or safety risks. The task-adaptive meta-learning
strategy we propose successfully enhances the model's
generalization and fault response ability across diverse node
data.

Overall, our method shows clear advantages across all three
key metrics. This indicates that the combination of
personalization and rapid adaptation is an effective path to
improving federated fault detection performance in multi-node,
heterogeneous, and Non-IID data settings. Compared with
traditional unified modeling approaches, our method better
balances global knowledge sharing and local node differences.
It demonstrates strong potential and value for application in
real-world server system maintenance scenarios.

2) Ablation Experiment Results

This paper also further gives the results of the ablation
experiment, and the experimental results are shown in Table 3.

Table 3: Ablation Experiment Results
Method Accuracy Precision Recall
Ours 93.1 91.3 89.6
w/o PAS (No
Personalized
Aggregation)

90.2 88.1 85.7

w/o Meta-Learning 89.5 87.4 84.2
w/o Both PAS &
Meta

87.6 85.5 82.8

Global-Only 85.9 83.2 80.5

As shown in the ablation results in Table 3, the complete
model proposed in this study achieves the best performance
across Accuracy, Precision, and Recall. The accuracy reaches
93.1%, significantly higher than all other ablated versions. This

demonstrates that the overall design, which integrates the
Personalized Aggregation Strategy (PAS) and Task-Adaptive
Meta-Learning, offers a clear performance advantage in server
node failure detection. It effectively identifies failure states in
complex systems.

Further comparison shows that removing the Personalized
Aggregation Strategy (w/o PAS) leads to a noticeable drop in
performance. Precision decreases from 91.3% to 88.1%. This
indicates that PAS plays a critical role in enhancing the model's
adaptability and discriminative accuracy across different nodes.
Due to the high heterogeneity among server nodes, a unified
model cannot fully capture the local characteristics of each
node. PAS addresses this issue and improves overall detection
precision.

When the Task-Adaptive Meta-Learning module is
removed (w/o Meta-Learning), the Recall drops from 89.6% to
84.2%. This suggests that the model becomes less capable of
capturing true failure events. The result highlights the
importance of meta-learning in adapting to few-shot and Non-
IID data. It enables the model to quickly and effectively learn
node-specific failure patterns, thereby enhancing generalization.

Most notably, when both PAS and Meta-Learning are
removed (w/o Both) or when a centralized unified training
strategy is used (Global-Only), performance declines further.
The accuracy drops to 87.6% and 85.9%, respectively. These
results confirm that the two core mechanisms are not only
effective individually but also highly complementary. Together,
they form an efficient failure detection system that supports
both global collaboration and local personalization. This fully
demonstrates the soundness of the proposed design and its
potential for application in distributed and heterogeneous
environments.

3) Hyperparameter sensitivity experiments

Furthermore, this paper gives the experimental results of
hyperparameter sensitivity. First, the experimental results of
the learning rate are given, as shown in Table 4.

Table 4: Hyperparameter sensitivity experiment results
(learning rate)

Learning Rate Accuracy Precision Recall
0.004 90.3 88.1 85.0
0.003 91.7 89.6 87.1
0.002 92.4 90.5 88.3
0.001 93.1 91.3 89.6

As shown in the learning rate sensitivity results in Table 4,
the proposed model maintains relatively stable performance
across different learning rate settings. The best results are
achieved when the learning rate is set to 0.001. In this setting,
the model reaches 93.1% Accuracy, 91.3% Precision, and
89.6% Recall. This indicates that a lower learning rate helps
guide the model to converge more stably on complex Non-IID
server node data. It also allows the model to learn feature
representations with stronger generalization.

When the learning rate is increased to 0.004, the model
performance degrades. Accuracy drops to 90.3%, while



Precision and Recall fall to 88.1% and 85.0%, respectively.
This suggests that an excessively high learning rate may cause
the model to oscillate or overshoot near local optima. As a
result, it struggles to capture fine-grained differences in node
failure data, which lowers detection accuracy. In heterogeneous
task settings, rapid parameter updates may weaken the model's
ability to learn personalized features and reduce its task
adaptation capability.

As the learning rate gradually decreases to 0.003 and 0.002,
the model performance improves. This demonstrates strong
training adaptability and sensitivity to hyperparameter settings.
The observed trend also indirectly validates the training
mechanism used in this study. The combination of the
Personalized Aggregation Strategy (PAS) and Task-Adaptive
Meta-Learning can reliably enhance model performance when
properly tuned. It effectively activates useful features from
local data and improves the generalization ability of the global
model.

In summary, a well-chosen learning rate is critical to the
proposed method. In multi-task, multi-node, and highly
heterogeneous environments, stable convergence is essential
for ensuring model generalization and robustness. The
excellent performance at a learning rate of 0.001 shows that
with fine training control, the model can effectively balance
local adaptation and global knowledge sharing. This leads to
improved efficiency and accuracy in failure detection.

4) Experiment on the impact of meta-learning update
frequency on performance

This paper also gives an experiment on the impact of meta-
learning update frequency on performance, and the
experimental results are shown in Figure 4.

Figure 4. Experiment on the impact of meta-learning update frequency on performance
As shown clearly in the results of Figure 4, the update

frequency of meta-learning has a significant impact on model
performance in the failure detection task. As the update
frequency decreases—that is, as meta-updates occur less
frequently—the model shows a consistent decline in Accuracy,
Precision, and Recall. This suggests that frequent meta-learning
updates help the model maintain strong task adaptability across
dynamic and diverse node data. They also enable more
effective extraction and transfer of failure-related knowledge.

When the meta-update is performed every single round, the
model achieves the best performance. The Accuracy reaches
0.931, Precision is 0.913, and Recall is 0.896. High-frequency
updates allow the model to quickly integrate personalized
information from different nodes. This keeps the meta-model
highly responsive to multi-task environments. As a result, it
can more sensitively identify potential failure behaviors across
complex and heterogeneous server nodes. This improves the
overall completeness and reliability of the detection.

In contrast, when the update frequency is reduced to every
10 or 20 rounds, model performance drops significantly. Recall

decreases to 0.842. This trend reflects a delayed response in the
meta-model's ability to adapt to new task distributions. Lower
update frequencies slow the model's reaction to local changes
in node data, which weakens its ability to capture abnormal
behavior in time. In real-world system maintenance, such
delays may cause late detection of failures and increase
operational risks.

Therefore, these experimental results further confirm the
critical role of task-adaptive meta-learning in server failure
detection. Maintaining a proper and frequent meta-learning
update schedule not only improves the model's ability to
transfer across Non-IID data but also enhances the timeliness
and effectiveness of personalized modeling. This is a key factor
in building high-performance distributed intelligent detection
systems.

5) Model robustness experiment when nodes are offline

This paper also gives a model robustness experiment when
the node is offline.



Figure 5.Model robustness experiment when nodes are offline

As shown in the node dropout robustness results in Figure 5,
model performance on Accuracy, Precision, and Recall
declines to varying degrees as the node dropout rate increases.
This indicates that when some server nodes fail to participate in
training or updating, the overall performance of the model is
significantly affected. It highlights the importance of node
activity in the federated learning framework. In heterogeneous
node environments, the absence of key nodes may prevent the
model from learning complete global features.

In the Accuracy trend, the model drops from 0.931 at 0
percent dropout to 0.823 at 50 percent dropout. This shows that
the system's ability to detect failures is weakened when fewer
nodes participate. Since federated learning relies on
contributions from each node's local data, a high dropout rate
leads to information loss and biased aggregation. As a result,
the model's generalization ability is reduced, making it harder
to detect faults accurately.

The Precision metric declines more gradually, but a
noticeable drop occurs when the dropout rate exceeds 30
percent. This suggests that with low node participation, the
model becomes more prone to false positives. It tends to
misclassify normal states as faults, reducing the reliability of
predictions. This behavior is especially problematic for

deploying automated failure detection in real systems. Frequent
false alarms may waste maintenance resources and disrupt
system scheduling.

In contrast, the decline in Recall shows a more linear
pattern. This means the model becomes more sensitive to
missing real failures. It further confirms that maintaining a
sufficient level of node participation is essential for model
robustness and comprehensive fault coverage. Overall, the
experiment confirms that the proposed method has a certain
degree of robustness. However, challenges remain in
environments with inactive nodes. Future work may consider
integrating active node selection, data augmentation, and model
compensation strategies to improve stability under high
dropout conditions.

6) Experiment with the influence of parameter
synchronization frequency on the detection effect.

Finally, this paper also gives an experiment on the
influence of parameter synchronization frequency on the
detection effect, and the experimental results are shown in
Figure 6.

Figure 6. Experiment with the influence of parameter synchronization frequency on the detection effect

As shown in the results of Figure 6, the frequency of
parameter synchronization has a significant impact on model
performance in the server node failure detection task. As the
synchronization interval increases—that is, when the model
synchronizes with the global server after more local training

rounds—the overall performance in Accuracy, Precision, and
Recall shows a declining trend. This indicates that frequent
synchronization helps the global model quickly integrate local
updates from all nodes, thereby improving detection
effectiveness.



Specifically, when the synchronization is performed every
round, the model achieves the highest Accuracy at 0.931.
When the synchronization frequency decreases to every twenty
rounds, the Accuracy drops to 0.876, showing a clear
degradation. This performance gap suggests that frequent
communication helps mitigate data distribution differences
across nodes under Non-IID conditions. It allows the model to
more reliably combine learning outcomes from diverse sources.

In terms of Precision, the trend is slightly different but still
consistent. As synchronization becomes less frequent, the
model's precision gradually declines. This implies that when
the model does not receive updated information from other
nodes for an extended period, it may overfit local patterns. This
leads to an increase in false positives. For failure detection
tasks, such behavior reduces the credibility and responsiveness
of the alerting system.

Recall also declines more linearly. This shows that the
model becomes less effective at capturing real failures as
synchronization frequency decreases. Insufficient
communication between nodes reduces the model's awareness
of global fault patterns in multi-source environments. As a
result, more faults go undetected. Overall, the results confirm
that the proposed method depends heavily on parameter
synchronization. They also highlight that balancing
communication cost and detection performance is a key design
challenge in building efficient and stable distributed detection
systems.

5. Conclusion
This paper proposes an intelligent algorithmic framework

that integrates federated learning and meta-learning for the task
of server node failure detection. The goal is to address key
challenges in distributed environments, such as data
heterogeneity, privacy constraints, and personalized task
requirements. By introducing a task-adaptive meta-learning
mechanism, the model achieves rapid transfer and efficient
generalization across diverse failure data sources. This
improves detection performance in new nodes or limited-
sample scenarios. At the same time, the personalized
aggregation strategy enhances the local model's ability to fit
node-specific features. It increases the robustness and accuracy
of the system under complex node differences.

Through various experimental settings, including
comparative analysis, ablation studies, parameter sensitivity
evaluations, and robustness tests, the proposed method shows
significant advantages in key metrics such as Accuracy,
Precision, and Recall. These results validate the theoretical
soundness of the design and confirm its practical value in real-
world server maintenance scenarios. Especially under Non-IID
data conditions, the method demonstrates strong personalized
learning and fault response capabilities. It provides effective
technical support for intelligent monitoring and autonomous
maintenance in distributed systems.

This study has important implications for promoting the
integration of federated learning and meta-learning in system-
level applications. It expands the research scope of distributed
intelligent algorithms and offers a feasible path for
collaborative model optimization. In high-availability and real-

time response industries such as finance, telecommunications,
transportation, and energy, the proposed method can serve as a
scalable and deployable intelligent detection solution. It helps
ensure the stable operation of large-scale infrastructure. Future
research can proceed in several directions. One direction is to
explore the model's adaptability in highly dynamic systems,
such as environments with frequent node changes or sudden
task shifts. Another direction is to extend the method to multi-
task collaborative learning or federated transfer learning
frameworks, enhancing generalization across systems and
scenarios. In addition, emerging techniques such as self-
supervised learning and federated neural architecture search
can be introduced to optimize model structure and reduce
computational and communication costs. These efforts will
support the development of more efficient, secure, and
intelligent distributed maintenance systems.
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