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Abstract: This paper addresses the problem of anomaly detection in high-dimensional and complex request scenarios. An
unsupervised anomaly request detection method based on diffusion models is proposed. The method integrates generative
modeling with a feature discrimination mechanism. It builds a forward noise injection and reverse reconstruction process to
effectively capture the distribution characteristics of normal request data. Specifically, a structure-aware module, Selective Noise
Injection for Reconstruction (SNIR), is introduced. It selectively injects noise during the forward diffusion phase to preserve key
feature dimensions and improve reconstruction quality. On this basis, a Feature-aware Discriminative Scoring (FDS) mechanism
is designed. It embeds the semantic features of original and reconstructed requests and computes a combined score using
Euclidean distance and cosine similarity. This enables fine-grained discrimination of abnormal requests. The method does not rely
on labeled data. It uses only normal samples for both modeling and detection. It offers strong generalization and practical
applicability. Experimental results on multiple benchmark datasets show that the proposed method significantly outperforms
existing representative methods in terms of AUC, Precision, and F1. It effectively handles diverse attack patterns and changes in
data distribution. It also maintains stable detection performance in high-noise environments.
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1. Introduction
With the rapid development of network and information

technology, backend systems have become the core hub of the
entire application ecosystem. They handle an increasing
volume of data requests and service calls[1,2]. As the number
of users and the complexity of requests grow, backend systems
face more severe challenges in security and stability. Abnormal
requests, as potential threats in system operation, may originate
from malicious attacks, configuration errors, or system failures.
These can cause service interruptions, data leakage, resource
abuse, and a decline in user experience. Therefore, designing
an efficient and accurate abnormal request detection system is
crucial for ensuring system reliability and improving service
quality[3].

Traditional anomaly detection methods mainly rely on rule-
based statistical features or machine learning techniques such
as clustering and classifiers. These approaches have practical
value in early-stage applications. However, they often depend
on manually crafted features and struggle with complex and
dynamically evolving request patterns. In modern distributed
systems, API request behavior is typically high-dimensional,
non-linear, and weakly structured[4]. Traditional models often
fail to capture deep semantic information and contextual
dependencies in data. As a result, their detection performance
is limited, especially when facing novel attacks or stealthy
anomalies. There is an urgent need for more intelligent and
expressive modeling methods in anomaly detection[5].

In recent years, generative models, especially deep
generative models, have offered new perspectives for anomaly
detection. Compared to discriminative models, generative
models can learn the latent distribution of normal data. They
identify anomalies through reconstruction errors or generation
probabilities[6]. This approach is well-suited for unsupervised
or semi-supervised settings, as it does not require large
amounts of abnormal data. Current mainstream generative
methods include Variational Autoencoders and Generative
Adversarial Networks. While they have shown promising
results, challenges remain in modeling complex temporal data,
sparse structures, and high-dimensional semantics. In particular,
their reconstruction accuracy and controllability still need
improvement[7].

Diffusion models have emerged as a new type of generative
model. They show strong modeling capabilities and stable
reconstruction quality in fields such as image generation,
speech synthesis, and natural language processing. The core
idea is to gradually add noise and then reverse the process to
denoise, approximating the target distribution from a random
one. This progressive mechanism provides better controllability
and robustness[8]. In anomaly detection, this makes diffusion
models highly promising. For complex request sequences with
temporal or contextual dependencies, diffusion models can
learn and reconstruct normal behavior step by step. This allows
accurate identification of deviations from normal patterns.

A discriminative reconstruction strategy based on diffusion
models improves anomaly detection accuracy. It also offers
strong interpretability and scalability. In practice, this strategy



can work with modules like log analysis, system monitoring,
and access control. It enables early detection, localization, and
response to abnormal requests. The general modeling ability of
diffusion models also allows them to handle various request
data types, including structured, semi-structured, and
unstructured data. This supports building a unified and efficient
security detection framework. Therefore, applying diffusion
models to backend anomaly detection has significant
theoretical value and broad engineering potential. It also
contributes to the development of intelligent systems with high
security and availability.

2. Related work
2.1 Diffusion Model

Diffusion models were originally proposed for data
generation tasks. The core idea is to gradually inject noise into
data to transform it into a form close to a Gaussian
distribution[9,10]. Then, a reverse process is learned to recover
the original data step by step from pure noise. This two-stage
process of forward perturbation and reverse reconstruction
allows the model to capture fine-grained structures and deep
distribution information[11]. Compared to traditional
generative models, diffusion models do not rely on explicit
probability density estimation and do not require complex
adversarial training. They offer more stable training and
higher-quality generation. This mechanism has shown
significant advantages in image generation, speech synthesis,
and natural language modeling. It has become one of the
mainstream frameworks in generative modeling[12].

In anomaly detection tasks, the main motivation for
introducing diffusion models lies in their powerful data
reconstruction ability. Diffusion models learn the latent
distribution of normal samples[13]. As a result, they can
reconstruct normal data accurately. When encountering unseen
anomalies that deviate from the training distribution, the
reconstruction performance drops significantly. The difference
in reconstruction error becomes a key indicator for identifying
anomalies[14]. Compared with earlier reconstruction methods
using autoencoders or variational autoencoders, diffusion
models offer stronger modeling capacity and more stable
reconstruction quality. This is especially effective when
handling high-dimensional and complex data. Diffusion models
can better recover detailed data features, improving sensitivity
to fine-grained anomalies and reducing false negatives and
false positives[15].

In addition, diffusion models have a natural advantage in
unsupervised learning. This makes them suitable for anomaly
detection scenarios where labeled data is scarce. The training
process relies only on normal data and does not require
abnormal samples. This fits common real-world one-class
learning settings. With the development of optimization
strategies such as downsampling acceleration, conditional
modeling, and attention mechanisms, the training efficiency
and inference speed of diffusion models have improved
significantly. They are gradually becoming applicable to online
or near real-time scenarios. These features make diffusion
models promising not only in theoretical research but also in
practical systems. They provide a solid technical foundation for

building more efficient and intelligent anomaly detection
systems[16].

2.2 Reconstruction-discriminative anomaly detection
algorithm

Reconstruction-based anomaly detection algorithms have
been widely used in unsupervised and weakly supervised
settings in recent years. The core idea is to learn reconstruction
patterns from normal data and use reconstruction error as the
criterion for anomaly detection[17]. These methods typically
adopt an encoder-decoder neural network structure, such as
autoencoders, variational autoencoders, or generative
adversarial networks[18]. They map input data into a low-
dimensional latent space and then reconstruct it back to the
original space. Since the model is trained only on normal data,
it can accurately reconstruct normal samples. However, when
faced with abnormal data that deviates from the training
distribution, the model usually fails to produce high-quality
reconstructions[19]. This leads to larger reconstruction errors,
which serve as an effective metric for distinguishing normal
from abnormal samples[20,21].

Compared with traditional discriminative methods such as
classifiers or clustering models, reconstruction-based detection
has advantages like independence from labels and strong
adaptability. It is especially suitable for scenarios with rare or
unknown anomaly distributions[22]. With the advancement of
deep learning, many enhanced models have been proposed to
improve the discriminative ability of this approach. For
example, attention mechanisms, residual connections, and
multi-scale feature fusion have been introduced to improve
reconstruction quality and robustness[23]. Time series
modeling techniques such as LSTM and Transformer have also
been integrated to handle anomalies with temporal
dependencies. In addition, some studies have combined
reconstruction error with distributional distance in the feature
space to build multi-level anomaly scoring systems. This
improves the detection of boundary and stealth anomalies[24].

Although these methods have shown strong performance in
various applications, they also have limitations. In some
situations, the model may produce accurate reconstructions for
certain abnormal samples, which leads to false negatives and
weakens the reliability of detection. This occurs because the
model focuses primarily on reconstructing input data without
explicitly learning to differentiate between normal and
abnormal patterns. Moreover, relying solely on reconstruction
error as the detection criterion can be insufficient, as it may fail
to reflect the subtle structural or semantic irregularities present
in complex data distributions[25].

To address these challenges, recent research has
increasingly explored the integration of reconstruction
mechanisms with discriminative modeling. This combined
approach typically introduces a discriminator or an auxiliary
classification module that operates on the reconstructed outputs.
The goal is to enhance the model's sensitivity to anomalies by
leveraging both reconstruction consistency and discriminative
signals. This hybrid strategy enables a more comprehensive
understanding of data behavior, capturing not only how well a
sample is reconstructed but also how its feature representations
align with the learned patterns of normality.



3. Method
This study proposes an anomaly request detection method

based on diffusion models. It combines a generative
reconstruction mechanism with a discriminative enhancement
strategy to improve anomaly recognition in complex request
environments. Compared with existing methods, the proposed
approach includes two main innovations. First, a Selective
Noise Injection for Reconstruction (SNIR) strategy is
introduced. During the forward diffusion process, noise is
selectively injected to retain critical structural information.

This enhances the model's ability to reconstruct normal
requests more effectively. Second, a Feature-aware
Discriminative Scoring (FDS) mechanism is designed. It
integrates original request features with reconstruction errors
to perform multidimensional evaluation. This improves the
model's sensitivity to boundary anomalies and potential threats.
These two innovations complement each other. They enable
the model to maintain high-quality generation while
improving discriminative performance. The method is suitable
for diverse and highly dynamic API request scenarios. The
model architecture is shown in Figure 1.

Figure 1. Overall model architecture diagram

3.1 Selective Noise Injection for Reconstruction
In the basic framework of diffusion models, the forward

diffusion process gradually adds Gaussian noise to input data,
effectively transforming the original data distribution into a
standard Gaussian distribution over multiple steps. Traditional
diffusion models follow a fixed noise schedule, which
uniformly applies noise across all feature dimensions
regardless of their individual roles or importance. While this
approach is mathematically straightforward, it overlooks the
heterogeneous nature of real-world request data, where
different features often carry varying structural significance.
Some dimensions contain critical information essential for
accurate reconstruction, and indiscriminate noise injection into
these features can result in the degradation of meaningful
structural patterns. To mitigate this issue, this study introduces
a Selective Noise Injection for Reconstruction (SNIR)
mechanism, which incorporates a structure-aware noise
scheduling strategy during the forward diffusion phase. By
adaptively adjusting the noise applied to each feature based on

its structural relevance, SNIR enables the model to preserve
essential characteristics of the input data while still benefiting
from the generative capacity of the diffusion framework. Its
module architecture is shown in Figure 2.

Figure 2. SNIR module architecture



We assume that the original request sample is dRx 0 ,
and the sample at the t-th step of the diffusion process is
represented by tx , which is defined by the following formula:

zxx tttt   1 ， ),0(~ INz
Where )1,0(t is the noise scheduling parameter

corresponding to time step t. In SNIR, we introduce the
dimensional attention weight vector dw ]1,0[ and use it to
adjust the amplitude of noise injection so that the key
dimensions are less perturbed:

)(10 zwxx ttt  
The symbol  represents the element-wise

multiplication operation.
To further enhance the selectivity of noise injection, we

regularize the attention weight vector to keep it dynamically
learned under certain distribution constraints:
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At the same time, during the training process, an
auxiliary loss term is designed to guide the selectivity of noise
injection:

)1||(wKLLsnir  
Where KL represents the Kullback-Leibler divergence,

which is used to constrain the difference between the current
weight distribution and the uniform distribution, and  is
the adjustment coefficient.

Through the above mechanism, SNIR significantly
enhances the ability to protect the input structure while
maintaining the ability to generate the diffusion model. In
actual request data modeling, this strategy can effectively
alleviate the problem of important structure destruction,
making the subsequent reverse diffusion process more stable
and expressive, and laying a solid foundation for high-quality
reconstruction results. This method not only improves the
reconstruction accuracy of the model, but also provides a more
detailed and controllable basis for anomaly detection.

3.2 Feature-aware Discriminative Scoring

To further improve the discriminative performance of
anomaly request detection, this study introduces the Feature-
aware Discriminative Scoring (FDS) mechanism. It performs
multidimensional anomaly measurement by capturing deep
semantic differences between the original input features and
the reconstructed outputs. After the reconstruction process by
the diffusion model, FDS applies parallel feature extractors to
encode both the original request and its reconstructed version.
This allows the model to detect structural shifts in the high-
dimensional feature space that are caused by anomalies.
Unlike traditional methods that rely only on reconstruction
error, FDS focuses on semantic deviations in the request. This
enhances the model's ability to identify subtle and weak
anomalies. Its module architecture is shown in Figure 3.

Figure 3. FDS module architecture

Suppose the original request is 0x , and the

reconstruction result generated by back diffusion is 0x . Both

are embedded through the feature encoding network )(f
with shared parameters:
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The FDS mechanism compares the similarity between the
original features and the reconstructed features and uses this to
measure the degree of anomaly. The basic measurement
method is the Euclidean distance:

2|||| xxeuc hhD 
In addition, we introduce cosine similarity as a

supplementary metric to enhance the ability to capture
directional deviations:
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On this basis, in order to avoid the limitations of a single
metric, we design a weighted combination of anomaly score
functions:

cos0 )1()( DDxA euc   ， ]1,0[
Where  is the weight coefficient, which can adjust the

contribution ratio of different similarity indicators. The final
anomaly score not only takes into account the reconstruction
error itself, but also integrates the differences in the latent
semantic representation layer, thereby showing better
discrimination ability in complex and difficult-to-perceive
request anomalies.

In addition, to improve the feature extractor's ability to
align normal patterns, the FDS mechanism introduces an
embedding alignment regularization term during the training
process to encourage the embedding space of normal data to
be as consistent as possible:

1ˆ |||| xxalign hhL 
This regularization term promotes the stability of feature

alignment and is embedded as an auxiliary constraint term in



the overall training objective, synergistically improving the
accuracy of anomaly detection from both structural and
semantic dimensions. The FDS mechanism builds an anomaly
measurement system that takes into account both spatial
distance and directional consistency through a deep fusion
comparison of the reconstructed representation and the
original representation, providing strong support for anomaly
detection in high-dimensional complex data scenarios.

4. Experimental Results
4.1 Dataset

The primary dataset used in this study is UNSW-NB15.
This dataset is a comprehensive network traffic dataset
designed for cybersecurity research. It is widely used for
anomaly detection and intrusion recognition tasks. The dataset
contains a mix of real and synthetic traffic. It includes multiple
attack types as well as normal traffic samples. Due to its high
complexity and representativeness, it is well-suited for
evaluating model performance on high-dimensional and
unstructured network requests.

The UNSW-NB15 dataset is composed of several subsets.
Each record contains a large number of features, including
basic TCP/IP protocol fields, content features, time-based
statistical features, and behavioral features. The total number
of dimensions reaches 49. It includes various attack categories
such as analysis, backdoor, DoS, probing, and unauthorized
access control. This provides good class diversity and
structural complexity. The dataset effectively simulates real-
world abnormal request scenarios.

After preprocessing, the dataset has been widely applied
in both unsupervised and supervised learning tasks. This study
selects UNSW-NB15 mainly due to its broad acceptance in
anomaly detection research. It also contains a large number of
unlabeled anomalous requests. These characteristics align well
with the needs of this study, which is based on diffusion model
reconstruction and discriminative mechanisms. The dataset
provides strong support for testing model performance in
simulated real request scenarios.

4.2 Experimental setup

In the experimental setup, the model is deployed in an
environment built on the PyTorch framework. An NVIDIA
GPU is used to accelerate both training and inference. The
diffusion model uses a multi-step noise scheduling strategy.
The forward process includes 1000 steps, and the reverse
reconstruction is performed step by step through a neural
network trained for this purpose. The feature extraction
module and the discriminative mechanism share parameters to
ensure semantic consistency. The model is trained using the
Adam optimizer, with an initial learning rate of 0.001 and a
batch size of 128. Anomaly scores are generated by the FDS
module, based on similarity between features before and after
reconstruction.

The training and testing sets follow the original dataset
ratio. This ensures that the distribution of attack and normal
samples in the test set remains natural. No artificial anomalies
are introduced. The training process does not use any anomaly
samples. It models only normal requests, simulating real-
world unsupervised anomaly detection scenarios.

All evaluation metrics, including AUC, F1, and Precision,
are calculated on the same test set. The results are compared
with those of classical reconstruction-based methods. Table 1
lists the specific parameters used in the experimental setup.

Table 1: Specific parameter
Parameter name Setting Value
Franework Pytorch 2.0
GPU NVIDIA RTX A6000
Optimizer Adam
Learning Rate 0.001
BatchSize 128
Diffusion Steps 1000
Feature Extractor 3-layer MLP
Training Epochs 200

4.3 Experimental Results

1) Comparative experimental results

This paper first gives the comparative experimental results,
as shown in Table 2.

Table2: Comparative experimental results
Method AUC Precision F1-Score
DAGMM[26] 0.872 0.801 0.784
DevNet[27] 0.893 0.819 0.812
Gods[28] 0.867 0.778 0.769
Anomaly
Transformer[29]

0.912 0.841 0.834

Ours 0.941 0.869 0.879

As shown in the comparative results in Table 2, the
proposed method outperforms several mainstream anomaly
detection approaches across multiple key evaluation metrics. It
shows particularly strong performance in AUC and F1-Score.
As a measure of the model's overall discriminative ability, the
AUC of this method reaches 0.941, significantly higher than
that of other models. This indicates that the designed
discriminative mechanism can more effectively distinguish
between normal and abnormal requests. The improvement is
attributed to the diffusion model's ability to capture fine-
grained structure within the request distribution.

Further analysis of the trends in Precision and F1-Score
reveals a common trade-off between precision and recall in
traditional generative or discriminative models when handling
complex anomalies. For example, although DAGMM and
Gods have certain generative and discriminative capabilities,
they often misclassify requests with subtle anomaly patterns. In
contrast, the Selective Noise Injection (SNIR) mechanism
introduced in this study selectively preserves key feature
dimensions. This enhances the model's reconstruction of
normal requests and reduces false positives. As a result, the
Precision reaches 0.869.



At the same time, the increase in F1-Score shows that the
proposed method improves recall while maintaining high
precision. This improvement is closely related to the Feature-
aware Discriminative Scoring (FDS) mechanism. By
measuring semantic distances between original inputs and their
reconstructed embeddings, FDS provides a multi-perspective
evaluation of request abnormality. It strengthens the model's
ability to detect anomalies in complex and ambiguous
scenarios. This allows improved detection performance without
relying on labeled data.

Overall, the experimental results demonstrate that
combining diffusion models with structure-aware feature
fusion offers a new approach to anomaly detection. Compared
with traditional methods that rely only on reconstruction error
or classifier output, the proposed method builds a more refined
and stable anomaly detection framework. It leverages both the
robustness of the generative process and the semantic
consistency of the feature space. This makes it especially
suitable for high-dimensional, unstructured, and dynamically
evolving network request scenarios.

2) Ablation Experiment Results

This paper also presents the results of an ablation
experiment designed to evaluate the individual contributions of
key components within the proposed model. The purpose of
this experiment is to analyze the effectiveness of each module
by isolating and comparing different model configurations.
Through this controlled setup, it becomes possible to
understand how specific mechanisms impact the overall
performance of the detection framework. The detailed
experimental results and comparisons are provided in Table 3.

Table 3: Ablation Experiment Results
Method AUC Precision F1-Score
BaseLine 0.901 0.821 0.813
+SNIR 0.918 0.838 0.829
+FDS 0.924 0.846 0.841
Ours 0.941 0.869 0.879

As shown in the ablation results in Table 3, the BaseLine
model demonstrates a certain level of anomaly detection
capability even without any enhancement modules. It achieves
an AUC of 0.901 and an F1-Score of 0.813. This indicates that
the diffusion model itself has a degree of expressive power in
modeling the latent structure of request data. However, the
model still shows recognition errors, especially when dealing
with abnormal requests that have complex structural details or
subtle semantic deviations. Its reconstruction and
discrimination accuracy remain limited in such cases.

After introducing the Selective Noise Injection for
Reconstruction (SNIR) module, the model performance
improves significantly. The AUC rises to 0.918 and the F1-
Score increases to 0.829. SNIR injects structure-aware noise
into the input features during the diffusion process. This
preserves key dimensional information, enabling more accurate
reconstruction of normal requests. As a result, the
reconstruction error range for normal samples is effectively
reduced. This strategy enhances the model's expressive ability

during reconstruction, which indirectly improves its capacity to
distinguish abnormal behaviors.

When the Feature-aware Discriminative Scoring (FDS)
module is added to the BaseLine model alone, the AUC
increases to 0.924 and the F1-Score reaches 0.841. This
performance exceeds that of using SNIR alone. It indicates that
FDS provides a more powerful semantic distance evaluation in
anomaly discrimination. By assessing the differences in feature
space representations between original and reconstructed
requests, FDS complements the limitations of reconstruction
error. It improves the model's sensitivity to detecting anomalies
with subtle structural shifts.

Finally, when both SNIR and FDS are applied together, the
full model achieves the best performance. The F1-Score
increases to 0.879 and the Precision reaches 0.869. This result
validates the effectiveness of combining both mechanisms in
the model. SNIR ensures structural fidelity in the generative
process, while FDS guides the model to better assess
abnormality from a discriminative perspective. This dual-path
strategy, combining generation and discrimination, reflects the
study's focus on interpretability and robustness in anomaly
request detection.

3) Hyperparameter sensitivity experiments

Furthermore, this paper gives the experimental results of
hyperparameter sensitivity. First, the experimental results of
learning rate are given, as shown in Table 4.

Table 4: Hyperparameter sensitivity experiment results
(learning rate)

Learning Rate AUC Precision F1-Score
0.004 0.911 0.833 0.826
0.003 0.926 0.847 0.839
0.002 0.934 0.858 0.867
0.001 0.941 0.869 0.879

As shown in the hyperparameter sensitivity results in Table
3, the learning rate has a significant impact on the training
stability and final performance of the diffusion model in
anomaly request detection. When the learning rate is set to a
relatively high value of 0.004, the model achieves an AUC of
0.911 and an F1-Score of 0.826. This indicates that although
the model retains some discriminative ability, a high learning
rate may cause it to exit the optimal region too early during
training, leading to insufficient or unstable convergence.

As the learning rate decreases to 0.003 and 0.002, the
overall model performance improves steadily. The F1-Score
reaches 0.839 and 0.867, respectively. This suggests that a
moderate reduction in learning rate helps to optimize both the
diffusion process and the discriminative module more precisely.
At this stage, the Selective Noise Injection (SNIR) mechanism
shows better effectiveness in preserving structural information.
The Feature-aware Discriminative Scoring (FDS) module also
achieves more consistent feature alignment, which enhances
anomaly recognition accuracy.

When the learning rate is further reduced to 0.001, the
model reaches its best performance. The AUC increases to



0.941 and the F1-Score rises to 0.879. This result indicates that
with a lower learning rate, the model can more stably optimize
the objectives of both the diffusion and discriminative stages.
The combined effect of SNIR and FDS is more fully realized,
resulting in a more powerful anomaly request detector. This is
especially important in high-dimensional request spaces, where
fine-grained feature relationships depend on stable parameter
updates.

In summary, the learning rate plays a key role in the
performance of the proposed method. A suitable learning rate
not only improves reconstruction quality but also enhances
semantic consistency in the feature space. This leads to better
robustness when handling subtle deviations and structurally
ambiguous anomaly requests. These findings further validate
the adaptability and effectiveness of the proposed mechanisms
within a finely optimized generative-discriminative framework.

Furthermore, the experimental results of different
optimizers are given, as shown in Table 5.

Table 5: Hyperparameter sensitivity experiment results
(Optimizer)

Optimizer AUC Precision F1-Score
RMSProp 0.912 0.834 0.827
AdaGrad 0.897 0.812 0.804
SGD 0.881 0.798 0.791
Adam 0.941 0.869 0.879

As shown in the optimizer sensitivity results in Table 5, the
choice of optimizer has a significant impact on model
performance in this study. This is especially evident in the joint
training of the diffusion model and the feature discrimination
module. Differences in gradient update stability and
convergence efficiency under different optimization strategies
directly affect anomaly detection performance. Among all
tested optimizers, SGD performs the worst, with an AUC of
0.881 and an F1-Score of 0.791. This suggests that SGD
struggles to achieve high-quality convergence when training
complex network structures with multiple components. It may
result in insufficient reconstruction or poor feature alignment.

AdaGrad shows strong adaptive adjustment in the early
training stage. However, it suffers from rapid learning rate
decay during longer training, which limits further optimization.
Its F1-Score reaches 0.804, still below the expected level.
RMSProp alleviates the decay problem seen in AdaGrad and
improves the AUC to 0.912. However, it still fails to maintain
consistent performance across the multi-stage generative-
discriminative structure. This indicates limitations in its
gradient adjustment capability when applied to diffusion
models.

In contrast, the Adam optimizer achieves the best
performance in this task. It shows superior stability and
adaptability compared to the other methods. The F1-Score
reaches 0.879, and the Precision improves to 0.869. These
results suggest that Adam's first- and second-order moment
estimation mechanisms effectively support the joint
optimization of the Selective Noise Injection (SNIR) and
Feature-aware Discriminative Scoring (FDS) modules. It
ensures smooth progression of the diffusion process and better
alignment in the semantic feature space.

Overall, the analysis shows that the optimizer affects not
only training efficiency but also the coordination between the
generative and discriminative modules. For a high-capacity
diffusion architecture like the one proposed in this study, using
an adaptive optimizer such as Adam can better unlock the
model's potential. It improves both the accuracy and robustness
of anomaly request detection. These results also highlight the
specific training requirements of diffusion-based generative
models.

4) Robustness evaluation of the model under various
attack types

This paper further gives the experimental results of the
model under various attack types, and the experimental results
are shown in Figure 4.

Figure 4. Experimental results of the model under various attack types

As shown in the results of Figure 4, the proposed method
demonstrates strong robustness across different attack types,
with consistently high F1-Scores. In particular, the model

performs exceptionally well on typical attack types such as
DoS, Reconnaissance, and Fuzzers, achieving F1-Scores of
0.91, 0.89, and 0.88, respectively. These results indicate that



the method can effectively detect abnormal requests with high
traffic intensity and sudden pattern shifts. This performance is
attributed to the SNIR module, which preserves key feature
dimensions during reconstruction, increasing the model's
sensitivity to such structured attacks.

For more stealthy and sparse attacks such as Worms,
Analysis, and Shellcode, the F1-Score shows a slight decrease
but remains within the range of 0.80 to 0.83. This demonstrates
that the proposed Feature-aware Discriminative Scoring (FDS)
mechanism can still capture subtle semantic deviations in the
feature space. This embedding-based modeling approach
compensates for the limitations of traditional reconstruction
error in detecting minor anomalies and enhances the model's
discriminative ability against hidden attacks.

Moreover, the F1-Score distribution curve shows that
performance fluctuations across different attack types remain
small. This reflects the model's strong consistency and
generalization ability. Such stability is particularly important in
real-world deployment, where attack traffic is highly diverse

and unpredictable. A model that is heavily biased toward
certain attack types may result in serious security gaps. The
proposed method maintains reliable detection performance
under various attack conditions, indicating its practical value in
highly dynamic request environments.

In summary, this experiment further validates the broad
adaptability of the proposed diffusion-discrimination fusion
mechanism across diverse anomaly patterns. Through the
combined guidance of structure-aware noise control and
semantic feature alignment, the model improves the
expressiveness of reconstruction and enhances the consistency
of semantic features during discrimination. This enables stable
and efficient recognition of a wide range of attack behaviors.

5) Performance sensitivity experiment under the change of
unlabeled data ratio

This paper also presents a performance sensitivity
experiment under the change of the proportion of unlabeled
data, and the experimental results are shown in Figure 5.

Figure 5. Performance sensitivity experiment under the change of unlabeled data ratio

As shown in the results of Figure 5, the model's
performance varies under different proportions of unlabeled
data. This reflects the sensitivity of anomaly detection tasks to
supervision in the training samples. When the proportion of
unlabeled data is 10 percent or 90 percent, both F1-Score and
AUC are at lower levels. This indicates that too few or too
many unlabeled samples hinder the effective learning of both
the diffusion model and the discriminative module. In
particular, when 90 percent of the data is unlabeled, the
supervision signal becomes too sparse. The model fails to form
a stable decision boundary.

The model achieves the best performance when the
proportion of unlabeled data is 50 percent. The F1-Score rises
to 0.869 and the AUC reaches 0.941. At this level, the model
benefits from a sufficient amount of unlabeled data to learn the
underlying structure, while the remaining labeled data provides
enough supervision to train the discriminative layer. This
demonstrates the proposed method's adaptability in weakly
supervised environments. Especially within the Feature-aware
Discriminative Scoring (FDS) module, anomaly recognition is

achieved through semantic embedding rather than relying on
label-intensive classification.

Additionally, the two subplots show that when the
proportion of unlabeled data increases from 30 percent to 50
percent, model performance improves rapidly. However, as it
increases to 70 percent, performance begins to decline slightly,
although it remains relatively high. This suggests that while the
SNIR module enhances the model's ability to retain structural
information, the reconstruction process still benefits from some
level of label guidance. Without enough supervision, the
discriminative module cannot adjust effectively, leading to a
drop in overall detection performance.

These experimental results further validate the advantages
of the proposed generative-discriminative fusion mechanism in
low-label settings. Through sensitivity analysis of the unlabeled
data ratio, it is observed that the model can achieve an optimal
balance between structural modeling and semantic
discrimination under certain weak supervision conditions. This
reflects the effectiveness of the coordinated design between the
diffusion model and the discriminative enhancement



mechanism. It also supports the method's applicability to real-
world scenarios where labeled data is limited.

5. Conclusion
This paper presents an unsupervised anomaly request

detection method that integrates diffusion-based generation and
discriminative enhancement. The approach leverages the high-
quality reconstruction and structural representation capabilities
of diffusion models to effectively capture the latent distribution
of normal requests. A structure-aware mechanism, Selective
Noise Injection for Reconstruction (SNIR), is introduced to
preserve critical feature dimensions during the forward
diffusion process. This enhances the model's ability to
represent request details. Compared with traditional
reconstruction-based methods, this strategy maintains
generation quality while better preserving the structure of the
original data. It provides a solid foundation for distinguishing
abnormal requests.

In addition, the paper proposes a Feature-aware
Discriminative Scoring (FDS) module. After reconstruction,
the module compares embedded features of original and
reconstructed requests to measure semantic deviations. This
enables a more robust anomaly scoring system. The method
addresses the sensitivity of traditional reconstruction error to
noise and improves detection performance for complex
boundary cases and stealthy attacks. Experimental results show
that the proposed method outperforms existing approaches
across key metrics. It offers stronger generalization and more
stable discrimination, particularly under diverse attack types
and weak supervision conditions.

This study not only introduces a novel integration of
diffusion generation and discriminative mechanisms at the
methodological level but also demonstrates strong scalability in
practical implementation. The method does not rely on labeled
training data, making it suitable for large-scale real-world
systems for online request monitoring and intelligent anomaly
detection. It has broad application potential in fields such as
cybersecurity, API management, and microservice monitoring.
With its modular design, the system can be flexibly integrated
into existing log collection and detection frameworks. It also
supports deployment in various architectures, including
streaming detection systems, enhancing its practical feasibility.

Future work can be explored in several directions to further
improve the flexibility and applicability of the proposed
method. One promising direction is the integration of
multimodal input data, which may include parameter content,
request paths, and behavioral context information. By
combining different types of input features, the model could
achieve a deeper and more comprehensive understanding of
complex attack behaviors. This multimodal fusion would allow
the detection framework to capture a wider range of semantic
and structural patterns, enabling it to handle more diverse and
sophisticated request scenarios.

Another valuable direction involves enhancing the model
architecture through the use of advanced neural network
components. For example, graph neural networks could be
employed to model the inherent relationships between different
requests, while attention mechanisms could help the model

focus on the most relevant parts of the input. Additionally,
investigating lightweight diffusion approximations could lead
to improved inference speed and better resource efficiency.
These advancements would support the integration of the
method into real-time industrial applications. Overall, the
proposed framework contributes to the development of
anomaly detection modeling and offers a new approach for
intelligent security protection in high-dimensional and complex
environments.
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