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Abstract: This paper proposes a multi-factor market return prediction model based on variational causal representation learning.
The goal is to improve prediction accuracy, robustness, and interpretability. The method adopts a variational inference framework
to learn latent causal structures from high-dimensional factor data. It incorporates a causal regularization term and a
counterfactual consistency loss to enhance the model's resistance to spurious correlations and data perturbations. The model
consists of three components: a variational encoder, a generator, and a predictor. It is trained end-to-end to jointly learn causal
representations and perform return prediction. In multiple experiments, the proposed method outperforms representative existing
models in terms of mean squared error, causal consistency, and robustness. It also shows strong adaptability in transfer learning
tasks across different economic cycles. Ablation studies confirm the contribution of each module to overall performance. These
results further demonstrate the value of causal modeling in improving the stability of financial prediction models.
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1. Introduction
The financial market, as a vital part of the economic system,

operates under complex and highly dynamic patterns. It is
influenced by a variety of macroeconomic factors, industry
changes, and micro-level market behaviors. For a long time,
market return prediction has been a central issue in finance,
attracting significant attention from both academia and industry.
Traditional multi-factor models have, to some extent, revealed
the major drivers of return fluctuations [1, 2]. However, due to
the strong nonlinearity and variability of market mechanisms,
existing methods often struggle to capture complex causal
structures accurately. Especially during extreme market
conditions and unexpected events, traditional models based on
static correlations suffer severe performance degradation. This
exposes the urgent need for deeper causal modeling [3].

In recent years, the development of representation learning
has provided new breakthroughs for financial data modeling.
By automatically learning the latent feature representations,
representation learning can effectively overcome the limitations
of manual feature engineering in traditional factor discovery.
However, current representation learning applications in
finance mostly aim at improving prediction accuracy. They
often lack in-depth exploration and utilization of the true causal
relationships among variables. Since financial market data
commonly include confounding factors, hidden variables, and
spurious correlations, purely relying on traditional
representation learning may easily lead to overfitting and poor
interpretability. Therefore, incorporating causal inference into
the representation learning process, to identify and model the
causal structures among variables, is key to enhancing both the
performance and robustness of return predictions.

Variational inference, as an efficient approximate reasoning
method, demonstrates strong flexibility and scalability in
modeling complex distributions. Combining variational
methods with causal representation learning allows for
maintaining learning efficiency while better revealing the latent
causal mechanisms behind the data. By constructing a latent
variable space and optimizing the structure and parameters of
causal graphs through variational methods, it becomes possible
to extract more interpretable and generalizable causal
representations from high-dimensional, noisy financial data.
This approach not only helps improve prediction accuracy but
also significantly enhances model transferability and robustness
in changing market environments. It provides a more reliable
basis for financial decision-making [4, 5].

In market return prediction tasks, multi-factor models still
dominate. Different factors reflect dynamic market changes
from different perspectives. How to select key factors with real
causal contributions from a wide range of possible influencing
variables and then build interpretable and generalizable
predictive models remains a major challenge. Methods based
on variational causal representation learning can automatically
discover hidden effective causal paths within the factor space.
They can suppress the interference of redundant or false signals,
thereby achieving causally driven multi-factor return modeling.
This approach not only promises improved prediction
performance but also provides strong technical support for
practical applications, such as financial risk control and asset
allocation strategy optimization.

In conclusion, integrating variational inference,
representation learning, and causal reasoning into multi-factor
market return prediction carries significant theoretical and
practical value. On the one hand, it helps deepen the
understanding of the intrinsic mechanisms of financial markets,



promoting a shift from correlation-driven to causality-driven
financial modeling. On the other hand, by building causal
representations, it enables more stable and interpretable return
predictions under high uncertainty, enhancing the practical
applicability of models in real-world financial businesses. In
the future, as financial data continue to grow in volume and
complexity, exploring efficient and scalable causal
representation learning methods will become a key
development direction in financial artificial intelligence.

2. Related work
2.1 Variational Inference

Variational inference, as an important approximate
inference method, shows excellent efficiency and flexibility in
handling complex posterior distribution computations. When
facing high-dimensional, nonlinear, and intractable posterior
problems, variational inference transforms the inference task
into an optimization problem[6]. It searches for a computable
variational distribution to approximate the true posterior,
effectively reducing computational complexity. The
introduction of the Evidence Lower Bound (ELBO) allows the
inference process to proceed efficiently using optimization
techniques such as gradient descent. It ensures the quality of
the approximation while greatly expanding the scale and
complexity of applicable models [7]. Due to its good scalability
and stability, variational inference has become a mainstream
inference technique in areas such as probabilistic graphical
models and deep generative models.

In financial time series modeling, traditional inference
methods often struggle to deal with the high noise, strong
nonlinearity, and complex latent structures common in real
financial data [8]. This is because they rely heavily on strict
assumptions about model structure and data distribution.
Variational inference, by flexibly designing variational
distributions, can better adapt to the latent structures and
dynamic evolution patterns typical of financial data. It
demonstrates higher robustness in tasks such as return
prediction and risk assessment [9]. Furthermore, with the
development of adaptive variational inference and black-box
variational inference, variational methods can efficiently infer
dynamic changes of latent factors in complex financial
environments without relying heavily on detailed model
information. This provides strong support for uncovering the
underlying mechanisms of markets.

The combination of variational inference and deep learning
has further advanced the innovative applications of
representation learning and causal reasoning. By introducing
neural networks to parameterize variational distributions within
the variational framework, it becomes possible to flexibly
model the latent causal structures of high-dimensional input
[10]. At the same time, it maintains the differentiability and
optimizability of the inference process. This combination not
only enhances the expressive power of the representations but
also provides new pathways for modeling complex causal
relationships in financial data. In multi-factor market return
prediction tasks, methods based on variational inference can
effectively capture hidden causal associations between factors.
This strengthens the model's ability to recognize heterogeneous

market signals and lays a solid foundation for subsequent
causal representation learning and predictive modeling.

2.2 Causal Inference

Causal inference, as a core method for understanding the
mechanisms between variables, has been widely applied in
many fields in recent years [11]. Unlike traditional correlation
analysis, causal inference focuses on causal effects between
variables. It studies the actual impact of one variable on
another under external interventions or environmental changes.
In the financial domain, market data are often filled with
confounding factors and potential biases. Relying only on
statistical correlation can easily lead to misjudgment and
overfitting. Causal inference methods explicitly model the
relationships between interventions and counterfactuals [12].
They can more accurately identify the key factors that truly
drive market changes. This improves model interpretability and
extrapolation ability and provides a stronger theoretical
foundation for return prediction and risk management [13, 14].

In recent years, many causal inference methods that
combine structured modeling and machine learning techniques
have emerged. They have advanced the applications of causal
discovery and causal effect estimation in complex data
environments [15]. Especially in financial data that are high-
dimensional, dynamic, and contain unobserved confounding
variables, methods such as causal structure learning based on
graphical models and counterfactual inference based on
intervention modeling have shown unique advantages. Through
causal inference, it is possible to effectively distinguish direct
effects from indirect effects and eliminate spurious correlations.
This provides feature representations with causal semantics for
representation learning. The development of this direction not
only enhances the robustness of predictive models in complex
financial markets but also lays an important foundation for
building intelligent financial systems with reasoning and
decision-support capabilities.

2.3 Representation Learning

Representation learning aims to automatically extract useful
feature representations from raw data so that downstream tasks
can more effectively utilize the structural information within
the data [16]. Compared to traditional methods relying on
manual feature engineering, representation learning captures
high-level semantics and hidden relationships through complex
models such as deep networks. It has shown outstanding
performance in tasks such as classification, prediction, and
generative modeling [17, 18]. In financial market modeling,
data are often noisy, high-dimensional, and nonlinear.
Representation learning can automatically discover deep
features that traditional financial factors fail to capture. This
enhances the model's ability to perceive and adapt to market
changes and provides stronger data-driven support for
applications such as return prediction, risk control, and asset
pricing.

However, most current mainstream representation learning
methods are performance-driven and lack modeling of causal
structures among features. They are easily disturbed by
spurious correlations or environmental changes, which leads to
performance degradation in new environments. Therefore,



incorporating causal inference methods into the representation
learning process to learn latent features with causal meaning
has become an important research direction in recent years.
Through causal representation learning, it is possible to extract
features that are truly useful and robust for tasks. It also
improves model interpretability and transferability. This is
particularly suitable for environments like financial markets,
which are highly dynamic and structurally complex. It provides
a new modeling paradigm for tasks such as multi-factor return
prediction.

3. Method
This study aims to model the deep causal relationship

between market returns and multiple factors through
variational causal representation learning. First, the overall
architecture of the model is given, as shown in Figure 1.

Figure 1. Overall model architecture diagram
The model architecture adopts a variational causal

representation learning framework to encode observed factors
into latent causal representations Z to capture hidden market
generation mechanisms. By jointly training the variational
encoder, generator, and predictor, the model not only achieves
data reconstruction and causal consistency control, but also
improves the ability to predict market returns. The
counterfactual regularization term introduced in the
architecture strengthens the causal interpretability of latent
variables, making the prediction results more robust in a
volatile market environment.

Assume that the observed data consists of explicit factor
variables X, latent factors Z and market return Y, and there is
the following generation process:

)()|()|(),,( ZpZXpZYpZXYp 

Where Z represents the implicit causal mechanism
modeled by the latent variable. Since the true posterior
distribution ),|( YXZp is usually difficult to calculate
directly, variational inference is introduced to approximate the
true posterior using a parameterizable variational distribution

),|( YXZq .

The goal of variational inference is to maximize the
evidence lower bound (ELBO) to minimize the Kullback-
Leibler divergence between the variational distribution and the
true posterior distribution. The specific optimization goal is:

)],|(log),,([log),( YXZqZXYpEL q 
 

In order to strengthen the causal interpretability of the
latent variable Z, this method introduces a causal
regularization term to encourage the learned representation to
satisfy intervenibility and counterfactual consistency.
Specifically, the counterfactual consistency loss is designed:

))]'()),''((([ XfxXdofdEL qcf 


Where )''( xXdo  represents external intervention on
the input variables, ),( do is the consistency measurement

function, and f is the yield prediction function. This loss
ensures that the representation maintains reasonable changes
under intervention conditions, which meets the basic
requirements of causal reasoning.

The overall optimization objective integrates
reconstruction loss, causal regularization term and prediction
loss, which can be expressed as:

predpredcfcftotal LLLL   ),(

Where predcf  , is a hyperparameter that adjusts the

contribution of each part, and the prediction loss predL is

defined as the yield prediction error:

]))([( 2YXfELpred  

During the training process, the latent variable Z is
sampled using the reparameterization technique to ensure
gradient transferability. Finally, by jointly training the
variational encoder, generator, and predictor, not only can the
observed data be reconstructed and the underlying causal
mechanism be captured, but the accuracy and robustness of
market yield forecasts can also be effectively improved. The
multi-factor modeling framework based on variational causal
representation helps to screen out key factors with actual
causal effects in high-dimensional financial data, suppress
false signal interference, and provide a more explanatory and
stable basis for financial decision-making.



4. Experimental Results
4.1 Dataset

This study uses the publicly available FRED-MD
(Federal Reserve Economic Data - Monthly Database) as the
main data source. The dataset is compiled by the Federal
Reserve System of the United States. It covers macroeconomic
time series from the 1960s to the present. It includes monthly
economic variables such as employment, inflation, interest
rates, money supply, consumption, production, and industrial
indicators. It is widely used in economic forecasting and
causal inference research.

The FRED-MD dataset is highly stable and representative.
It contains around 100 macroeconomic variables. With its
long-time span and rich set of indicators, it provides a
comprehensive view of the dynamic behavior of the U.S.
economy. These variables form a high-dimensional, dynamic,
multi-factor feature space. This creates a complex and realistic
experimental environment for causal representation learning.
It helps uncover deep economic mechanisms that drive market
behavior.

To meet model input requirements, all-time series were
standardized, and missing values were filled during
preprocessing. The time dimension was aligned to a unified
monthly frequency. In the experiments, a fixed number of past
periods of economic indicators were used as input variables. A
representative economic measure, industrial production, was
used as a proxy for returns. This setup was used to evaluate
the model's capability in causal modeling and prediction.

4.2 Experimental Results

1) Experiments comparing this algorithm with other
algorithms

In this section, this paper first gives the comparative
experimental results of the proposed algorithm and other
algorithms, as shown in Table 1.

Table 1: Comparative experimental results

Method MSE Causal
Consistency

Robustness
Score

Ours 0.017 0.91 0.85
TARNet[19] 0.025 0.79 0.70
CFR[20] 0.023 0.81 0.73
CEVAE[21] 0.024 0.82 0.72
DragonNet[22] 0.022 0.84 0.76

According to the experimental results, the model proposed
in this study outperforms mainstream causal inference methods
across all evaluation metrics. In terms of mean squared error
(MSE), the proposed method achieves 0.017, which is
significantly lower than other models. This indicates that the
multi-factor prediction model based on variational causal
representation learning has higher predictive accuracy in
market return modeling. In contrast, traditional methods such
as TARNet, CFR, CEVAE, and DragonNet show a certain
degree of disadvantage in error control. This validates the

importance of incorporating causal structure modeling to
improve prediction precision.

For the causal consistency metric, the proposed method also
achieves the highest score of 0.91, which is significantly higher
than other models. This shows that the method can better
capture stable causal relationships between factors and the
target variable during modeling. It also avoids interference
from spurious correlations in the prediction results. In
comparison, although CEVAE and DragonNet have certain
advantages in causal modeling, their consistency scores are still
lower than that of the proposed method. This reflects that
solely relying on latent variable inference or counterfactual
modeling still has limitations.

In terms of robustness score, the proposed method reaches
0.85, far exceeding other baseline models. This further
demonstrates the method's stability when facing input
perturbations or market changes. Traditional models such as
TARNet and CFR tend to exhibit fluctuations in predictive
performance under different data disturbance conditions. In
contrast, the proposed method, through causal regularization
and latent space modeling, effectively enhances the model's
extrapolation ability and noise resistance. It shows stronger
generalization performance and practical application potential.

Overall, the experimental results fully demonstrate the
effectiveness of integrating variational inference, causal
reasoning, and deep representation learning. By properly
constructing latent causal representations and reinforcing
counterfactual consistency during training, the proposed
method not only improves the accuracy of return prediction but
also enhances model interpretability and adaptability in
complex financial environments. These findings provide a new
research direction and practical reference for optimizing
financial prediction models based on causal mechanisms in the
future.

2) Ablation experiment

In this section, this paper gives the impact of variational
causal inference on model performance. The experimental
results are shown in Table 2.

Table 2: Ablation experiment

Method MSE Causal
Consistency

Robustness
Score

Ours 0.017 0.91 0.85
w/o Causal Regularization 0.021 0.79 0.73
w/o Latent Variable
Modeling

0.023 0.76 0.69

w/o Counterfactual Loss 0.020 0.81 0.74

The ablation study results show that each component plays
an important role in improving the overall model performance.
The complete model achieves the best results across all metrics.
It reaches the lowest mean squared error (MSE) of 0.017, a
causal consistency score of 0.91, and a robustness score of 0.85.
This indicates that introducing causal regularization, latent
variable modeling, and counterfactual loss has a significant
positive impact on market return prediction tasks.



Specifically, after removing causal regularization, the MSE
rises to 0.021, the causal consistency score drops to 0.79, and
the robustness score falls to 0.73. This shows that the constraint
from causal structures plays a key role in ensuring model
generalization and prediction stability. The impact of removing
latent variable modeling is even more pronounced. The MSE
increases to 0.023, and both causal consistency and robustness
scores decrease sharply. This reflects that latent causal
representations are critical for capturing complex economic
relationships.

In addition, after removing the counterfactual loss, the
causal consistency score decreases but to a smaller extent, and
the MSE also shows a slight increase. This suggests that

counterfactual modeling provides auxiliary benefits for
improving model stability and resisting spurious correlations.
Overall, the ablation results demonstrate that latent variable
modeling and causal regularization are the two core elements
supporting the model's performance. Counterfactual
consistency further enhances the model's robustness and
interpretability.

3) Prediction performance analysis under different latent
variable dimension settings

This paper also gives the prediction performance analysis
under different latent variable dimension settings, and the
experimental results are shown in Figure 2.

Figure 2. Performance Under Different Latent Dimensions

The results in the figure show that the dimension of latent
variables has a significant impact on model performance. In
terms of the MSE metric, as the dimension increases from 4 to
32, the error continuously decreases and reaches its best at 32
dimensions. This indicates that the model can more effectively
express the causal structure of the data with a moderate
dimension. A dimension that is too small limits the
representation capacity, while a dimension that is too large,
such as 64, may introduce redundant information and cause a
slight increase in error.

For the Causal Consistency and Robustness Score metrics,
the model shows a general trend of improvement as the latent
variable dimension increases. Both metrics reach their peak at
32 dimensions. This suggests that higher dimensions help
better capture stable causal relationships and improve the
model's adaptability to environmental perturbations. However,
at 64 dimensions, the scores slightly decline, indicating that
excessive degrees of freedom may affect the controllability and
generalization of the causal structure.

In addition, the prediction variance metric shows that as the
latent variable dimension increases, the fluctuation of model

outputs tends to decrease. This indicates that the model
predictions become more stable at higher dimensions.
Nevertheless, a slight increase in variance at 64 dimensions
confirms the risk of overfitting or redundant interference when
the dimension is too high. Overall, 32 is the optimal choice for
the latent variable dimension in this experiment, achieving a
good balance between accuracy, consistency, and stability.

4) Results of the cross-economic cycle forecasting
capability verification experiment

Finally, this paper also presents the experimental results
that verify the model's forecasting ability across different
economic cycles. These results are summarized in Table 4. The
evaluation demonstrates how well the proposed method adapts
to varying market conditions, including expansion, recession,
trough, and recovery phases, providing further evidence of the
model's robustness and generalization capability in dynamic
economic environments.



Figure 3. Results of the cross-economic cycle forecasting capability verification experiment

The experimental results show that the model's transfer
performance varies significantly across different economic
cycle stages. In the MSE plot, the model performs well during
the "Expansion" and "Recovery" stages, with errors maintained
at relatively low levels. However, during the "recession" stage,
the error peaks. This indicates that the model faces greater
prediction challenges during economic downturns, likely due to
intensified shifts between the training distribution and the
testing environment caused by dramatic market mechanism
changes.

The causal consistency metric performs best during the
"expansion" stage, with a score close to 0.88. This indicates
that the model is able to capture stable and reliable causal
structures when the economic environment is favorable and
relatively stable. However, during the "recession" and "trough"
stages, the causal consistency score drops significantly,
reflecting the model's reduced ability to preserve accurate
causal representations under heightened economic stress and
volatility. This decline suggests that increased uncertainty and
structural shifts in the market make it more difficult for the
model to maintain consistent causal understanding. As the
economy moves into the "recovery" stage, the causal
consistency score rises again, showing that the model regains
some of its causal inference capacity. This recovery
demonstrates that the model has a certain level of adaptability
in learning and maintaining causal relationships across
different phases of the economic cycle.

The robustness score curve shows a similar trend. The
model is most robust during the "Expansion" stage and
experiences the sharpest decline during the "Recession" stage.
This suggests that the model becomes more sensitive to input
perturbations during periods of severe economic fluctuation. As
the economy enters the "recovery" phase, the robustness score
rises again. This reflects that the causally driven model has a
certain ability to recover and generalize after cyclical shocks.

5. Conclusion
This study proposes a multi-factor market return prediction

model based on variational causal representation learning. It
integrates the strengths of variational inference, causal
reasoning, and deep representation learning. The model
effectively improves prediction accuracy and stability when

dealing with high-dimensional financial data. By introducing
latent causal variable modeling and counterfactual consistency
regularization, the model can automatically extract factor
representations with real economic significance. It also
maintains good interpretability and causal consistency. This
approach overcomes the adaptability limitations of traditional
correlation-driven methods in non-stationary market
environments. The experimental section validates the model's
effectiveness from multiple perspectives. This includes
comparisons with several classical causal inference models,
ablation analyses of key modules, and evaluations of transfer
performance across economic cycles. The results show that the
proposed method achieves significant advantages in MSE,
causal consistency, and robustness. In particular, it
demonstrates stronger generalization ability under complex
economic cycle changes. This performance improvement has
important practical value for financial prediction tasks. It can
provide more stable and reliable data support for applications
such as investment strategy development, risk control, and
macroeconomic policy management.

Moreover, the advantages of the model in causal
mechanism modeling give it strong cross-task transfer potential.
It is not only applicable to market return prediction but also
generalizable to other economic variable modeling scenarios,
such as credit risk assessment, policy impact analysis, and
causal-driven intelligent decision systems. Its deep
representation structure and causal consistency control
mechanism lay a methodological foundation for building
interpretable AI financial systems. This also promotes the
practical application of causal learning in complex real-world
systems. Future research can further extend the model's
capabilities in heterogeneous data integration, cross-market
modeling, and real-time online prediction. Introducing dynamic
structural causal modeling and neural architecture search
mechanisms may enhance the model's adaptability to sudden
events and structural shifts. With the development of causal
artificial intelligence, this study provides theoretical support
and practical pathways for building more trustworthy, robust,
and interpretable financial forecasting systems.
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