
Journal of Computer Technology and Software

ISSN:2998-2383

Vol. 3, No. 7, 2024

A Deep Learning-Based Predictive Framework for Backend
Latency Using AI-Augmented Structured Modeling
Zhou Fang
Georgia Institute of Technology, Atlanta, USA
zhoufang031@gmail.com

Abstract: This paper addresses the challenge of high variability and low predictability in API response times in backend
systems. A deep learning method is proposed that combines structured modeling with latency-sensitive optimization. The model is
based on Deep & Cross Network v2. It incorporates a Load-Aware Feature Fusion (LAFF) module to dynamically model
interactions between system states and request features. In addition, a Latency-Sensitive Loss Adjustment (LSLA) mechanism is
designed. It introduces a delay-weighted loss function to improve prediction accuracy on high-latency samples. Extensive
experiments are conducted on the structured dataset Alibaba Cluster Trace. Results show that the proposed method outperforms
mainstream time series models and structured modeling approaches across multiple regression metrics. It achieves lower MSE
and MAE while maintaining a high R2 value. Ablation studies further validate the effectiveness of each module. The model
remains stable and robust under various interference conditions, including increased proportions of delayed samples, injected
feature noise, and varying time window settings. The study demonstrates that the proposed method provides a more accurate
foundation for response time prediction in backend systems. It supports scheduling and resource optimization decisions. This
work offers a practical path for applying struct.

Keywords: Response time prediction, structured modeling, deep neural networks, system performance optimization

1. Introduction
In modern internet applications, backend systems handle a

massive number of user requests. Their performance directly
affects the overall service response time and user experience.
As business scales grow, API calls become more frequent, and
the invocation chains between services grow increasingly
complex [1,2]. The backend processing capacity is becoming a
potential system bottleneck. Accurately predicting the response
time of each API request and using this information to
implement intelligent and efficient scheduling strategies has
become a key challenge in improving system performance and
stability. In this context, modeling and optimizing backend
services with artificial intelligence is emerging as a feasible
and forward-looking technical path [3].

Traditional response time modeling methods often rely on
fixed rules or simple statistical analysis. These methods may be
adequate in scenarios with stable data patterns and low-
dimensional features. However, they lack expressiveness and
generalization in real-world systems where request
characteristics are high-dimensional, nonlinear, and
dynamically changing[4]. With the advancement of deep
learning, especially in modeling structured data, more data-
driven approaches are being applied to performance modeling
and system optimization. Deep learning models can capture
complex relationships among features, offering new
possibilities for prediction and decision-making in backend
services. By constructing a high-dimensional feature space and
learning deep interaction patterns within it, the response
process of API calls can be more accurately modeled.

Deep & Cross Network v2 is a deep learning model that has
shown strong performance in structured data modeling. It
combines deep nonlinear representation with effective feature
crossing, making it suitable for scenarios involving large
numbers of mixed categorical and numerical features. In
backend systems, an API request usually includes multiple
heterogeneous features, such as request path, parameter
complexity, user identity, time window, and system load.

These features interact in complex ways. Traditional neural
networks often struggle to capture these interactions explicitly.
The cross network component in DCNv2 is capable of
modeling these combinations efficiently, thus improving
prediction accuracy. This model structure enables end-to-end
response time modeling with minimal feature engineering[5].

Applying this structured deep model to backend response
prediction enhances the model's ability to express complex
business features. It also provides valuable predictive signals
for system resource scheduling. In real deployments, resource
allocation, request queue prioritization, and load balancing all
depend on accurate performance forecasting. If a request's
response time can be predicted before it enters the queue, it
becomes possible to sort and allocate resources intelligently in
advance. This helps reduce latency, improve throughput, and
strengthen system robustness. Such prediction-driven
scheduling breaks the limitations of static rule configurations
and offers better adaptability and real-time performance[6].

In summary, introducing DCNv2-based deep learning
models into backend systems is a promising direction for
intelligent scheduling and performance optimization. It

overcomes the limitations of traditional methods in modeling
nonlinear features and provides accurate prior information for
system resource control. This research addresses the
complexity of real-world systems and high-concurrency
business environments. It aims to offer an efficient and scalable
path for service performance optimization through deep
structured modeling. This has both practical engineering
significance and theoretical value for backend intelligent
scheduling research.

2. Related work
2.1 Scheduling and performance optimization strategies
for backend systems

In backend system research and engineering practice,
scheduling and performance optimization have always been
keys [7-9]. As system scale continues to grow and
microservice architectures become widely adopted, service
dependencies have become more complex [10]. Resource
contention has intensified. Traditional static scheduling
strategies are increasingly unable to meet the demands of high
concurrency and low latency [11]. To improve overall system
responsiveness and throughput, researchers and engineers
have proposed various scheduling mechanisms. These include
priority-based task ordering, round-robin scheduling, shortest
job first (SJF), and least connection strategies. These methods
improve resource utilization to some extent. However, they
often fail to adapt to real-world fluctuations in traffic and
changes in service performance. This is due to their limited
ability to model the dynamic relationship between request
content and system state.

With the rise of distributed systems and cloud computing
platforms, backend optimization strategies have begun to shift
from static rules to dynamic awareness. In this context,
scheduling systems have started to incorporate awareness of
current resource usage, historical data, and request features.
Policy engines are used to enable adaptive resource allocation.
For example, some systems consider real-time CPU usage,
memory consumption, and network load when dispatching
requests[12]. This helps reduce latency while maintaining
service stability. Other systems analyze historical logs to
detect load patterns and perform proactive scheduling. These
methods have shown practical value. However, they still rely
heavily on manually designed features and rules. They lack the
ability to model complex feature interactions. As a result, they
perform poorly when faced with unknown or nonlinear
behaviors[13].

Given this research background, more backend
optimization efforts are adopting data-driven approaches. In
particular, machine learning and deep learning models are
being used to replace traditional heuristic rules. This trend
offers new technical paths for scheduling systems. It enables
the prediction of key metrics such as request response time
and queuing delay. By jointly modeling system status and
request features, the system can better estimate execution costs.
This supports more effective dynamic scheduling. Prediction-

driven strategies are showing greater adaptability and
effectiveness compared to fixed-rule approaches[14,15]. They
are especially beneficial under high concurrency and limited
resource conditions. Overall, integrating intelligent prediction
models with scheduling mechanisms is becoming a key
direction in backend performance optimization. It also lays the
theoretical and practical foundation for adopting more
advanced models such as DCNv2 in future work.

2.2 Deep Learning Modeling Methods for Structured Data

In recent years, deep learning has achieved significant
breakthroughs in unstructured data domains such as image,
speech, and natural language processing. Meanwhile, research
on structured data modeling has also gained increasing
attention[16,17]. Structured data is widely present in enterprise
systems, recommendation engines, financial risk control, and
backend services[18]. Its features typically include many
discrete categorical fields and a few continuous numerical
fields. Traditional machine learning methods such as decision
trees, random forests, and gradient boosting machines perform
reliably on this type of data and offer some level of
interpretability[19,20]. However, when faced with high-
dimensional sparse features, multi-field interactions, and
nonlinear patterns, these methods show limitations in both
expressiveness and generalization. This has driven the
development of deep learning approaches tailored for
structured data[21,22].

To overcome the expressiveness bottleneck of traditional
methods, researchers have proposed various deep learning
models for structured data. These models are designed to
handle sparse features, capture feature interactions, and control
model complexity[23]. One representative class of
architectures combines deep neural networks with feature
crossing mechanisms. Examples include the "wide and deep"
framework, which integrates generalized linear models with
multilayer perceptrons (MLPs), and the more recent Deep &
Cross Network family. These models learn feature
combinations either explicitly or implicitly. They retain the
generalization ability of shallow models while introducing deep
structures for modeling higher-order nonlinear interactions.
Compared with simple MLP stacks, such designs are better
suited for prediction tasks involving high-dimensional
categorical data[24-26].

Among these models, DCNv2 introduces an improved cross
network module that enhances the efficiency of feature
interaction modeling and the stability of deep feature learning.
It has become an important development in structured data
modeling. The model combines shallow feature crossing with
deep nonlinear representation. It also improves the training
procedure and parameter update mechanisms. As a result,
DCNv2 achieves stronger representation power while
maintaining computational efficiency. This approach has
shown strong performance in recommendation systems. It is
also being applied to other structured data tasks, such as click-
through rate prediction, risk assessment, and resource
scheduling. The continuous evolution of structured deep
learning models provides a solid foundation for data-driven
decision optimization and performance prediction in backend

systems. It also extends the practical boundaries of deep
learning in engineering applications.

3. Method
Based on the traditional Deep & Cross Network v2

(DCNv2) structure, this study proposes two key improvements
to better adapt to the characteristics of the backend API
response time prediction task. First, the dynamic load-aware
feature fusion module (Load-Aware Feature Fusion, LAFF) is

introduced to enhance the model's ability to express system
status characteristics (such as CPU occupancy, request queue
length, etc.); secondly, a weighted objective function
mechanism (Latency-Sensitive Loss Adjustment, LSLA)
based on response delay distribution is designed to improve
the model's prediction accuracy on high-latency samples.
These two improvements jointly optimize the generalization
ability and stability of the model under complex structured
features. The model architecture is shown in Figure 1.

Figure 1. Overall model architecture diagram

3.1 Load-Aware Feature Fusion
In the backend system, the API response time is not only

affected by the characteristics of the request itself, such as
endpoint type, parameter size, and request frequency, but also
significantly influenced by the current system load status,
including CPU usage, memory utilization, disk I/O, network
latency, and other dynamic runtime metrics. These system-
level factors often exhibit real-time fluctuations and can
introduce significant variability into the actual processing time
of an otherwise identical request. Ignoring such dynamic load
information may result in inaccurate predictions and
suboptimal scheduling decisions.

To address this issue, a load-aware feature fusion
mechanism (LAFF) is introduced in this study. This module is
specifically designed to enhance the model's ability to perceive
and respond to the underlying system status, thereby
improving the accuracy and robustness of response time
prediction under varying runtime conditions. LAFF achieves
this by jointly modeling the static request features and the
dynamic system status features through a structured neural
mechanism. It enables the model to dynamically adjust the

way it represents and combines input features, allowing it to
selectively emphasize load-related factors when they have a
stronger influence on response time.

By integrating both types of features in a unified
representation space, LAFF not only improves the expressive
power of the prediction model but also increases its
adaptability to real-time load changes. This is particularly
important in high-concurrency backend environments, where
system states can shift rapidly and unpredictably. The adaptive
weighting within the fusion process ensures that relevant load
features are more prominently reflected in the final
representation used for prediction. The detailed structure and
data flow of this module are illustrated in Figure 2.

Figure 2. LAFF module architecture

Assume that the request feature vector is rd
r Rx  and

the system load feature vector is ld
l Rx  . They are firstly

expressed through independent nonlinear mapping layers:
)(rrrr bxWh  ,)(llll bxWh 

rW and lW are the weight matrix, rb , lb are the bias,
and  is the activation function (such as ReLU). Next, a
gating mechanism is designed to dynamically fuse request and
load features. The gating vector is generated by the load
feature to adjust the fusion ratio of the two types of
information:

)(glg bhWsigmoidg 
The final fusion feature expression z is defined as follows:

lr hghgz )1(

Where  represents an element-level multiplication
operation. This structure enables the model to automatically
adjust the degree of attention it pays to request information
based on the current system load status. For example, when
the system is congested, the model may pay more attention to
load characteristics, while when the system is idle, it may pay
more attention to the characteristics of the request itself.

In order to enhance the nonlinear modeling capability of
the fusion expression, z is finally input into a high-
dimensional perceptron module for feature dimension
upscaling to generate the input representation for the
subsequent Deep & Cross network:

)(' ff bzWz  
This mechanism not only enhances the model's

adaptability to the dynamic state of the system, but also
improves the flexibility and generalization performance of the
overall feature expression. Experimental results show that the
LAFF module has a positive effect on improving the
prediction accuracy under high load conditions.

3.2 Latency-Sensitive Loss Adjustment

In order to improve the prediction accuracy of the model
on high-latency requests, this study introduced a latency-
sensitive loss adjustment mechanism (LSLA). In actual
systems, the distribution of API response time usually has a
long-tail characteristic, that is, there are a small number of
requests with abnormally high latency, which have a
particularly significant impact on user experience and system
performance. However, the traditional mean square error
(MSE) loss function treats all samples equally and often fails
to provide sufficient optimization signals in the high-latency
range, resulting in insufficient performance of the model on
key samples. Therefore, we designed a latency-weighted loss
function that enables the model to pay more attention to high-
latency samples during training. Its module architecture is
shown in Figure 3.

Figure 3. LSLA module architecture

Assume that the model prediction value is 'y and the
true value is y , then the common mean square error loss is:





N

i
iiMSE yy

N
L

1

2)'(1

To introduce attention to high-delay samples, we define a
weight function iw that increases with the increase of the true

delay value iy , such as in exponential form:

)exp(
y
yyiwi


 

Where y is the average delay of all samples, and  is a
hyperparameter that controls sensitivity. This weighting factor
will amplify the loss term of delayed samples above the
average, thereby guiding the model optimization to focus on
long-tail samples.

Based on the above weights, the weighted loss function is
defined as:


 




N

i
iiiN

i i
LSLA yyw

w
L

1

2

1

)'(1

In addition, in order to prevent excessive weight
fluctuations from causing gradient instability, a weight
truncation mechanism can also be introduced:

),min(' maxwww ii 

maxw is a set upper limit value, which is used to limit the
excessive dominance of extremely high-latency samples on
the loss. Finally, the model uses LSLAL instead of standard
MSE for optimization during the training phase, thereby
achieving more accurate modeling and perception of key
response delays. This mechanism enables the model to
perform well not only in terms of overall error but also to pay
more attention to high-latency requests in the system that are
sensitive to performance.

4. Experimental Results
4.1 Dataset

This study uses the Alibaba Cluster Trace 2018 dataset as
the foundational data source for backend response time
prediction. The dataset comes from a large-scale production
cluster scheduling system. It contains rich logs related to task
scheduling, resource usage, and service execution. It spans
eight days and records scheduling and runtime information for
over 40 million tasks. The dataset is high-dimensional and
reflects real-world load fluctuations. It is well-suited for
simulating backend request processing in multi-tenant
environments.

The dataset provides detailed fields, including each task's
submission time, start time, end time, resource usage (such as

CPU and memory), number of running instances, job ID, and
resource status of the cluster node. These fields can be used to
construct input features for the prediction model. They help
the model learn the relationship between request
characteristics and system state, enabling accurate response
time modeling. Since the data includes precise timestamps and
resource labels, it also supports the creation of dynamic
features related to system load. This is essential for
implementing the load-awareness design of the LAFF module.

In addition, the dataset contains a large number of
heterogeneous task types and highly variable resource
demands. This provides long-tail distribution samples for the
delay prediction model. It is useful for evaluating the LSLA
module's ability to identify and prioritize high-latency tasks.
Overall, the dataset features dense tasks, realistic scenarios,
and rich attributes. It offers a solid data foundation for this
research.

4.2 Experimental setup

This study conducted experiments on a local server with
powerful computing power. The main hardware configuration
includes NVIDIA GeForce RTX 2080 Ti GPU, Intel i9
processor and 64GB memory. All models are implemented
using the PyTorch framework and run in the Ubuntu 20.04
operating system environment. The Adam optimizer is used
during training, with the initial learning rate set to 0.001 and
the batch size set to 512. The early stopping strategy is used
during model training. The training is terminated early when
there is no improvement in several consecutive rounds based
on the validation set loss to avoid overfitting.

To ensure the stability and fairness of the experimental
results, this study uses a unified data partition and the same
number of training rounds for all comparison models. This
section will focus on listing the key experimental parameter
configurations, as shown in Table 1:

Table 1: Hyperparameter Experiment Table
Parameter Value
GPU NVIDIA RTX 2080 Ti
Optimizer AdamW
Learning Rate 0.001
Batch Size 512
Epochs 100
Early Stopping Patience = 10
Framework PyTorch
OS Ubuntu 20.04
CPU Intel i9
RAM 64 GB

A. Experimental Results

1) Comparative experimental results

First, this paper gives the comparative experimental results
with other models. The experimental results are shown in Table
2.

Table 2: Comparative experimental results

Method MSE MAE R2

LSTM [27] 0.1872 0.3094 0.8421
1D-CNN [28] 0.1749 0.2981 0.8547
Transformer[29] 0.1685 0.2853 0.8615
TimeMixer[30] 0.1593 0.2762 0.8708
ITransformer[31] 0.1546 0.2685 0.8754
TL-iTransformer[32] 0.1498 0.2619 0.8802
Ours 0.1327 0.2387 0.8946

The experimental results in the table show significant
differences in the performance of various models on the API
response time prediction task. Overall, models with more
complex structures and better capability to capture temporal
and feature interactions perform better. LSTM, as a traditional
time series modeling approach, shows relatively weak
performance in this task, with an MSE of 0.1872 and an MAE
of 0.3094. This suggests that it has limitations in modeling
complex load environments and nonlinear request features. In
comparison, 1D-CNN shows a slight improvement. This is due
to its ability to extract patterns within local time windows.
However, it still struggles to capture long-range dependencies
and global features.

Transformer and its variants demonstrate stronger modeling
capabilities. The standard Transformer shows clear
performance gains, especially in MAE and R², indicating better
fitting ability than the previous two models. TimeMixer and
iTransformer further improve performance by refining
temporal modeling structures. They capture delay fluctuations
in long sequences more effectively, leading to gradual
improvements in prediction accuracy. TL-iTransformer
combines temporal modeling with local attention mechanisms.
It maintains reasonable model complexity while achieving
better numerical results. Its R² reaches 0.8802, indicating
improved fitting capability.

Most notably, the model proposed in this study outperforms
all other methods across all metrics. It achieves an MSE of
0.1327, an MAE of 0.2387, and an R² of 0.8946, demonstrating
significant performance advantages. These results indicate that
the proposed DCNv2 architecture, combined with the LAFF
and LSLA modules, more accurately models the complex
interactions between request features and system load in a
structured data setting. In addition, with the delay-sensitive loss
adjustment mechanism, the model maintains stable prediction
performance even for high-latency samples. This helps prevent
long-tail data from degrading overall accuracy.

In summary, the experimental results confirm the
superiority of the proposed method over several mainstream
models. In particular, it shows better generalization and
practical value when dealing with response time distributions
that exhibit long-tail characteristics. This method not only
improves overall model accuracy but also provides more
reliable support for backend scheduling strategies.

2) Ablation Experiment Results

Furthermore, this paper gives the ablation experiment
results, and the experimental results are shown in Table 3.

Table 3: Ablation Experiment Results
Method MSE MAE R2

DCNV2 0.1628 0.2814 0.8661
+LAFF 0.1483 0.2632 0.8785
+LSLA 0.1416 0.2557 0.8841
Ours 0.1327 0.2387 0.8946

The ablation results in Table 3 show that the base model
DCNv2 already has a certain level of predictive capability for
structured feature modeling. It achieves an MSE of 0.1628 and
an R² of 0.8661. This indicates that it can reasonably capture
the relationship between request features and response time.
However, there is still room for improvement, especially when
dealing with dynamic system load or high-latency samples.

After introducing the LAFF module, the model shows a
clear performance improvement. MSE decreases to 0.1483, and
MAE drops to 0.2632. This suggests that the load-aware
feature fusion mechanism effectively enhances the model's
ability to represent system state. As a result, response time
prediction becomes more accurate under complex system
conditions. In comparison, introducing the LSLA module alone
also brings steady performance gains. It is particularly effective
in improving MAE and R². This highlights the role of the
latency-sensitive loss function in optimizing predictions for
long-tail samples.

Finally, when both LAFF and LSLA modules are used
together, the model achieves the best performance. MSE is
reduced to 0.1327, and R² increases to 0.8946. This confirms
the complementarity and synergy of the two mechanisms. It
shows that, on top of structured modeling, combining system
state modeling with target-aware loss adjustment significantly
enhances the model's overall performance in backend response
time prediction.

3) Hyperparameter sensitivity experiments

This paper also discusses the hyperparameters of the model.
First, the experimental results of different learning rates are
given, as shown in Table 4.

Table 4: Hyperparameter Experiment Results (Learning Rate)
LR MSE MAE R2

0.004 0.1659 0.2843 0.8644
0.003 0.1495 0.2631 0.8787
0.002 0.1378 0.2475 0.8881
0.001 0.1327 0.2387 0.8946

The hyperparameter experiment results in Table 3 show
that the learning rate has a significant impact on model
performance. A large learning rate (such as 0.004) may cause
fluctuations during training. This leads to higher validation
errors. The MSE reaches 0.1659, and R² is only 0.8644. These
results indicate that the model fails to converge properly and
performs poorly in prediction.

As the learning rate decreases, model performance
gradually improves. Error metrics drop, and fitting ability
increases. When the learning rate is reduced to 0.003 and 0.002,
the training process becomes more stable. The MSE decreases
to 0.1495 and 0.1378, while R² rises to 0.8787 and 0.8881. This
suggests that smaller learning rates help the model approach
the optimal solution more effectively. With complex feature

interactions, a lower step size allows more refined weight
updates, improving prediction accuracy and generalization.

Finally, when the learning rate is set to 0.001, the model
achieves its best performance. The MSE drops to 0.1327. The
MAE reaches its lowest value of 0.2387. The R² rises to 0.8946.
These results show that 0.001 is the optimal learning rate for
this task. It ensures stable convergence and improves predictive
accuracy. This provides a reliable foundation for further model
optimization and scheduling strategy design.

Next, the experimental results of different optimizers are
given, as shown in Table 5.

Table 5: Hyperparameter Experiment Results (Optimizer)
Optimizer MSE MAE R2

AdaGrad 0.1584 0.2716 0.8725
SGD 0.1701 0.2869 0.8608
Adam 0.1405 0.2504 0.8863
AdamW 0.1327 0.2387 0.8946

The optimizer comparison results in Table 5 show that
different optimization algorithms have a significant impact on
model training. SGD, as the most basic optimizer, has good
theoretical convergence. However, it performs relatively poorly
in this task. The MSE and MAE reach 0.1701 and 0.2869,
respectively. The R² is only 0.8608. These results indicate that

SGD converges slowly and lacks stability when handling high-
dimensional structured features.

AdaGrad improves the adaptability of the learning rate to
some extent. It can reduce the loss quickly during the early
stage of training. As a result, it performs better than SGD, with
the MSE dropping to 0.1584. However, due to its accumulated
squared gradient mechanism, the learning rate decreases
rapidly over time. This causes the model to update too slowly
near the optimum, making further performance improvement
difficult. In contrast, the Adam optimizer combines adaptive
learning rates with momentum. It significantly improves
convergence speed and prediction accuracy. The MSE
decreases to 0.1405, showing stronger learning capability.

Among all optimizers, AdamW performs the best. It
extends Adam with refined weight decay control, effectively
improving generalization. The final MSE drops to 0.1327, and
the R² increases to 0.8946. These results show that AdamW
better adapts to complex deep structures and imbalanced data
distributions. It is the most suitable optimizer for this task.

4) The impact of changes in delayed sample ratio on
model robustness

This paper also gives the experimental results of the impact
of changes in the proportion of delayed samples on the
robustness of the model, as shown in Figure 4.

Figure 4. The experimental results show the impact of the change in the proportion of delayed samples on the robustness of the
model.

The experimental results in Figure 4 show that as the
proportion of delayed samples increases, the model exhibits a
performance degradation across multiple metrics. Both MSE
and MAE show an upward trend. This indicates that with a
higher proportion of delayed samples, prediction errors
increase and accuracy declines. These results suggest that
delayed samples introduce greater uncertainty into model
training, making it more difficult to accurately capture long-tail
response times.

On the other hand, the R² value gradually decreases as the
proportion of delayed samples rises. Within the range from
10% to 90%, R² drops from approximately 0.895 to 0.856. This

reflects a weakened ability of the model to explain overall
variance. Although the decrease is not extreme, it clearly shows
that the model's fitting performance is affected under high
levels of delayed sample interference. This indicates that while
the model has a certain degree of robustness, performance still
fluctuates when faced with imbalanced distributions.

Overall, the experimental results confirm that the
proportion of delayed samples is a key factor affecting model
stability and accuracy. Although the proposed method
demonstrates strong predictive capability, it still requires
further improvement in modeling outliers and enhancing fault
tolerance. These improvements are necessary to ensure higher
reliability of the model in real-world complex environments.

5) Anti-interference ability experiment after noise
characteristics

Furthermore, this paper also conducted an anti-interference
ability evaluation experiment after adding noise features to the
input space, aiming to assess the model's robustness under
feature-level perturbations. In real-world backend systems, data
inputs often contain redundant, irrelevant, or even noisy
features due to system logging artifacts, sensor inaccuracies, or
incomplete preprocessing. These noise features may not carry
meaningful information for prediction tasks but can still

influence the model's learning process and degrade overall
performance if not properly handled.

To simulate this scenario, artificial noise features with no
correlation to the target variable were incrementally introduced
into the model's input during training and testing phases. The
objective was to observe how the model's prediction
performance, in terms of key evaluation metrics such as MSE,
MAE, and R ² , would change as the proportion of irrelevant
features increased. This experiment provides a way to measure
the model's anti-interference capability and its ability to ignore
or suppress irrelevant signals during learning.The experimental
results are visualized in Figure 5.

Figure 5. Anti-interference ability experiment after noise characteristics

The experimental results in Figure 5 show a slight but
consistent decline in overall model performance as different
proportions of noisy features are introduced. Both MSE and
MAE increase with the noise ratio. This indicates that the
model's ability to fit the target variable is affected by the
presence of redundant or irrelevant input features, leading to
higher prediction errors. When the noise level reaches 40%,
both MSE and MAE approach their peak values, reflecting the
model's sensitivity to feature contamination.

Despite this, the R² metric remains relatively stable
throughout the noise injection process. It shows only a slight
drop at high noise levels, decreasing from around 0.8946 to
0.8584. This suggests that the model retains a strong
explanatory capacity. It can still capture the core structural
information without being entirely disrupted by noisy features.
This result indicates that the proposed method has a certain
level of resistance to interference. At low to moderate noise
levels, the model can suppress part of the negative impact
caused by ineffective features. Further analysis of the metric
trends reveals that the increase in MAE and MSE is faster than
the decline in R². This means that although overall error
increases, the model still maintains consistent prediction
patterns. The simultaneous rise in error and stability in
structure indicates that model degradation under data pollution
is gradual rather than abrupt. This characteristic is important
for practical deployment, as it ensures predictability and
control. In summary, the experiment demonstrates that the

model shows a degree of robustness under feature perturbation
and informational noise. Although a high noise ratio weakens
accuracy, the model structure tolerates redundant information
to some extent. This further confirms that the LAFF module
plays an effective role in filtering information during the
feature fusion stage.

6) Comparative experiment on prediction stability under
different time windows

Finally, this paper presents a comparative experiment on
the prediction stability of the model under different time
windows, and the experimental results are shown in Figure 6.

As shown in Figure 6, the model maintains overall
performance stability as the time window length changes, with
only minor fluctuations. Both MSE and MAE show a slight
decline followed by a rise as the window size increases from 5
to 50. The fluctuation range is small. This indicates that the
model can maintain good predictive accuracy across different
temporal granularities. Notably, when the window size is
between 20 and 30, the error metrics reach their lowest values.
This suggests that this range may better match the data
distribution characteristics of the current task.

Figure 6. Comparative experiment on prediction stability
under different time windows

The R² value remains consistently high, between 0.87 and
0.89, throughout the entire time window variation. This shows
that the model's explanatory power is not significantly affected.
The high level of stability reflects strong generalization ability.
The model can extract useful information at various temporal
resolutions while maintaining reliable output predictions. Even
with extremely short or long window settings, the model does
not experience performance collapse.

This behavior also indirectly verifies the model's robustness
to input sequence length. When system request data includes
temporal fluctuations, changes in time window size have
limited impact. This is due to the model's internal capacity for
structured feature extraction and load modeling. It can
effectively use key information within limited time ranges
while suppressing noise and irrelevant variation.

In conclusion, the experiment shows that the model exhibits
good predictive stability across different time windows and has
low sensitivity to temporal perception scales. This enhances its
adaptability in real-world deployments. The model can be
applied to backend systems with diverse temporal
characteristics without requiring extensive parameter tuning
while maintaining strong performance.

5. Conclusion
This paper addresses the problem of API response time

prediction and scheduling optimization in backend systems. A
deep learning method is proposed that integrates structured
modeling with latency-aware mechanisms. By introducing an
enhanced Deep & Cross Network v2 architecture, along with a
Load-Aware Feature Fusion (LAFF) module and a Latency-
Sensitive Loss Adjustment (LSLA) mechanism, the model can
capture both complex feature interactions and dynamic system
behaviors. As a result, it achieves more accurate response time
predictions. Experimental results show that the proposed
method outperforms several mainstream models across
multiple evaluation metrics, demonstrating strong accuracy and
stability. Further ablation and comparison experiments confirm
the key roles of the LAFF and LSLA modules. These
components improve the model's ability to adapt to changing
system loads and enhance robustness to long-tail latency
samples. In addition, the model is tested under various real-
world conditions, including different latency proportions, noisy

feature perturbations, and changes in time window settings.
Results indicate that the model has strong generalization ability
and resistance to interference. It can effectively handle
complex and dynamic backend request environments,
providing more reliable inputs for scheduling strategies.

This study contributes to the application of structured deep
models in system performance modeling. It also provides
practical value for engineering problems such as system
scheduling, resource allocation, and service quality control. As
microservice architectures and cloud-native platforms continue
to grow, components with real-time prediction and intelligent
scheduling capabilities will become critical to backend system
evolution. The predictive optimization framework proposed in
this paper offers a practical paradigm for future research in this
direction. Future work may explore the adaptability of this
method to multi-task learning, online learning, or federated
learning settings. It can also be extended to work directly with
scheduling strategies to enable end-to-end adaptive scheduling
optimization. Moreover, real-world deployment may include its
application to elastic scaling, service degradation decisions,
and QoS assurance. These extensions will help promote the
broader adoption and continuous development of intelligent
predictive models in backend systems.

References
[1] Wang, Qiqi, et al. "Rlschert: An hpc job scheduler using deep

reinforcement learning and remaining time prediction." Applied
Sciences 11.20 (2021): 9448.

[2] Greca, S., Kosta, A., & Maxhelaku, S. (2018). Optimizing Data
Retrieval by Using Mongodb with Elasticsearch. In RTA-CSIT
(pp. 114-119).

[3] Wang, Q., Lan, T., Tang, Y., Huang, Z., Du, Y., Zhang, H., ... &
Tang, M. (2023). DLRover-RM: Resource Optimization for
Deep Recommendation Models Training in the Cloud. arXiv
preprint arXiv:2304.01468.

[4] Zhu, Zheng, et al. "Fusion predictive control based on uncertain
algorithm for PMSM of brake-by-wire system." IEEE
Transactions on Transportation Electrification 7.4 (2021): 2645-
2657.

[5] Szoplik, Jolanta, and Marta Ciuksza. "Mixing time prediction
with artificial neural network model." Chemical Engineering
Science 246 (2021): 116949.

[6] Berger, Alexander, and Markus Kiefer. "Comparison of different
response time outlier exclusion methods: A simulation
study." Frontiers in psychology 12 (2021): 675558.

[7] Alelyani, Abdullah, Amitava Datta, and Ghulam Mubashar
Hassan. "Optimizing Cloud Performance: A Microservice
Scheduling Strategy for Enhanced Fault-Tolerance, Reduced
Network Traffic, and Lower Latency." IEEE Access (2024).

[8] Iqbal, Naeem, et al. "A scheduling mechanism based on
optimization using IoT-tasks orchestration for efficient patient
health monitoring." Sensors 21.16 (2021): 5430.

[9] Tamizharasi, A., et al. "Optimization and Enhancement of
Doctor Appointment Booking System Using Next. js, Strapi, and
REST API." 2024 4th International Conference on Pervasive
Computing and Social Networking (ICPCSN). IEEE, 2024.

[10] Xu, Zheng, et al. "Enhancing kubernetes automated scheduling
with deep learning and reinforcement techniques for large-scale
cloud computing optimization." Ninth International Symposium
on Advances in Electrical, Electronics, and Computer
Engineering (ISAEECE 2024). Vol. 13291. SPIE, 2024.

[11] Kopanski, Jan. "Optimisation of job scheduling for
supercomputers with burst buffers." arXiv preprint
arXiv:2111.10200 (2021).

[12] Sugan, J. "PredictOptiCloud: A hybrid framework for predictive
optimization in hybrid workload cloud task
scheduling." Simulation Modelling Practice and Theory 134
(2024): 102946.

[13] Vieira Zacarias, Felippe. "Job scheduling for disaggregated
memory in high performance computing systems." (2023).

[14] Li, Q., Peng, Z., Cui, D., Lin, J., & Zhang, H. (2023). UDL: a
cloud task scheduling framework based on multiple deep neural
networks. Journal of Cloud Computing, 12(1), 114.

[15] Verma, Garima. "Load Balancing in Cloud Environment Using
Opposition Based Spider Monkey Optimization." Wireless
Personal Communications 137.2 (2024): 977-996.

[16] Tayefi, Maryam, et al. "Challenges and opportunities beyond
structured data in analysis of electronic health records." Wiley
Interdisciplinary Reviews: Computational Statistics 13.6 (2021):
e1549.

[17] Choudhary, Kamal, et al. "Recent advances and applications of
deep learning methods in materials science." npj Computational
Materials 8.1 (2022): 59.

[18] Ahmed, Shams Forruque, et al. "Deep learning modelling
techniques: current progress, applications, advantages, and
challenges." Artificial Intelligence Review 56.11 (2023): 13521-
13617.

[19] Shlezinger, Nir, et al. "Model-based deep learning." Proceedings
of the IEEE 111.5 (2023): 465-499.

[20] Sharifani, Koosha, and Mahyar Amini. "Machine learning and
deep learning: A review of methods and applications." World
Information Technology and Engineering Journal 10.07 (2023):
3897-3904.

[21] Zhao, Ying, and Jinjun Chen. "A survey on differential privacy
for unstructured data content." ACM Computing Surveys
(CSUR) 54.10s (2022): 1-28.

[22] Burley, Stephen K., et al. "RCSB Protein Data Bank (RCSB.
org): delivery of experimentally-determined PDB structures
alongside one million computed structure models of proteins
from artificial intelligence/machine learning." Nucleic acids
research 51.D1 (2023): D488-D508.

[23] Bentivoglio, Roberto, et al. "Deep learning methods for flood
mapping: a review of existing applications and future research
directions." Hydrology and Earth System Sciences
Discussions 2022 (2022): 1-50.

[24] Bhatti, Uzair Aslam, et al. "Deep learning with graph
convolutional networks: An overview and latest applications in
computational intelligence." International Journal of Intelligent
Systems 2023.1 (2023): 8342104.

[25] Pichler, Maximilian, and Florian Hartig. "Machine learning and
deep learning—A review for ecologists." Methods in Ecology
and Evolution 14.4 (2023): 994-1016.

[26] Hair Jr, Joseph F., and Marko Sarstedt. "Data, measurement, and
causal inferences in machine learning: opportunities and
challenges for marketing." Journal of Marketing Theory and
Practice 29.1 (2021): 65-77.

[27] Lindemann, Benjamin, et al. "A survey on anomaly detection for
technical systems using LSTM networks." Computers in
Industry 131 (2021): 103498.

[28] Ige, Ayokunle Olalekan, and Malusi Sibiya. "State-of-the-art in
1d convolutional neural networks: A survey." IEEE
Access (2024).

[29] Chitty-Venkata, Krishna Teja, et al. "A survey of techniques for
optimizing transformer inference." Journal of Systems
Architecture 144 (2023): 102990.

[30] Wang, Shiyu, et al. "Timemixer: Decomposable multiscale
mixing for time series forecasting." arXiv preprint
arXiv:2405.14616 (2024).

[31] Liu, Yong, et al. "itransformer: Inverted transformers are
effective for time series forecasting." arXiv preprint
arXiv:2310.06625 (2023).

[32] Jia, Wanhai, Shaopeng Guan, and Yuewei Xue. "TL-
iTransformer: Revolutionizing sea surface temperature
prediction through iTransformer and transfer learning." Earth
Science Informatics 17.5 (2024): 4847-4857.

	2.1 Scheduling and performance optimization strate
	2.2 Deep Learning Modeling Methods for Structured
	3.1 Load-Aware Feature Fusion
	3.2 Latency-Sensitive Loss Adjustment
	4.1 Dataset
	4.2 Experimental setup
	A.Experimental Results
	1)Comparative experimental results
	2)Ablation Experiment Results
	3)Hyperparameter sensitivity experiments
	4)The impact of changes in delayed sample ratio on m
	5)Anti-interference ability experiment after noise c
	6)Comparative experiment on prediction stability und

