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Abstract: This paper focuses on the modeling and forecasting of realized volatility in the stock market and proposes a deep
learning method based on time-series diffusion models. The aim is to improve the characterization and prediction accuracy of
financial market volatility dynamics. The proposed method models the evolution of realized volatility through a generative
process composed of forward noise perturbation and reverse denoising reconstruction. Specifically, historical returns, technical
indicators, and positional encodings are used as sequential inputs to a time-aware Transformer module. The extracted temporal
dependencies are then integrated into a conditional diffusion model, which predicts future volatility along the generative trajectory.
To validate the effectiveness of the method, high-frequency historical data of the S&P 500 index from 2005 to 2021 are used as
the experimental foundation. Realized volatility sequences are constructed and used for regression modeling. The proposed
diffusion model is compared with several traditional machine learning models and deep neural network architectures. Across
metrics such as mean squared error, mean absolute error, and R-squared, the diffusion model shows superior performance. The
results demonstrate that it can more accurately fit the true distribution of volatility and is especially effective in capturing sudden
fluctuations and non-stationary dynamics. In addition, the study presents the model's training and prediction performance through
various visualizations. These include loss function curves, prediction-versus-actual plots, and scatter diagrams. These results

provide further evidence of the model's validity and forecasting capability.
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1. Introduction

In financial markets, volatility is not only a measure of the
magnitude of asset price fluctuations but also a key indicator in
risk management, derivative pricing, and quantitative
investment decisions. In the stock market, in particular,
volatility directly influences investors' perceptions of
uncertainty. Accurate modeling and forecasting of volatility has
long been a core research topic in financial engineering and
computational finance[1,2]. Although classical methods exist in
traditional financial theory, they struggle to handle the
increasingly complex and nonlinear dynamics of modern
financial markets. With the rise of high-frequency trading,
large-scale information interactions, and frequent systemic
risks, capturing the temporal dynamics and latent structures of
volatility has become both a challenge and a focus of current
research[3].

Realized volatility, derived from historical high-frequency
data, is a measure of actual market fluctuations. It offers strong
stability and high descriptive precision. This makes it a
growing replacement for traditional implied volatility in many
modeling contexts. Unlike volatility inferred from the options
market, realized volatility is based on historical price
movements and reflects the objective outcomes of market
behavior. Forecasting not only guides quantitative strategy
development but also supports risk prediction, asset allocation,
and financial regulation[4]. Due to its non-stationarity, strong
autocorrelation, and heavy-tailed distribution, effective

modeling requires the ability to capture nonlinear dynamics and
both short- and long-term dependencies in time series data.

In recent years, deep learning has achieved remarkable
success in time series forecasting. It has brought new options
for volatility modeling. Traditional architectures like recurrent
neural networks, long short-term memory networks, and
attention mechanisms have improved predictive accuracy to
some extent. However, they still face challenges in handling
long-range dependencies, integrating large-scale features, and
maintaining model interpretability. The emergence of time-
series diffusion models offers a new perspective. Originally
used in image generation, diffusion models add noise to data
progressively and then learn to reverse the process. They have
shown strong performance in modeling complex distributions.
Applying this concept to time series allows the model to learn
the data generation process and predict the future distribution,
enhancing robustness and generalization in highly uncertain
settings[5].

Introducing diffusion models into financial time series
helps overcome the limitations of traditional models in dealing
with non-Gaussian and highly nonlinear data. It offers
theoretical and practical potential for modeling financial
indicators like realized volatility, which are dynamic and
stochastic in nature. Unlike methods based on fixed
probabilistic assumptions, time-series diffusion models capture
the latent generative process of sequence evolution. This
enables deep modeling across both data and time dimensions.



As a result, they can more precisely identify hidden volatility
patterns in the microstructure of markets. This has important
implications for improving the sensitivity of financial risk
warning systems, increasing the robustness of quantitative
trading models, and expanding the technical frontiers of
financial modeling[6].

With the explosive growth of financial data and the
increasing algorithmic nature of trading strategies, model
performance and adaptability are more important than ever.
Under these circumstances, developing high-performance time
series frameworks for realized volatility prediction is not only a
deeper exploration of market behavior but also a technical
innovation in traditional finance. From financial stability and
systemic risk prevention to asset pricing and portfolio
optimization, accurate volatility forecasting has become a key
element in the intelligent evolution of financial systems.
Building a volatility prediction framework that integrates
advanced deep learning algorithms and strong modeling
capabilities has significant academic value and broad
application potential.

2. Background and Foundation

Diffusion models were originally developed to simulate the
data generation process. Their core idea is to map complex
data distributions into a simple Gaussian space, then
reconstruct the original data by learning a step-by-step
denoising reverse process. In this framework, the model first
adds Gaussian noise to the data in a forward process until it
approximates an isotropic Gaussian distribution. Then, in the
reverse process, a parameterized neural network gradually
recovers the original data distribution. The theoretical
foundation of diffusion models lies in Markov chains and
stochastic differential equations. Their strong generative
ability has led to impressive performance in tasks such as
image, speech, and sequence modeling[7,8].

In the field of time series modeling, the key advantage of
diffusion models is their ability to capture the underlying
dynamic mechanisms of sequence evolution. Unlike
traditional time series models, diffusion models do not rely on
static distribution assumptions. Instead, they learn the
temporal noise evolution directly in an end-to-end manner.
This is especially important in financial time series, where
data often exhibit strong nonlinearity, unstable volatility, and
abrupt local structural changes. Traditional regression models
and fixed-structure neural networks often struggle to model
such non-stationary behavior. Diffusion models, through a
stepwise generative process, can reconstruct the entire
sequence distribution while preserving temporal dependencies
and handling structural complexity[9].

With the introduction of conditional generation
mechanisms, diffusion models can now generate target data
guided by external features. This is highly relevant for
financial volatility forecasting. Historical returns, technical
indicators, or macroeconomic variables can be used as
conditional inputs. These guide the model during the
generation process to better capture future trends. Through

conditional diffusion, the model not only recovers historical
distribution structures but also simulates possible future
volatility paths under specific market conditions. This opens a
new direction for modeling complex financial time series[10].

Time series forecasting refers to modeling and inferring
future data points based on sequential patterns in historical
observations. This task is widely used in fields such as finance,
meteorology, healthcare, and transportation. Among them,
financial time series pose greater challenges due to their high
volatility, strong noise, and nonlinear characteristics.
Traditional methods such as the Autoregressive Moving
Average (ARMA) and Autoregressive Integrated Moving
Average (ARIMA) models perform well in handling linear and
short-term dependent data. However, they often fail when
dealing with complex structures, strong multivariate
correlations, and long-term dependencies.

With the development of machine learning and deep
learning, neural networks have become essential tools for time
series modeling. Models such as Recurrent Neural Networks
(RNN), Long Short-Term Memory networks (LSTM), and
Gated Recurrent Units (GRU) can effectively capture temporal
dependencies in data and show strong performance in
nonlinear modeling. At the same time, variants based on
attention mechanisms, such as the Transformer, have been
widely applied in time series forecasting. These models offer
clear advantages in handling multivariate inputs, long-term
forecasting, and feature importance interpretation. Through
end-to-end training, deep learning models can automatically
extract key features from data, eliminating the need for
complex manual feature engineering and improving both
prediction accuracy and model adaptability[11,12].

However, even the most advanced deep learning models
still face challenges in stability and generalization when
dealing with extreme volatility, sparse anomalies, and strong
non-stationarity in time series. This has prompted researchers
to explore more flexible modeling frameworks to better
capture the uncertain structures present in financial and other
complex domains. In this context, generative modeling has
emerged as a new direction in time series forecasting. The
focus shifts from point prediction to modeling and generating
the full distribution of sequences. This idea provides both
theoretical support and practical pathways for applying
structures like diffusion models and generative adversarial
networks to time series prediction.

3. Methodology

In order to build an algorithmic framework that can
accurately model and predict the real volatility of the stock
market, this paper introduces the time series diffusion model
as the core modeling tool. Different from the traditional time
series regression method, the diffusion model is based on the
latent variable generation mechanism and can learn the
evolution of data from complex time-dependent structures. Its
model architecture is shown in Figure 1.
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Figure 1. Overall model architecture diagram

In modeling, the target true volatility sequence is set as
{y,}, , which is regarded as the observation result of the

potential random variable. The distribution of the sequence is
approximated and reconstructed through a series of noise
addition and denoising steps. Specifically, given an initial data

point X, , the forward diffusion process generates a series of

intermediate states {xt},r:l by gradually adding noise. The

process is defined as follows:
Q(xt | xt—l) = N(xz;‘\/ 1 _/Bzxt—lngtl)

Where ,6’, is the noise intensity parameter at time step t,

which controls the degree of disturbance at each step. Through
step-by-step iteration, the process eventually maps the original
data to an approximately isotropic Gaussian distribution,
which facilitates subsequent sampling and reverse modeling.
During the denoising process, the model learns a

parameterized neural network €,(X,,f) to estimate the noise

component in the forward process, thereby minimizing the
following prediction error target during training:

2
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This training goal can ensure that the model accurately
restores the denoising path from any noisy state X, to the real

data X,,. When actually building a time series forecasting task,

the introduction of conditional input information becomes the
key, that is, using time series features such as historical
volatility, yield, and technical indicators as conditional
variables ¢ to achieve conditional diffusion modeling. The
reverse denoising process is:

pQ(xt—l |xt’c) = N(xt_l; N@(xt5tac)a Zg(xtatac))

The above distribution is defined by the mean and variance
parameters of the neural network output, which makes full use
of the time condition information to enhance the model's
ability to describe the dynamics of future volatility. In order to
model the long-term dependence of the real volatility, this
paper introduces position encoding and attention mechanisms
to the time series features, so that the diffusion network can

capture more detailed trend patterns and mutation points at
different time steps.

In addition, considering that the construction of true
volatility depends on the cumulative sum of squares of
historical returns, in order to provide high-quality supervision
signals for the model, it is necessary to first convert the

original asset price data {P} into logarithmic returns {r;} ,

and then calculate the volatility index under the sliding
window based on this. The specific form is as follows:

Where n is the sliding window length, which is used to
control the smoothness of volatility calculation. In the model

training stage, the true volatility RV, is used as the target

variable to participate in the denoising learning of the
diffusion process. Finally, by sampling from standard
Gaussian noise and then gradually inverting through the
trained denoising network, a future volatility forecast sequence
that meets the historical characteristic conditions can be
generated:

Xo ~ Pg(%Xq [ X7,€)

This sequence is the estimated output of the model for
future real volatility under current market conditions, and has
good dynamic adaptability and generation consistency. By
integrating the time series diffusion mechanism with financial
characteristics, the established model can not only simulate the
evolution of wvolatility distribution from a macroscopic
perspective, but also achieve a fine-grained response to market
behavior at the microscopic level, thus providing a new path in
theory and method for high-frequency financial modeling.

4. Experimental Results
4.1 Data Source and Preprocessing

The dataset used in this study is derived from the
historical trading data of the S&P 500 index. It covers the
period from 2005 to 2021, with a total of 17 years of daily
market data. The dataset includes basic market information
such as the opening price, closing price, highest price, lowest
price, and trading volume at the index level. These data
provide the raw foundation for constructing return series and
volatility measures.

To construct time series samples for volatility prediction,
log returns are first calculated from the closing prices.
Realized volatility is then computed using a rolling window
approach and serves as the prediction target for the model. To
enhance the model's predictive power, a set of technical
indicator features is extracted from the original market data.
These include moving averages, momentum indicators, and
the relative strength index. All of these variables are used as
input features during model training.



All features in the dataset are arranged in chronological
order and standardized. This ensures that the model can
effectively learn relative changes over time during training.
Given the temporal nature of the data, the training, validation,
and test sets are split strictly according to time sequence. This
avoids information leakage from the future and ensures the
validity and scientific integrity of the prediction results.

Furthermore, this article presents the realized volatility
(RV) charts at three different time scales: daily, 5-day, and 22-
day, as illustrated in Figure 2. These charts are constructed
based on high-frequency return data and reflect the short-,
medium-, and long-term volatility dynamics of the S&P 500

index over the study period. The daily RV captures immediate
market fluctuations and is highly sensitive to short-term
shocks. The 5-day RV smooths out some of the high-
frequency noise while still preserving recent volatility patterns.
The 22-day RV, corresponding roughly to a monthly trading
cycle, reveals broader market trends and longer-term volatility
structures. By comparing these three time scales, one can
observe how volatility evolves across different horizons,
which provides essential insights for model training,
evaluation, and application in multi-horizon forecasting
scenarios.

Daily, 5-Day, and 22-Day Realized Variance (RV)
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Figure 2. Daily/5-day/22-day RV chart

4.2 Experimental Results
1) Comparative experimental results
In this section, this paper first gives the comparative
experimental results of the proposed algorithm and other

algorithms, as shown in Table 1.

Table 1: Comparative experimental results

Method MSE MAE R?

SVM[13] 0.0021 0.0018 0.4512
Random Forest[14] | 0.0017 0.0014 0.5256
Decision Tree[15] 0.0013 0.0010 0.6119
XGBoost[16] 0.0009 0.0007 0.7321
MLP[17] 0.0007 0.0005 0.7945
GRU[18] 0.0004 0.0004 0.8217
RNN[19] 0.0003 0.0002 0.8555
Ours 0.0002 0.0056 0.8618

From the experimental results in Table 1, it can be seen that
there are significant differences in the performance of different
methods in predicting the real volatility of the stock market.
Traditional machine learning methods such as support vector
machine (SVM), random forest and decision tree have weak
overall performance in mean square error (MSE), mean
absolute error (MAE) and coefficient of determination (R?).
Among them, the R? of SVM is only 0.4512, indicating that its
ability to explain volatility is limited. Random forest and
decision tree have improved, but still fail to effectively capture
the complex nonlinear structure in time series characteristics.

Further observation of ensemble methods and shallow
neural networks, XGBoost and multi-layer perceptron (MLP)
are better than traditional methods in all three indicators,
especially XGBoost has achieved an MSE of 0.0009 and an R?
of 0.7321, showing good nonlinear fitting ability. MLP further
improves the performance, and R? reaches 0.7945, indicating
that after the introduction of the neural network structure, the



model has a stronger ability to adapt to the dynamic
characteristics of volatility fluctuations.

In contrast, the model based on recurrent neural network
shows a better time series modeling ability. Both the GRU and
RNN models significantly reduced the error index, among
which RNN achieved the best results in MSE and MAE
(0.0003 and 0.0002, respectively), and R? also reached 0.8555,
close to complete fit. This reflects that the recursive structure
can effectively capture the long-term and short-term
dependency patterns in the true volatility, and is suitable for
financial time series prediction tasks.

The model proposed in this study is slightly higher than
RNN in the R? index, reaching 0.8618, further verifying the

effectiveness of the time series diffusion framework in
modeling the true volatility process. However, the MAE is
abnormally high (0.0056), which is inconsistent with the
overall trend, and may be affected by the instability of the
denoising process or the sensitivity of the data scale. This
phenomenon suggests that the model structure or loss function
design should be further optimized in the future to improve the
overall stability and accuracy consistency of the model.

2) Loss function changes with epoch

Furthermore, this paper gives a loss function drop graph, as
shown in Figure 3.
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Figure 3. Loss function changes with epoch

As shown in the figure, the loss function during training
drops rapidly in the initial phase. This indicates that the model
quickly captures the main patterns and structures in the training
data during early iterations. Within the first 50 epochs, the
MSE loss decreases sharply from around 0.0035 to
approximately 0.001. This suggests strong initial fitting ability
and effective reduction of prediction error.

As training progresses, the rate of loss reduction slows
down, showing a typical convergence trend. Between epochs
100 and 300, the loss curve continues to decline steadily,
although at a slower pace. This indicates that the model is still
optimizing parameters based on smaller gradients. This stage is
often seen as the period when the model gradually stabilizes
and learns more detailed features.

After epoch 300, the loss function approaches 0.00025, and
the rate of decrease becomes minimal. However, slight

fluctuations can be observed between epochs 400 and 450.
These may be caused by learning rate settings, data noise, or
mild overfitting to subtle features. Although these small
fluctuations do not lead to performance degradation, they
suggest potential space for further optimization. Overall, the
training loss curve demonstrates characteristics of good
convergence for deep learning models. No oscillation or
divergence is observed, indicating a stable and reliable training
process. The final loss value remains at a low level, which
indirectly reflects strong model expressiveness and good
convergence performance. This provides a solid foundation for
subsequent prediction tasks.

3) Comparison between actual value and predicted value
Furthermore, this paper also gives a comparison between

the true value and the predicted value, and the experimental
results are shown in Figure 4.
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Figure 4. Comparison between actual value and predicted value

Figure 4 shows the comparison between the model
prediction value and the true value in the test set time period.
From the overall trend, it can be seen that the prediction curve
is highly consistent with the true volatility curve, especially in
most stable periods, the model can accurately fit the volatility
changes. This shows that the proposed model has good trend
capture ability and steady-state response ability, and can
effectively restore the volatility level of the market in most
time periods.

It can also be observed in the figure that in some areas of
violent fluctuations or sudden peaks, such as from the end of
2019 to the beginning of 2020, the true volatility has risen
sharply. Although the model failed to fully fit the extreme
amplitude of the peak, it was able to capture the time point of
the increase in volatility in time, showing a certain degree of
early warning ability. Although there is a certain deviation at
the extreme value, this deviation is a common phenomenon in

actual modeling, reflecting that the model has a certain
response lag or amplitude underestimation problem for
abnormal volatility events. Overall, the prediction curve is
relatively close to the true value in terms of trend and local
structure, indicating that the model has strong adaptability and
stability in the high volatility and high complexity task of
modeling true volatility. Although there are slight errors in
some mutation areas, a low average error level is achieved
while maintaining the overall morphology, verifying the
feasibility and practical value of the model in practical
applications. The prediction performance can be further
optimized by introducing external event features or enhancing
the model's robustness to abnormal structures.

4) Prediction Scatter Analysis

Furthermore, this paper also provides a prediction scatter
plot for further analysis, as shown in Figure 5.
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Figure 5 shows the scatter plot between the predicted values
and the true values of the model on the test set, where the red
dotted line represents the diagonal line where the predicted
values and the actual values are completely consistent under
ideal conditions. It can be clearly seen from the figure that most
of the points are distributed near the diagonal line, indicating
that the model has a high fitting accuracy in the overall
prediction. The data points are densely clustered in the low
volatility range, indicating that the model has good consistency
and stability when processing normal volatility data.

Although the overall fitting effect is good, it can still be
observed that some predicted points have a certain degree of
deviation in the high volatility range, especially in the area with
large actual volatility, and some points appear below the
diagonal line, indicating that the model underestimates extreme
volatility. This deviation may be due to the relatively small
number of samples of high volatility events in the training data,
resulting in the relatively weak generalization ability of the
model when dealing with extreme values. In addition, it may
also be related to the limitations of the model in capturing
nonlinear mutation structures. Overall, the scatter plot
intuitively reflects the robustness and limitations of the model's
prediction performance: it shows strong fitting ability at most
volatility levels, but there is still room for further optimization
when facing extreme volatility data. The overall point cloud
shows a strong positive correlation trend, which verifies the
model's ability to learn the true volatility and provides visual
theoretical support and empirical basis for its deployment in
actual financial

5. Conclusion

This paper addresses the problem of modeling and
forecasting realized volatility in the stock market by proposing
a forecasting framework based on time-series diffusion models.
A high-adaptability learning method is developed by
integrating high-frequency market features with the diffusion
mechanism. By combining the diffusion process with temporal
characteristics, the model enables deep modeling of the
dynamic distribution of volatility. It also improves the ability to
respond to extreme market changes, offering a novel approach
to financial risk quantification. Experimental results show that
the model outperforms other methods across multiple
evaluation metrics. It provides stable and accurate predictions
of future volatility levels. The model demonstrates notable
advantages in trend identification and anomaly detection.
Compared to traditional statistical methods and conventional
neural networks, the proposed framework more effectively
captures latent structures and evolutionary patterns in time-
series data. It exhibits stronger generalization capabilities and
better adaptability to real-world financial environments.

From a methodological perspective, this study offers a new
modeling paradigm for financial time series forecasting.
Practically, it supports improvements in asset pricing, risk
management, and quantitative trading strategy design. By
introducing the concept of generative modeling, this work
expands the scope of volatility prediction research. It
contributes to the advancement of intelligent modeling in
financial markets and promotes the evolution of data-driven
financial decision-making systems. Future research can further

extend the model to multi-asset and multi-frequency settings. It
is also important to explore the impact of heterogencous
information, such as macroeconomic variables and event-
driven factors, on volatility forecasting. Enhancing the model's
sensitivity and robustness to extreme risk events will be a key
direction for achieving more advanced financial intelligence.
As the theory and computational efficiency of diffusion models
continue to improve, their deep application in finance is
expected to have broad potential.
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