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Abstract: This paper proposes a structural optimization method for large language models based on a perception-representation
integration mechanism. The goal is to enhance semantic construction and contextual consistency under complex language
scenarios. The method introduces perceptual feature extraction modules and perception-guided attention mechanisms. This
enables dynamic semantic modeling of language input and multi-level structural-perception interaction. It addresses the
disconnect between representation and structure in traditional language models. In implementation, the method integrates a
perception-driven representation update strategy into the GPT architecture. It constructs a perception graph to regulate attention
distribution. This design improves the model's structural expressiveness. Experiments on the WikiText-103 dataset show that the
proposed method outperforms mainstream language models in key metrics, including Perplexity, BLEU, and Semantic
Consistency. Additionally, a series of hyperparameter sensitivity experiments and comparative analyses of perception injection
strategies are conducted. These evaluate the impact of structural components on model performance. The results confirm the

stability and effectiveness of the proposed mechanism under different training configurations.
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1. Introduction

In recent years, artificial intelligence has developed rapidly.
Large language models, as a key support technology in natural
language processing, have shown outstanding performance in
tasks such as text generation, language understanding, and
logical reasoning. In particular, Transformer-based pre-trained
models have expanded the frontiers of general language
intelligence. They do so by leveraging strong expressive power
and transferability. However, with the exponential growth in
model size, significant structural bottlenecks remain. These
include understanding complex contexts, maintaining semantic
consistency, and improving cognitive depth. This suggests that
despite their engineering success, current models still lack a
unified theoretical framework for integrating perception and
representation in semantic modeling, context preservation, and
pragmatic inference[1].

Traditional language models rely heavily on static
embeddings and hierarchical mappings. They use stacked
attention modules to capture and abstract semantic features.
While such architectures offer some generalization at the
surface level, they lack the ability to dynamically deconstruct
and reconstruct input data. As a result, they fail to integrate
internal conceptual relationships at higher semantic levels. This
structural disconnection limits their ability to model complex
language phenomena[2]. Examples include metaphor,
contextual association, and cross-paragraph memory. The root
cause lies in the absence of an integrated mechanism linking
language perception with semantic representation. In human

cognition, language generation and understanding are not linear
processes. They emerge from complex interactions between
sensory inputs and representational systems. This insight
prompts a reevaluation of language model design. A new
modeling path is needed-one that deeply fuses perception with
representation[3].

The idea of integrating perception and representation
originates from cognitive science, neurolinguistics, and
complex systems theory. These fields suggest that language
formation is not a one-way process. It involves multi-level
feedback among perception, structural encoding, and high-level
abstraction. From this view, large language models should
evolve from passive mappers to active builders of semantic
fields. This shift helps improve semantic consistency and
expressive completeness. It also provides new theoretical
support for addressing challenges such as context integration,
cross-sentence inference, and semantic stability. By introducing
coupled perception-representation mechanisms, we can break
the unidirectional information flow between model layers.
Instead, we can build a unified structure that is dynamically
adaptable and structurally self-regulating. This endows the
model with stronger cognitive and generalization abilities.

From a systems perspective, current mainstream large
language models focus on attention distribution and parameter
scaling. They often overlook structural consistency and
semantic coherence in the information processing flow. The
perception-representation  integrated mechanism takes a
different approach. It emphasizes conceptual-level organization



and the internal construction of semantic networks. At its core

is an enhanced ability to internally perceive language structures.

This goes beyond understanding explicit meanings. It involves
capturing abstract relationships among linguistic symbols. Such
mechanisms improve semantic clarity while maintaining
parameter efficiency. They also provide a theoretical basis for
building compact and efficient large language model
architectures. Therefore, optimizing model structures through
this unified mechanism is more than an improvement. It is a
paradigm shift in language modeling[4].

In conclusion, research on optimizing large language model
structures based on the integration of perception and
representation has both theoretical and practical significance.
On the one hand, it bridges the gap between model architecture
and semantic cognition. It promotes a transition from symbolic
learning to structural cognition. On the other hand, it lays a
foundation for building the next generation of intelligent
systems. These systems will be efficient and driven by internal
language mechanisms. As large models are increasingly
applied in intelligent interaction, knowledge generation, and
complex reasoning, demands for structural coherence and
cognitive completeness are growing. Therefore, model
optimization through deep perception-representation coupling
is not only a breakthrough in current NLP research. It is also a
central theme in the future of artificial intelligence.

2. Related work

Current research on large language models mainly focuses
on scaling model structures and evolving training paradigms.
Significant progress has been made in self-attention
mechanisms, multi-layer decoding structures, and dense
parameter connections. Transformer-based architectures have
become the mainstream. Models such as GPT series, T5, and
OPT are built on this foundation. They model words and
sentences in high-dimensional vector spaces, greatly improving
performance in language generation and understanding tasks.
However, these models still rely on static representation-driven
encoding logic. The internal layers are mainly connected
through formalized attention passing. They lack dynamic
semantic reconstruction mechanisms. As a result, they struggle
to capture latent conceptual associations and cognitive-driven
features in language input. Some studies attempt to enhance
modeling through structural-aware modules, memory
mechanisms, or language knowledge graphs. Yet, they still fall
short of bridging the fundamental gap between representation
mechanisms and perceptual systems[5].

In recent years, as cognitive neuroscience has begun
influencing artificial intelligence, some studies have explored
perceptual mechanisms in language modeling. For instance,
visual-language pre-trained models have introduced graph
neural networks to simulate connection strengths among
concepts. Associative memory networks have been used during
language generation to maintain information continuity. These
attempts yield improvements in specific tasks. However, they
remain limited to input or output enhancement. A unified
structural modeling framework that spans from perceptual
input to semantic representation is still lacking. More
importantly, existing research often overlooks the adaptability
of language structure formation under perceptual guidance.

That is, how models dynamically adjust internal semantic
construction in response to changes in input structure. This
adaptability is key to achieving deeper abstraction and
compositionality in language modeling.

Against this backdrop, the perception-representation
integrated mechanism proposed in this study does not merely
follow the traditional stacked representation extraction path.
Instead, it seeks to design a language modeling framework
grounded in information flow and structural reconstruction.
This mechanism aims to balance cognitive plausibility with
expressive precision. Prior literature has not systematically

investigated how language perception affects semantic
construction pathways. It proposes a bidirectional,
collaborative information integration framework. The

perceptual process is embedded within the model architecture
itself. This enables structured, dynamic, and abstract
interactions during language understanding. As this direction is
still in the early stage of theoretical exploration, it fills a clear
research gap. It also offers a new paradigm for understanding
and modeling language intelligence.

3. Method

Based on the traditional Transformer architecture, this
study introduces the perception-representation integration
mechanism as the core optimization idea. Specifically, the
model no longer uses a static encoding process with stacked
layers, but introduces a perception-driven structural
reconstruction unit, so that the model has the ability to
dynamically perceive and update the input semantic state in
each layer. The model architecture is shown in Figure 1.
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Figure 1. Overall model architecture




This model architecture diagram shows how the perception-
representation integration mechanism proposed in this paper is
embedded in the language modeling structure. The model starts
with input Xx , first passes through the perception-driven
feature extraction module P(x), and then collaborates with
the dynamic semantic representation unit to achieve multi-level
updates of semantic states. The attention control mechanism
constructed in combination with the perception map guides the
calculation of weights in the Softmax layer to achieve
representation reconstruction under semantic alignment and
structure guidance, forming a closed-loop modeling path that
integrates perception-driven, semantic feedback, and attention
control.

We define a perceptual function P(Xx) to extract

perceptual features from the original input Xx € R™ and
combine it with the existing semantic representation B to

generate the representation state h"*Y of the next layer. This
mechanism can be formalized as:

B = o(WP[Concat (P(x),h")]+b?)

Concat represents the concatenation operation, wo

and b are learnable parameters, and O is a nonlinear
activation function. This structure strengthens the model's
ability to model the coupling between input perception and
semantic connection, allowing for dynamic injection of
perception guidance signals at different levels.

In order to achieve dynamic adaptive reconstruction of the
semantic space, we further introduce a representation
regulation mechanism to construct a local perceptual weighted

graph G =(V,E, A), where the vertex set V represents the

semantic units at different positions, the edge set E defines
their contextual dependencies, and the eclements of the
adjacency matrix A are determined by the perceptual

similarity function S(i, j), specifically:
_exp(]| Pe) = P(x) )
T exp(=l| P(x) = P(x) )

This expression essentially constructs a local manifold in
the semantic space, so that the model not only relies on
grammatical order or position information when calculating
attention, but also refers to the human semantic clustering
distribution that is closer at the perceptual level, thereby
enhancing the adaptability and stability of the semantic
structure.

In terms of representation integration, we extend the
original multi-head attention mechanism to perceptually
regulated attention in the form of:

. OK"
Attention(Q, K, V') = softmax ( ® AWV

N

® represents the Hadamard product, and the introduced
perceptual graph structure A adjusts the original attention
distribution to achieve attention shift driven by structural
perception. This mechanism essentially builds a "semantic
vision control" framework to avoid the unstable diffusion
problem of traditional attention in long texts or complex
contexts, while improving the focus and conceptual coherence
of semantic extraction.

Finally, to ensure that the structural integration mechanism
converges stably during training, we introduce a perceptual

consistency constraint L into the loss function, which is

percep
defined as the KL divergence of the perceptual mapping
differences between layers, namely:

= i Dy, (Concat(P? (x), P"*"(x)))

I=1

L percep

This item ensures that the perceptual features maintain
information consistency during the continuous evolution
between layers, preventing gradient fluctuations caused by
excessive representation jumps. Combined with the original

L,,, adopts the

standard autoregressive negative log-likelihood objective
function form, it is used to maximize the prediction probability
of the next word under given context conditions. Let the input

language modeling loss L,,, , where

sequence be X =(X;,X,,...,x;) and the model prediction
distribution be  p,(x, | x_,) , then the language modeling loss

is defined as follows:

T
L, = _Z log p,(x, | x,,)

t=1
Where & is the model parameter and X_, represents the

context of all words before time t. This loss function enables
the model to learn the conditional distribution structure of the
language in the entire training corpus by maximizing the
logarithmic probability of the correct word.

Finally, we give the overall loss:
L=L, +AL

The overall structure forms a closed loop in terms of
semantic consistency, local perception guidance, and structural
adaptive modeling, thereby effectively improving the
structural expression ability and perception-driven generation
ability of the large language model.

percep

4. Experiment
4.1 Datasets

This study uses WikiText-103 as the primary dataset for
training and evaluation. The goal is to verify the effectiveness
of the perception-representation integrated mechanism in
optimizing large language model structures. WikiText-103 is
composed of large-scale Wikipedia articles and contains



approximately 103 million words. It is a widely used
benchmark dataset for language modeling in the field of natural
language processing. Compared with traditional short-text

datasets, it retains full paragraph structures and contextual logic.

This makes it suitable for evaluating the model's ability in long-
range dependency modeling, semantic preservation, and
contextual consistency.

The dataset offers high-quality text with natural language
style and clear structure. It covers multiple semantic domains,
including history, science, and culture. These characteristics
provide rich training signals for dynamic extraction of
perceptual features and continuous construction of semantic
structures. Since the model performs perceptual feature
extraction and dynamic representation updates at each layer,
using WikiText-103 enables a more realistic simulation of
information flow and representational evolution in complex
language environments. It also offers more challenging and
discriminative conditions for evaluating how well the model
captures perception-semantic interaction mechanisms.

In addition, WikiText-103 has clear splits for training,
validation, and testing. This ensures reproducibility and
comparability, providing a standardized foundation for further
experimental comparison and performance analysis. Modeling
and experimentation based on this dataset help evaluate the
proposed structural optimization method at a macro language
level. It also offers theoretical support for wvalidating
generalization performance and future innovations in model
architecture.

4.2 Experimental setup

The experiments in this study were conducted in a high-
performance computing environment equipped with four
NVIDIA A100 GPUs, each with 80GB of memory. The
training framework adopts a distributed parallel strategy. This
ensures stable computational efficiency and effective memory
management during the training of large-parameter models. To
evaluate the proposed perception-representation integrated
mechanism, we implemented modular replacements and
extensions based on the original Transformer architecture. The
implementation and optimization were carried out using the
PyTorch framework. This design maintains computational
control while accurately reflecting the role of perception in
semantic modeling.

In the experimental setup, we selected the GPT-series
architecture as the baseline model. Its standard autoregressive
language modeling process serves as the reference framework.
This ensures structural consistency and theoretical equivalence
in comparative experiments. The same number of training
epochs, learning rate schedules, and optimizer settings were
used throughout. The focus was on changes in model
performance regarding contextual consistency, semantic
coherence, and language generation quality. These metrics
were used to assess the structural advantages and expressive
improvements introduced by the perception-representation
mechanism. The experimental configuration table is shown in
Table 1.

Table 1: Experiment configuration table

Category Configuration

Hardware 4 x NVIDIA A100 GPUs (80GB
each)

Framework PyTorch (Distributed Data Parallel)

Baseline Model GPT Architecture (Transformer-
based Autoregressive)

Training Dataset WikiText-103

Optimizer AdamW

Learning Rate 0.001

Batch Size 64

Epochs 200

Precision 16

4.2 Experimental Results

1) Comparative experimental result
This paper first gives the comparative experimental
results, as shown in Table 2.

Table 2: Comparative Results of Different Language Models
on WikiText-103

Model Perplexity BLEU Semantic
Consistency

GPT-NeoX[6] 17.3 23.1 84.6

OPT-6.7B 16.8 24.0 85.2

LLaMA-2[7] 15.9 25.5 86.8

RWKYV [8] 16.5 23.7 85.0

Ours 14.6 27.3 89.7

As shown in the experimental results, the proposed
perception-representation integrated model outperforms other
advanced models in language modeling tasks. In terms of
Perplexity, our model achieves a score of 14.6, significantly
lower than GPT-NeoX, OPT-6.7B, and LLaMA-2. This
indicates that the uncertainty in predicting the next word is
reduced after introducing the perception mechanism. The
generated language becomes more accurate. These results
suggest that incorporating perceptual features at the structural
level plays a positive role in enhancing language modeling
capability.

For the BLEU metric, our model also obtains the highest
score of 27.3, surpassing the closest competitor, LLaMA-2, by
1.8 points. This demonstrates that the generated text better
aligns with the reference in both content coverage and
linguistic expression. It is worth noting that although LLaMA-2
has achieved improvements in structural optimization and
pretraining strategies, it still falls short in semantic alignment.
Our model, by enabling dynamic semantic construction guided
by perception, produces text with better coherence and
accuracy. It exhibits stronger expressive quality in natural
language generation tasks.

Regarding Semantic Consistency, our model achieves a
score of 89.7, the best among all compared models. This shows
that the introduction of perception mechanisms significantly
improves the model's ability to maintain semantic coherence
across context. The result further confirms the effectiveness of
the perception-representation integration in enhancing semantic




abstraction and consistency. It is especially effective in
handling complex contexts and long-range dependencies. This
provides a stronger semantic foundation for downstream tasks
in language understanding and reasoning.

2) Experiment on the impact of different level perception
injection strategies on model performance

Furthermore, this paper presents an experiment on the
impact of different levels of perception injection strategies on
model performance, and the experimental results are shown in
Figure 2.
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Figure 2. Experiment on the impact of different level perception injection strategies on model performance

As shown in the figure, model performance improves
consistently across all three core metrics as the depth of
perceptual injection increases. This indicates that the
introduction of the perception-representation mechanism
significantly enhances the model's structural capacity. In
particular, under the Multi-Layer Fusion strategy, the model
achieves the lowest Perplexity score of 14.6. This suggests
stronger context modeling and word prediction capabilities. It
also shows that uncertainty in predicting the next word is
effectively reduced.

The BLEU score also increases steadily with the refinement
of the injection strategy. Especially during the transition from
shallow to middle and deep layers, the model shows notable
gains in both accuracy and diversity of language generation.
The highest BLEU score of 27.3 is achieved under the multi-
layer fusion structure. This suggests that the model can better
integrate semantic information from different layers, resulting
in generated text that is closer to the reference corpus.

Semantic Consistency, as a key metric for assessing
semantic coherence and logical consistency, also improves
with deeper levels of perceptual injection. The model performs
relatively weakly without perception mechanisms. However,
with multi-layer injection, this score rises to 89.7. This
confirms the reinforcing effect of perception-driven semantic
construction on the model's ability to maintain semantic
consistency. It is especially beneficial in long-text modeling
and complex reasoning tasks.

In summary, the integration of multi-level perceptual
information improves not only individual performance metrics
but also brings a qualitative leap in the model's overall

structural expressiveness. These experimental results validate
the effectiveness of the proposed perception-representation
integration mechanism in structural design. They also provide
both theoretical and empirical support for further optimization
of language model architectures.

3) Hyperparameter sensitivity experiment results

This paper also gives the results of hyperparameter
sensitivity experiments, mainly focusing on Batchsize, Ir and
optimizer. First, the experimental results of batchsize are given,
as shown in Table 3.

Table 3: Hyperparameter sensitivity experiment results

(Batchsize)
Batchsize Perplexity BLEU Semantic
Consistency
8 16.9 24.5 84.2
16 16.2 25.3 85.6
24 15.7 26.1 87.0
32 15.1 26.6 88.1
64 14.6 27.3 89.7

As shown in the table, the model demonstrates a stable and
consistent improvement across all metrics as the batch size
increases. In particular, Perplexity shows a clear downward
trend. This indicates that a larger batch size helps enhance the
model's ability to fit language structures and reduces
uncertainty during prediction. It suggests that, during large-
scale corpus training, using larger batches provides more
sufficient gradient information. This improves both training
stability and generalization ability.



The BLEU score also increases steadily with larger batch
sizes, rising from 24.5 at batch size 8 to 27.3 at batch size 64.
This reflects continuous improvements in content coverage and
language naturalness of the generated text. A larger batch size
enhances the model's ability to integrate semantic context. As a
result, the generated output more closely aligns with the
structure and linguistic features of the reference text, leading to
higher overall generation quality.

Semantic Consistency also improves significantly with
increased batch size, rising from 84.2 to 89.7. This indicates
that the perception mechanism more easily forms stable
semantic mappings and connection structures under larger
batch training. The result further confirms the structural
potential of the perception-representation integrated
mechanism in high-batch settings. It enables the model to
understand and reconstruct complex semantic relationships
with greater coherence, providing stronger semantic driving
capacity for language modeling tasks.

Similarly, the experimental results of the hyperparameters
of the learning rate are given.

Table 4: Hyperparameter sensitivity experiment results
(Learning Rate)

Learning Rate Perplexity BLEU Semantic
Consistency

0.004 17.8 234 83.1

0.003 16.6 24.6 85.0

0.002 15.5 26.0 87.2

0.001 14.6 27.3 89.7

As shown in the table 4, model performance improves
consistently across all metrics as the learning rate decreases. In
particular, the Perplexity score drops from 17.8 to 14.6. This
indicates that smaller learning rates help the model converge
more stably during training. They effectively reduce semantic
modeling bias caused by large gradient fluctuations. These
results suggest that the perception-representation mechanism
shows a certain degree of convergence dependency on learning
rate. Smaller learning rates are more conducive to the fine
construction of semantic structures.

The improvement in BLEU score further supports this
observation. It increases from 23.4 at a learning rate of 0.004 to
27.3 at 0.001. This shows that a smaller learning rate leads to
language output that is more consistent with the reference text.
The generated text exhibits higher naturalness and semantic
coherence. An excessively high learning rate may cause the
model to skip over potentially optimal representation regions,
negatively affecting text generation quality.

Semantic Consistency also shows a steady upward trend,
reaching a maximum of 89.7. This indicates that smaller
learning rates help the model maintain semantic consistency
and structural logic. The results confirm a positive coupling
between perception-driven mechanisms and fine-grained
learning rate control. This coupling enhances the model's
understanding and generation stability in complex language
modeling tasks.

Finally, the experimental results of different optimizers are
given, and the experimental results are shown in Table 5.

Table 5: Hyperparameter sensitivity experiment results

(Optimizer)
Optimizer Perplexity BLEU Semantic
Consistency
AdaGrad 17.2 23.9 83.7
SGD 16.8 24.5 84.9
Adam 15.5 26.1 87.4
AdamW 14.6 27.3 89.7

As shown in the table, the choice of optimizer has a
significant impact on model performance. Among all tested
optimizers, AdamW performs the best across all metrics. It
achieves the lowest Perplexity score of 14.6, indicating
stronger stability and better convergence during training. This
enhances the model's accuracy in capturing language structures.
In contrast, AdaGrad and SGD perform noticeably worse,
showing higher uncertainty and lower generation quality.

The BLEU score increases progressively from AdaGrad to
SGD, Adam, and finally AdamW. AdamW achieves the
highest score of 27.3. This indicates its effectiveness in guiding
the model to generate natural, fluent, and more content-
complete text. This advantage is mainly attributed to AdamW's
optimized weight decay mechanism. It allows better balance
between gradient updates and parameter regularization in large-
scale training. This is particularly beneficial for training
complex architectures like the perception-representation
mechanism.

Semantic Consistency results follow the same trend.
AdamW reaches the highest score of 89.7, clearly
outperforming the other optimizers. This shows that it not only
improves generation accuracy but also enhances semantic
coherence and logical consistency. Overall, AdamW
demonstrates better adaptability and performance in the
proposed architecture. It is the ideal optimizer for
implementing the perception-representation  integration
mechanism.

5. Conclusion

This study focuses on the structural modeling capacity of
large language models. It proposes a structural optimization
method based on a perception-representation integration
mechanism. The goal is to achieve deep coupling between the
language perception process and semantic construction. By
introducing perceptual feature extraction and perception-guided
attention mechanisms into the traditional autoregressive
language model architecture, the model gains a better
understanding of contextual semantic relationships. This
enhances both semantic consistency and expressive precision.
The method extends existing models at the theoretical level and
demonstrates significant performance gains in experiments.

Experimental results show that after introducing the
perception mechanism, the model outperforms mainstream
language models on metrics such as Perplexity, BLEU, and
Semantic Consistency. This confirms the effectiveness of
perceptual representation in improving language modeling
capabilities. In hyperparameter sensitivity experiments, the
model maintains a stable optimization trend across different
batch sizes, learning rates, and optimizer combinations. This



demonstrates strong generalization and training adaptability.
Moreover, comparison across different perception injection
levels shows that multi-layer fusion strategies better integrate
semantic information, enabling higher-level abstraction and
expression. This study highlights the importance of perception-
guided modeling in language understanding. It advances the
structural logic of language models through a systematic
optimization approach. The focus shifts from "representation
extraction" to a bidirectional coupling of "structural perception
and semantic feedback." Without relying on external
information, the proposed mechanism strengthens the internal
information organization of the model. It offers solid
theoretical grounding and practical feasibility, providing new
perspectives and architectural paths for the development of
language models.

Future research can further explore the adaptability of the
perception mechanism in cross-task and cross-domain language
modeling. It may also investigate deep integration with long-
term memory modeling and symbolic reasoning mechanisms.
Additionally, combining perceptual representation with model
compression, few-shot learning, and other scenarios may lead
to more efficient and intelligent language understanding
systems. This would promote the development of language
models toward greater generalization and cognitive capability.
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