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Abstract: This paper addresses the practical challenges of deploying large language models, particularly in terms of inference
efficiency and resource consumption. It proposes an improved distillation framework. The method builds on the TinyBERT
structure and introduces a multi-layer semantic alignment mechanism. This enhances the student model's ability to learn deep
semantic and structural information from the teacher model. The approach jointly considers the transfer of output distributions,
hidden layer representations, and attention matrices. A combined loss function is designed to optimize multiple distillation
objectives. During training, the student model maintains a lightweight structure while effectively inheriting the expressive power
of the teacher model. This improves its generalization and stability in multi-task scenarios. The experiments are conducted on the
GLUE benchmark. Evaluation covers training dynamics, output distribution learning, task stability, and inference speed on low-
resource devices. The results show that the proposed method outperforms mainstream distillation models across several metrics. It
demonstrates strong compatibility, efficiency, and deployment adaptability. The findings further validate the effectiveness of
multi-layer alignment strategies in improving the performance of compact language models. This provides a technical foundation
for building high-performance, low-cost natural language processing systems.
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1. Introduction
In recent years, large language models have achieved

groundbreaking results across various natural language
processing tasks. They have become fundamental technologies
for text generation, dialogue systems, and language
understanding. These models typically contain billions of
parameters and can capture complex semantic structures and
contextual relationships[1,2]. However, as the size of these
models continues to grow, their computational cost and
deployment overhead increase sharply. This poses significant
challenges for applications requiring deployment on edge
devices, low-latency inference, and energy-efficient
computation. Therefore, reducing computational complexity
while preserving performance has become a key research focus
in natural language processing.

Model distillation has gained widespread attention as an
effective model compression technique. It transfers knowledge
from a large teacher model to a smaller student model. This
method significantly improves inference speed and reduces
resource consumption. In language models, distillation goes
beyond output probabilities[3]. It also involves transferring
intermediate representations, attention patterns, and gradient
behaviors. This forms a multi-level, semantically rich form of
information compression. Compared to traditional compression
methods such as pruning and quantization, distillation better

preserves model capacity and knowledge depth. As a result, it
is widely used to compress mainstream pre-trained models like
BERT and GPT.

Among various distilled models, TinyBERT stands out for
its compact architecture, well-designed distillation strategy, and
balanced performance[4]. It introduces a distillation method
centered on layer-wise alignment and task-specific knowledge
transfer. This approach aims to retain the expressive power of
the teacher model while reducing model size. However, as
downstream tasks become more complex, TinyBERT's current
distillation strategy faces limitations. Issues remain in terms of
knowledge retention, cross-layer semantic consistency, and
adaptability during training. To address these challenges,
researchers are exploring finer-grained alignment methods,
structure-aware mechanisms, and more generalizable objective
functions to further improve distillation outcomes[5].

Improving the distillation algorithm for TinyBERT has both
theoretical and practical significance. In scenarios where
response speed and resource efficiency are critical— such as
smart devices, online search, question answering, and real-time
translation — large models are often impractical to deploy.
Distilled models, on the other hand, can operate efficiently
while maintaining acceptable performance. Additionally, as the
industry increasingly emphasizes low-carbon AI and green
computing, energy-friendly model design has gained



importance. Distillation concentrates computation in the offline
stage, reducing energy use and latency during deployment.
This provides a practical path toward sustainable AI systems.
An improved TinyBERT distillation method could further
accelerate the adoption of language models in efficient and
accessible applications[6,7]. Research on improving
TinyBERT-based distillation algorithms represents both a
refinement of model compression techniques and a response to
the real-world demand for usable and deployable language
models. As the tension between model size and computational
cost intensifies, developing more efficient distillation strategies
can help balance semantic retention and structural compression.
This will provide strong technical support for advancing natural
language processing from research to real-world applications.
This direction also promotes the development of lightweight
language models and offers new opportunities for optimizing
intelligent computing systems.

2. Related work
Large language models have become a major focus in the

development of natural language processing[8]. In recent years,
they have advanced rapidly. Models based on the self-attention
mechanism can effectively capture long-range dependencies.
This provides strong support for contextual understanding and
semantic generation[9]. Since the Transformer architecture
became widely adopted, many large-scale language models
have been proposed. These models outperform earlier systems
in tasks such as text generation, question answering, and
machine translation[10]. As the number of parameters and the
size of training corpora continue to grow, these models are
gaining general capabilities in language understanding and
reasoning. They are now key components of general-purpose
artificial intelligence systems.

Despite their strong performance in semantic modeling and
task generalization, large language models face practical
deployment challenges due to their high computational
demands and resource dependency. During training, these
models require massive high-quality data, long periods of
distributed training, and power-intensive hardware. During
inference, their large number of parameters causes high latency
and high cost. This makes it difficult to apply them in resource-
constrained environments. The trade-off between performance
and cost has led researchers to explore efficient alternatives.
These alternatives aim to reduce the computational burden
while maintaining the model's capabilities.

To address these challenges, various model compression
and acceleration techniques have been developed. Among them,
knowledge distillation has emerged as a mainstream
lightweight solution. It transfers valuable knowledge from a
large pre-trained model to a smaller, faster student model.
Distillation can significantly enhance the performance of small
models across a range of tasks. The combination of large
language models and distillation techniques has become a key
direction in the design of efficient NLP systems. It offers both
theoretical support and practical solutions for balancing model
performance and deployment efficiency.

Model distillation, as a classical model compression
method, was originally proposed to transfer knowledge from

large deep neural networks to smaller shallow models[11,12].
The core idea is to guide the student model to learn the output
distribution of the teacher model during training. This allows
the student to acquire richer semantic information without
relying on original labels. As natural language processing tasks
have become more complex, distillation methods have evolved.
New techniques such as soft label distillation, intermediate
representation alignment, and attention transfer have emerged.
These enable student models to inherit multi-level knowledge
from the teacher more effectively.

In the field of language modeling, distillation techniques
are widely used for compressing and accelerating pre-trained
models. Researchers have found that distillation at the output
layer alone is insufficient to capture deep language structures
and contextual information[13]. To address this, multi-layer
distillation strategies have been proposed. These strategies
transfer intermediate features, hidden states, and attention
matrices from the teacher model. In addition, different
distillation tasks require different approaches. For example, the
distillation goals vary significantly across question answering,
text classification, and generation tasks. This has led to the
development of task-aware distillation methods[14].

In practice, many lightweight models have achieved good
results by integrating distillation strategies. These models
significantly reduce parameters and inference cost while
maintaining performance. TinyBERT is one such example. It
performs distillation during both pre-training and downstream
fine-tuning stages. This improves generalization and
adaptability. In recent years, research on distillation has
expanded to cross-model, cross-layer, and even cross-modal
scenarios. This demonstrates broad application potential. As
large language models continue to evolve, efficient distillation
algorithms will remain essential for building practical language
systems.

3. Method
Based on the improvement of TinyBERT distillation

mechanism, this study proposed an enhanced multi-layer
alignment distillation method, which aims to improve the
student model's ability to learn the semantic structure of the
teacher model. The model architecture is shown in Figure 1.

The proposed architecture illustrates a multi-level
distillation framework where the student model learns from
both the output distributions and internal representations of the
teacher model. Distillation losses are computed from soft
labels, intermediate hidden states, and attention maps to ensure
comprehensive knowledge transfer across different layers.
This design enhances the student's ability to approximate the
semantic structure and attention behavior of the larger teacher
model with reduced computational complexity.



Figure 1. Overall model architecture diagram

In the traditional distillation framework, the student
model learns knowledge by minimizing the difference
between the output and the teacher model. To this end, we
define the basic soft label distillation loss as follows:
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Where T
iz and S

iz represent the logits output of the
teacher model and the student model on sample i, respectively,
and  is the temperature parameter used to smooth the
output distribution.

To further enhance the knowledge transfer capability of
the intermediate layer representation, we introduced the mean
square error alignment loss of the hidden state of the
intermediate layer. This loss is used to map the hidden vectors
of the teacher model and the student model at each layer, as
shown below:
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Where L is the number of layers, T
lh and S

lh
represent the hidden state representation of the teacher model
and the student model at layer l, respectively. This loss
encourages the student model to maintain a similar semantic
expression structure to the teacher model at each layer.

To improve the adaptability of information transfer
between different layers, we designed a layer weight
mechanism to dynamically adjust the distillation contribution
of each layer. The final total loss function consists of multiple
parts, as shown below:
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Where  、、 is a weight hyperparameter used to
balance the impact of each distillation item on the training
process. By optimizing this loss function, the student model
can more comprehensively learn the output distribution,

semantic representation, and attention pattern of the teacher
model, thereby retaining richer language understanding
capabilities while maintaining a compact structure.

4. Experimental Results
This study uses the GLUE (General Language

Understanding Evaluation) dataset as the base corpus for
distillation training and evaluation. GLUE covers a variety of
natural language understanding tasks. These include textual
entailment, sentence similarity, sentiment analysis, and natural
language inference. The diversity of task types and linguistic
phenomena helps evaluate the student model's language
understanding ability in a comprehensive manner.

The dataset includes major subtasks such as MNLI
(Multi-Genre Natural Language Inference), SST-2 (Sentiment
Classification), QQP (Quora Question Pairs), and QNLI
(Question-Answer Sentence Matching). Each subtask provides
training, validation, and test sets. This ensures sufficient scale
and diversity for distillation training. Using this dataset allows
for representative evaluation of knowledge transfer in general
language tasks.

Most tasks in the GLUE dataset are based on sentence
pair inputs. This format effectively activates the model's
ability to capture contextual dependencies and requires strong
semantic transfer. Such a design makes GLUE an ideal
platform for evaluating improved distillation methods in terms
of semantic alignment and generalization across tasks.

1) Experiments comparing this algorithm with other
algorithms

In this section, this paper first gives the comparative
experimental results of the proposed algorithm and other
algorithms, as shown in Table 1.

Table 1: Comparative experimental results

Method Accuracy
(%)

Latency
(ms/sample)

F1 Score(%)

DistilBERT[15] 85.2 27.8 84.1
TinyBERT[16] 86.1 21.4 85.0
MobileBERT[17] 84.7 24.5 83.6
MiniLM[18] 86.9 22.1 85.9
Ours 87.3 22.5 86.3

As shown in the table, the proposed method outperforms
most baseline models in overall performance. It demonstrates
strong distillation effectiveness and structural optimization. In
terms of accuracy, the method achieves 87.3 percent. This
exceeds TinyBERT and MobileBERT, and approaches the
performance of MiniLM. It also retains more semantic
information without increasing model size. This indicates that
the improved multi-layer alignment strategy plays a positive
role in semantic transfer. It enhances the student model's ability
to mimic the teacher model's expressive power.



In inference efficiency, the method achieves an average
inference time of 22.5 ms. This represents a better response
speed than DistilBERT and MobileBERT. It is slightly slower
than TinyBERT and MiniLM, but strikes a balance between
performance and speed. Due to the joint optimization of
intermediate representations and attention matrices during
distillation, the student model obtains more compact
representations. This reduces its dependency on the original
teacher model while maintaining runtime efficiency.

For the F1 score, the method reaches a macro average of
86.3 percent across multiple tasks. This shows a slight
improvement over other distilled models. It reflects the model's
adaptability to different tasks. The results suggest that the
proposed distillation approach improves not only accuracy but
also stability and generalization in semantic recognition and
classification boundaries. In particular, attention layer
distillation and multi-level feature alignment are effective in
capturing inter-sentence semantic relations in complex
language tasks. Overall, the experimental results validate the
effectiveness of this study in the field of large language model
distillation. By constructing finer-grained distillation objectives,
the method improves multi-task performance while keeping the
model lightweight. It balances semantic preservation, structural
compression, and inference efficiency. Compared to
mainstream public models, the improved distillation strategy
shows better performance and deployment potential. It
provides solid support for real-world deployment and transfer.

2) Effect of distillation temperature parameter on output
distribution learning

This paper also provides a detailed investigation into the
impact of the distillation temperature parameter on the
learning of output distributions during the training process of
the student model. The distillation temperature, which controls
the smoothness of the soft targets generated by the teacher
model, plays a critical role in guiding the student model to
capture more nuanced semantic information embedded in the
output logits. By adjusting this parameter, the model is able to
modulate the level of information transferred from the teacher
to the student, especially in terms of inter-class relationships
and confidence calibration. Understanding how different
temperature settings influence the learning dynamics is
essential for optimizing the overall distillation framework. The
corresponding experimental results designed to reflect this
influence are illustrated in Figure 2.

As shown in the figure, the distillation temperature has a
significant impact on the model's ability to learn from the
output distribution. When the temperature increases from 1.0 to
3.0, both accuracy and F1 score improve. They reach peak
values of 87.3 percent and 86.3 percent at T = 3.0. This
indicates that a moderate increase in temperature helps the
student model better learn the dark knowledge embedded in the
teacher's output. It enhances both semantic representation and
classification ability.

Figure 2. Effect of distillation temperature parameter on
output distribution learning

When the temperature further rises to 4.0 and 5.0, the
model performance slightly declines. This suggests that an
overly high temperature may lead to an overly smooth output
distribution, reducing the discriminative information between
samples. The result shows that temperature settings must strike
a balance between extracting sufficient information and
avoiding feature blurring. A temperature that is too low fails to
capture fine-grained semantic differences. One that is too high
may introduce noise.

In terms of inference efficiency, the model's average
inference time remains stable as temperature increases. It
fluctuates around 22.5 ms. This shows that temperature has
minimal impact on runtime efficiency. The result further
confirms that the proposed distillation framework improves
model capability while maintaining good resource efficiency
and deployment feasibility. In summary, the experiment shows
that a moderate distillation temperature, such as T = 3.0,
achieves the best learning effect for output distribution. It
enables the student model to better mimic and absorb the
teacher model's deeper knowledge. By properly adjusting the
temperature parameter, the model achieves more stable and
generalizable performance across tasks. This supports the
theoretical foundation of the proposed multi-layer distillation
strategy.

3) Stability evaluation of distillation models in multi-task
scenarios

This paper further provides a stability evaluation of the
distillation model in a multi-task scenario, and the
experimental results are shown in Figure 3.

As shown in the figure, the proposed distillation model
achieves stable and strong performance across most tasks. In
typical classification and matching tasks such as SST-2, QNLI,
and STS-B, both accuracy and F1 score remain high. This
reflects the model's strong ability in semantic understanding
and discrimination. It shows that the multi-layer alignment
distillation strategy effectively transfers structural knowledge
from the teacher model in multi-task settings. This enhances
the generalization ability of the student model.

In tasks like MRPC and QQP, which involve sentence pair
similarity judgment, the model maintains consistent accuracy



and F1 scores. This indicates that the distillation method
captures not only intra-sentence semantics but also preserves
the quality of inter-sentence relationship modeling. These
results confirm that the use of attention and intermediate layer

distillation brings clear advantages in modeling semantic
relations between sentences.

Figure 3. Stability evaluation of distillation models in multi-task scenarios

It is worth noting that the model performs relatively lower
on RTE and CoLA. In particular, the performance on CoLA
shows noticeable fluctuations. This suggests that the student
model may face challenges in generalizing knowledge for tasks
involving complex linguistic phenomena or limited data. These
findings indicate that further improvements in distillation
strategies could involve task-aware mechanisms to better adapt
to task-specific structures. Overall, the experiments verify the
robustness and transferability of the proposed distillation model
across diverse tasks. The results demonstrate that the designed

structural alignment mechanism and distillation objectives
work reliably in most settings. This provides a solid
performance foundation for applying the model in complex
real-world scenarios.

4) Improving inference speed evaluation of distilled
models on low-resource devices

This paper also gives an evaluation of the inference speed
of the improved distillation model on low-resource devices,
and the experimental results are shown in Figure 4.

Figure 4. Improving inference speed evaluation of distilled models on low-resource devices

As shown in the figure, the improved distillation model
demonstrates strong inference efficiency across various low-
resource devices. On the Edge TPU and RK3399 platforms, the
inference time reaches 41.3 ms and 53.9 ms, respectively.
These values are significantly lower than those on other
devices. This indicates that the proposed structural optimization
and parameter compression strategies are effective not only in

standard environments but also in edge deployment scenarios.
They support fast response capabilities on terminal devices.

In terms of memory usage, the model reaches a peak
memory consumption of only 180 MB on the Edge TPU. This
is much lower than the 290 MB on the Raspberry Pi 4 and the
260 MB on the Jetson Nano. This shows that the distillation
method effectively reduces resource usage during model



execution. Such efficiency is critical for deployment in
memory-constrained environments. It improves the model's
feasibility and stability on smart hardware and mobile devices.

The combined optimization of inference speed and memory
usage highlights the advantages of the multi-layer alignment
distillation strategy in lightweight design. Results from
different devices consistently show that the method can deliver
balanced performance even under limited resources. It does not
rely on specific hardware acceleration and offers good cross-
platform compatibility.

In conclusion, the improved distillation model proposed in
this study performs well in semantic retention and multi-task
learning. It also demonstrates broad applicability in terms of
hardware efficiency and deployment. These strengths provide
practical support for applying language models in edge
intelligence and low-power computing scenarios.

5) Loss function changes with epoch

At the end of this paper, a graph is provided to illustrate
how the loss function evolves over the course of training, with
respect to the number of epochs. This figure is included to offer
a clear depiction of the optimization process undergone by the
proposed distillation model during training. Specifically, the
graph presents the dynamic changes in both the training loss
and validation loss, thereby reflecting the progression of model
convergence and learning behavior under the designed
distillation framework. Tracking the loss function across
epochs is essential for understanding how efficiently the
student model absorbs knowledge from the teacher model, as
well as for diagnosing potential issues such as underfitting or
overfitting. The graphical representation of this loss curve is
shown in Figure 5.

Figure 5. Loss function changes with epoch

As shown in the figure, both the training loss and validation
loss decrease steadily as the number of epochs increases. The
overall trend indicates good convergence. The training loss
drops quickly from an initial value of 2.3 to around 0.63. This
shows that the student model continuously absorbs knowledge
from the teacher model and gradually builds a stable semantic
representation. This result aligns with the multi-layer alignment
distillation strategy proposed in this study. It confirms the
effectiveness of the mechanism in guiding the optimization
process. The validation loss also decreases smoothly. This
suggests that the model does not suffer from significant

overfitting during training. In the later stages, the validation
loss stabilizes around 0.94. The small gap between training and
validation losses indicates strong consistency and
generalization. This further supports the positive role of
attention alignment and intermediate layer transfer in
improving model stability.

The comparison between the two loss curves also shows
that the student model avoids the local minima problem often
seen in lightweight models during early training. Guided by the
teacher signals, the model benefits from soft labels and
structural knowledge passed through distillation. These
elements provide a smoother and more directed optimization
path. As a result, the model achieves good performance in a
short training time while maintaining a compact structure. In
summary, the experiment verifies the advantages of the
improved distillation method in training efficiency and loss
convergence. The student model quickly fits the information
transferred from the teacher. It also maintains stable training
dynamics and strong generalization. These features provide a
solid foundation for applications in multi-task learning and
low-resource environments.

5. Conclusion
This paper addresses key challenges in compressing large

language models and proposes a multi-layer alignment
distillation algorithm based on an improved TinyBERT
framework. The method introduces multi-dimensional
distillation objectives, including output distribution,
intermediate features, and attention weights. It significantly
enhances the student model's ability to learn semantic
structures from the teacher model while maintaining a compact
architecture. Experimental results show that the method
performs well across various natural language understanding
tasks and demonstrates excellent inference efficiency and
deployment flexibility.

The study validates the effectiveness of multi-level
knowledge transfer in language model distillation. It also
highlights the positive role of structure-aware distillation
strategies in improving the semantic generalization of student
models. In terms of accuracy, F1 score, and efficiency on low-
resource devices, the proposed method shows strong overall
advantages. These findings provide technical support for
building lightweight, efficient, and robust natural language
processing systems.

The method also shows strong applicability in real-world
scenarios. In edge computing, mobile devices, and industrial
text processing, model deployment is highly sensitive to
resource constraints. Models with high compression ratios and
strong performance are therefore highly valuable. In addition,
the method supports direct transfer and deployment in dialogue
systems, question answering, and domain-specific applications
such as finance and healthcare. This extends the practical reach
of large language model technology. Future research may
explore task-aware distillation strategies, dynamic structure
adaptation mechanisms, and multimodal knowledge distillation
methods. These directions can further improve model
adaptability in complex environments. Combining such
methods with large-scale open-source models and real-world



datasets will help advance the adoption of lightweight language
models in industrial applications. This will provide a feasible
path toward more inclusive and accessible intelligent language
technologies.
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