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Abstract: This paper addresses the issue of resource waste and performance degradation caused by load imbalance in
distributed systems. It proposes a load balancing optimization method based on the TD3 (Twin Delayed Deep Deterministic
Policy Gradient) algorithm. By modeling system scheduling as a Markov Decision Process with a continuous action space, the
agent can dynamically generate task migration ratios based on system states, enabling precise control over multi-node resource
allocation. A state space is designed that includes indicators such as CPU utilization and task queue length. A reward function is
constructed to comprehensively account for latency, resource utilization, and migration overhead. In multiple experimental
scenarios, the proposed method outperforms mainstream algorithms such as Q-Learning, DQN, and PPO in terms of average
latency, resource usage, and scheduling robustness. Further tests are conducted in environments involving multi-resource
collaborative scheduling and node failure disturbances, validating the strategy's stability and adaptability. The experiments also
demonstrate the convergence of the model during training, indicating that the proposed strategy is highly trainable and
generalizable. It effectively enhances the overall scheduling efficiency of distributed systems.
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1. Introduction
With the rapid development of cloud computing, big data, and
microservices architecture, distributed systems have become a
fundamental component of modern computing infrastructure
[1]. As the scale of these systems continues to grow,
imbalanced task distribution among nodes has become
increasingly prominent. This imbalance significantly impacts
overall system performance and resource utilization. Load
balancing plays a critical role in distributed systems. Its core
objective is to efficiently schedule requests and resources to
maintain stable operation under conditions of high concurrency
and availability [2]. However, traditional load-balancing
strategies largely rely on static rules or predefined heuristic
methods. These approaches lack adaptability to dynamic
environments and fall short of meeting the rising demand for
intelligent and adaptive solutions in complex application
scenarios.

In recent years, reinforcement learning has demonstrated strong
adaptability and optimization potential in areas such as
automatic control and intelligent scheduling. This has
introduced new perspectives for addressing load balancing
challenges in distributed systems. Reinforcement learning
interacts with the environment to iteratively update its policy in
pursuit of maximizing long-term rewards [3]. This makes it
well-suited for dealing with the complex and interrelated
factors in distributed systems, such as task distribution,
resource status, and node responsiveness. In practical
applications, reinforcement learning can dynamically optimize
request scheduling and task migration. This leads to improved
resource utilization, reduced response time, and enhanced

system fault tolerance and robustness. As a result, the
integration of reinforcement learning into distributed system
load balancing has become a focal point in both academic
research and engineering practice [4, 5].

Although reinforcement learning has achieved some success in
load balancing applications, most existing studies focus on
modeling problems in discrete action spaces. This limits the
expressiveness and optimization accuracy of the learned
policies. In reality, many scheduling behaviors in distributed
systems— such as task migration ratios and resource weight
adjustments— are inherently continuous in nature. Therefore,
there is a need for reinforcement learning methods capable of
handling high-dimensional, continuous action spaces to more
accurately simulate real-world scheduling behaviors and enable
fine-grained and efficient strategy optimization [6, 7].

TD3 (Twin Delayed Deep Deterministic Policy Gradient) is a
reinforcement learning algorithm specifically designed for
continuous action space optimization. It has shown strong
performance in high-dimensional policy learning tasks. By
employing dual policy networks and delayed updates, TD3
mitigates the problem of overestimation in value functions.
This improves the stability of the learning process and the
quality of the resulting policies. Applying TD3 to load
balancing in distributed systems enables continuous decision-
making under dynamic load and resource conditions. This
enhances the intelligence of scheduling strategies and improves
overall system performance. The method also demonstrates
strong generalization capabilities and has the potential to
address the scheduling bottlenecks faced by traditional
strategies in rapidly changing environments.



This study aims to develop a load-balancing optimization
framework for distributed systems based on the TD3 algorithm.
It explores how continuous policy learning can achieve optimal
resource allocation and scheduling. A multi-node distributed
environment will be simulated to design state spaces, action
spaces, and reward mechanisms tailored to different system
conditions. The study will evaluate the convergence and
performance of reinforcement learning in real-world system
scenarios. Theoretically, this work enriches the application
paradigm of reinforcement learning in resource scheduling
problems. Practically, it offers an efficient and intelligent
optimization approach for resource management in large-scale
distributed systems, with significant theoretical value and
practical prospects.

2. Related work
Achieving efficient load balancing in distributed systems has
long been a key topic in scheduling research. Traditional
methods, such as Round-Robin, Least Connection, or
threshold-based static rules, are commonly used to allocate
tasks. These approaches perform reasonably well in small-scale
or evenly loaded systems [8, 9, 10]. However, in complex
environments with significant differences in node performance
and frequent load fluctuations, they often lead to local node
overload and degraded system responsiveness. Moreover, such
methods lack deep awareness of system states and cannot
adjust scheduling strategies based on historical data, resulting
in clear performance bottlenecks when handling large-scale,
heterogeneous, and high-concurrency workloads [11].

In recent years, with the rise of machine learning in scheduling
optimization, researchers have explored the use of supervised
learning and deep learning methods to improve load balancing
strategies. For example, some studies train regression models
on historical data to predict node load and then make

scheduling decisions accordingly. Others use neural networks
to model resource demands, enhancing the foresight and
flexibility of scheduling[12]. However, these approaches often
rely on large amounts of labeled data and struggle to adapt to
dynamic changes in the system environment. In contrast,
reinforcement learning learns optimal strategies through agent-
environment interaction. It offers strong adaptability and does
not require labeled supervision, making it a growing focus in
load scheduling research[13].

Among reinforcement learning methods, algorithms such as
Deep Q-Network (DQN), Proximal Policy Optimization (PPO),
and Deep Deterministic Policy Gradient (DDPG) are widely
applied in scheduling decision scenarios. Existing studies have
explored their effectiveness in cloud resource allocation, virtual
machine migration, and container scheduling. Some research
has also introduced multi-agent learning into scheduling
systems to enhance cooperation among nodes. However, most
of these methods are based on discrete action spaces, which
makes it difficult to capture optimal strategies for continuous
decision variables like task migration ratios or resource
adjustment magnitudes. To address this limitation, some
studies have begun to explore the advantages of reinforcement
learning algorithms such as TD3 in continuous action spaces.
This paper, under this context, focuses on the specific
application and performance validation of the TD3 algorithm in
distributed system load balancing.

3. Method
This study uses the TD3 algorithm (Twin Delayed Deep
Deterministic Policy Gradient) to build an optimization model
for distributed system load balancing, and learns the optimal
resource scheduling strategy through continuous interaction
between the agent and the system environment. The model
architecture is shown in Figure 1.

Figure 1. Overall model architecture diagram



This network architecture diagram shows the load balancing
optimization process based on the TD3 algorithm. The agent
generates continuous actions ta according to the current

system state ts through the Actor network to realize task
scheduling in the distributed system. The two Critic networks
calculate the Q value of the action respectively, and take the
minimum value for the target value calculation to improve the
stability of the policy estimation. The reward function
comprehensively considers the system delay, resource
utilization and migration overhead, and continuously
optimizes the policy network through the interactive feedback
mechanism to realize intelligent balanced scheduling of the
system load.
The system environment is modeled as a Markov decision
process (MDP), defined as a five-tuple ),,,,( PRAS ,
where S represents the system state space, A represents the
action space, R is the reward function, P represents the state
transition probability, and  is the discount factor. The state
space includes indicators such as the CPU usage, memory
usage, and current task queue length of each node; the action
space is the continuous decision of the agent on the task
migration ratio at each time step.
The goal of the agent is to maximize the future cumulative
expected reward )(J , that is:
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Among them, strategy  is a deterministic strategy, which
means action )( tt sa  taken in state ts . The TD3

algorithm uses two independent Q value functions
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Q to alleviate the problem of strategy overestimation, and

uses the smaller one when updating the target Q value to
enhance stability. The target Q value is defined as follows:
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Among them,  is an exploration item that adds Gaussian
noise to enhance the robustness of the strategy. The policy
network  updates the parameters by maximizing the

output of the Q function, and the optimization goal is:
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During the training process, TD3 uses a delayed update
mechanism, that is, the policy network is updated once every d
times the Q network is updated to improve the stability of the
policy update. At the same time, in order to suppress policy
drift, the target network parameters are updated using a soft
update strategy after each round of update:
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In order to enable the agent to learn to make optimal load
migration decisions in a dynamic system, the reward function
is designed to take into account system latency, resource

utilization, and migration cost. The reward function is defined
as:
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Among them,  ,, is a weight factor used to balance the
system performance indicators. The above method enables the
intelligent agent to optimize the strategy in the high-
dimensional continuous state-action space, effectively improve
the dynamic scheduling capability and resource utilization
efficiency of the system, and realize adaptive and efficient
load balancing scheduling.

4. Experiment
4.1 Datasets

This study adopts the publicly available "ClusterData: Google
Cluster Trace" dataset as the foundational data source for
distributed system load balancing optimization experiments.
The dataset originates from the scheduling and resource usage
logs of a large-scale real-world cluster. It includes operational
data from over 10,000 nodes over a one-month period,
covering key metrics such as CPU usage, memory consumption,
task requests, and job durations.

The dataset records detailed information on job submissions,
task scheduling, resource allocation, and task completions
within the cluster scheduling system. It accurately reflects
dynamic load variations and fluctuations in resource states,
making it well-suited for modeling the state space and reward
functions in a reinforcement learning environment.
Additionally, its high-frequency and multi-dimensional
sampling structure provides strong support for training policies
in continuous action spaces.

During data preprocessing, representative time segments and
node samples were selected. Missing values and outliers were
cleaned, and fields such as CPU usage, memory occupancy,
and task length were normalized. These steps enabled the
construction of essential state variables and reward feedback
for the reinforcement learning environment. This dataset
provides a highly reliable experimental foundation for
optimizing load-balancing strategies.

4.2 Experimental Results
1) Experiments comparing this algorithm with other

algorithms
This paper first gives the comparative experimental results, and
the experimental results are shown in Table 1.

Table 1: Comparative experimental results

Method Average
Latency
(ms)

CPU
Utilization
(%)

Task
Success
Rate (%)

Migration
Cost

Q-Learning[14] 128.6 73.2 91.4 0.38
DQN[15] 115.3 76.8 93.1 0.42
PPO[16] 104.7 81.5 95.8 0.36
DDPG[17] 97.2 83.9 96.7 0.34



Ours 91.6 86.4 97.5 0.31

As shown in the table, the TD3-based load balancing strategy
(Ours) outperforms other methods across multiple key
performance metrics. In terms of average latency, the TD3
algorithm achieves a significantly lower value of 91.6 ms,
which is markedly better than other reinforcement learning
algorithms. This indicates stronger real-time responsiveness in
high-concurrency scheduling scenarios and more effective
mitigation of imbalance pressure among system nodes.

Regarding resource utilization, the TD3 strategy achieves a
CPU utilization rate of 86.4%, showing a clear improvement
over other methods. This demonstrates its ability to finely
control task scheduling behavior in continuous action spaces,
thereby enabling deeper exploitation of computational
resources. The continuous control strategy also avoids the
abrupt scheduling changes often observed in discrete strategies,
contributing to smoother resource allocation across the system.

Moreover, the TD3 algorithm also delivers superior overall
performance in task success rate and migration overhead. With
a task success rate of 97.5% and the lowest migration cost of
0.31, it effectively reduces the system burden caused by task
migration while ensuring system stability. This highlights its
strong scheduling robustness and comprehensive optimization
capabilities. These results fully validate the rationality and
practical value of applying TD3 to load balancing strategy
optimization in distributed systems.

2) Experimental results on the impact of task migration
rate on system latency

Furthermore, this paper also gives the experimental results of
the impact of task migration rate on system latency, as shown
in Figure 2.

Figure 2. Impact of Task Migration Ratio on System
Latency

The experimental results indicate that the task migration ratio
has a significant impact on the system's average latency. When
the migration ratio increases gradually from 0% to 30%, the
average latency drops significantly from 132.5 ms to 91.6 ms.
This suggests that a moderate level of task migration helps
achieve dynamic load balancing, effectively alleviating

overload issues on individual nodes and improving overall
response efficiency.

However, when the migration ratio is further increased to 40%
and 50%, the system latency begins to rise. This implies that
overly frequent task migrations may introduce additional
communication and scheduling overhead. Such overhead can
undermine local system stability, causing the benefits of load
optimization to be offset by the cost of migration, ultimately
leading to a decline in overall performance.

This experiment validates the TD3-based scheduling strategy's
fine-grained control over task migration. By learning optimal
migration policies under varying load conditions, the model
can improve resource utilization while keeping migration-
induced delays under control. This demonstrates strong
adaptability and system awareness.

3) Robustness experiment of TD3 strategy under different
node scales
Furthermore, this paper presents a robustness experiment of the
TD3 strategy under different node scales, and the experimental
results are shown in Figure 3.

Figure 3. Robustness experiments under different node
scales

The experimental results show that the TD3 strategy
demonstrates strong robustness under varying node scales.
When the number of nodes ranges from 10 to 30, the system's
average latency remains between 91 ms and 93 ms, with only
minor fluctuations. This indicates that the strategy exhibits
good generalization and stable scheduling performance in
small-scale systems.

As the number of nodes further increases to 60, the average
latency slightly rises to 98.5 ms. This trend suggests that in
large-scale environments, uncertainties in system load and
increased communication complexity may raise the cost of
executing the scheduling strategy. Nevertheless, the overall
performance remains within an acceptable range, indicating
that the model possesses a certain degree of scalability.

Overall, this experiment confirms the adaptability of the
proposed TD3-based scheduling strategy under different node
scale scenarios. Through continuous action control, the model
can flexibly respond to the load balancing demands of various
system structures. It maintains favorable service quality and



response speed, offering strategic support for practical
deployment in large-scale distributed systems.

4) Testing the strategy generalization capability in multi-
resource collaborative scheduling scenarios
Furthermore, this paper also gives the experimental results of
the strategy generalization ability test in the multi-resource
collaborative scheduling scenario, as shown in Figure 4. The
figure provides a detailed view of how the proposed strategy
performs when handling complex scheduling tasks involving
multiple resource types, demonstrating its capability to
generalize across varying system configurations and workload
distributions.

Figure 4. Testing the strategy generalization capability in
multi-resource collaborative scheduling scenarios

The experimental results show that the proposed TD3 strategy
maintains relatively stable performance under various resource-
constrained scenarios. The average latency fluctuates within a
narrow range, with a minimum of 91.7 ms in the Mixed
scenario and a maximum of 95.4 ms in the I/O-heavy scenario.
This reflects the model's strong adaptability and generalization
when facing different resource bottlenecks. Notably, achieving
the lowest latency under mixed resource loads indicates high
scheduling sensitivity in balancing multi-resource allocations.

In the Memory-bound and I/O-heavy scenarios, system latency
increases slightly to 94.1 ms and 95.4 ms, respectively. This
may be attributed to the inherent access characteristics of these
resources and the finer scheduling granularity they require.
However, the latency remains within an acceptable range,
demonstrating the reinforcement learning strategy's stability in
non-ideal conditions. Particularly in I/O-intensive scheduling
tasks, the strategy effectively controls latency, indicating a
strong responsiveness to changes in system state.

Overall, this experiment confirms that the scheduling policy
learned by the TD3 algorithm is effective not only in the
training environment but also in unseen test scenarios. The
strategy demonstrates consistent performance when applied to
previously unencountered system conditions, indicating that it
has successfully captured generalized scheduling patterns. This
generalization capability is crucial for practical deployment
across diverse resource scheduling conditions, where system
dynamics and workload characteristics may vary significantly.
Moreover, it provides strong theoretical support for policy

transfer and cross-scenario adaptation, enabling the model to be
extended to other distributed systems with minimal retraining
or reconfiguration.

5) Loss function changes with epoch
This paper also provides a graph illustrating the change of

the loss function over the course of training epochs, as
presented in Figure 5. The figure visually demonstrates how the
model's loss evolves during the learning process, offering
insights into the convergence behavior and training stability of
the proposed algorithm.

Figure 5. Loss function drop graph

From the loss function curve, it can be observed that the
model's loss value drops rapidly during the early training phase.
This indicates that the TD3 strategy quickly learns
representative scheduling behaviors within the first few epochs.
It shows strong initial responsiveness to system states and load
feedback. The steep decline at this stage reflects the strategy's
fast adaptation and fitting to the dynamic environment.

As training progresses, especially after the 100th epoch, the
loss value gradually stabilizes. It fluctuates within a narrow
range and remains below 0.05. This suggests that the model has
largely converged. Both the policy network and the value
network reach a relatively steady state, enabling accurate
evaluation of load conditions and execution of appropriate
scheduling decisions in the distributed system.

Overall, the results validate the trainability and convergence of
the TD3 model for continuous control in load balancing tasks.
The steadily declining loss function curve further implies that
the model continuously improves its policy through iterative
optimization. This trend reflects a stable learning process in
which the policy and value networks gradually adapt to the
system dynamics. As training progresses, the model becomes
increasingly capable of making precise scheduling decisions.
These findings lay a solid foundation for the practical
deployment of the proposed approach and demonstrate its
potential for generalization across diverse and dynamic real-
world scenarios.

6) Dynamic testing of real-time interference to strategy
adaptability
Finally, this paper also presents the dynamic test results of the
real-time interference to the strategy adaptability, as shown in



Figure 6. The figure highlights how the proposed strategy
responds to unexpected disturbances during system operation,

providing visual evidence of its adaptability and robustness in
dynamic environments.

Figure 6. Adaptation of TD3 Strategy Under Real-time Interference

As shown in the figure, before any node failures occur, the
system latency remains around 90 ms with minimal fluctuation.
This indicates that the TD3 strategy effectively maintains load
balance and scheduling stability under normal operating
conditions. During this phase, the model responds smoothly to
changes in system state, and the policy output shows strong
control consistency.

When the first node failure occurs between time steps 40 and
50, a temporary increase in latency is observed, reaching
approximately 100 ms. However, the system quickly recovers
to normal levels, demonstrating the strategy's ability to absorb
disturbances. Similarly, during the second disturbance between
time steps 80 and 90, the system again experiences a short-
lived fluctuation followed by rapid stabilization. This shows
that the model can adapt quickly to unknown disruptions,
maintaining overall system performance without long-term
degradation.

These experimental results validate that the TD3-based load
balancing strategy exhibits strong environmental adaptability
and dynamic adjustment capabilities in the face of sudden node
dropouts and other real-time disturbances. This feature is
crucial for improving the reliability and robustness of
distributed systems in real-world deployments.

5. Conclusion
This study addresses the problem of load balancing in
distributed systems and proposes a scheduling strategy
optimization method based on the TD3 algorithm. By
introducing a continuous action space reinforcement learning
mechanism into task migration and resource scheduling, the
method enables fine-grained perception of system states and
dynamic decision-making optimization. Experimental results
show that the proposed method delivers excellent scheduling
performance across various typical scenarios. It significantly

reduces system latency, improves resource utilization, and
effectively controls migration costs.

Under complex conditions such as system scaling, multi-
resource collaborative scheduling, and unexpected fault
disturbances, the proposed strategy maintains strong stability
and robustness. It demonstrates good generalization capability
and practical value. In particular, under dynamic disturbances
and resource bottlenecks, the model adjusts its strategy
promptly in response to changes, highlighting the potential of
deep reinforcement learning in controlling uncertain systems.

The proposed method not only offers an efficient and adaptive
solution to load balancing in distributed systems but also
provides new theoretical and experimental support for the
application of reinforcement learning in intelligent scheduling,
edge computing, and large-scale cloud infrastructure
management. The flexibility of the model architecture and the
continuity of policy representation enable its feasibility for
migration and deployment across diverse system architectures.
Future work may consider integrating multi-agent learning
mechanisms into the scheduling framework to enhance
collaborative decision-making among nodes. In addition,
incorporating more complex network topologies and modeling
data communication delays in realistic deployment
environments could improve policy adaptability to real-world
scenarios. Furthermore, introducing advanced techniques such
as self-supervised learning and meta-learning may offer new
directions for rapid policy generalization and autonomous
evolution.
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